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Let G be a finite group. We know that the order of G and the number of elements of maximal order in G are closely related to the
structure of G. +is topic involves +ompson’s conjecture. In this paper, we classify the finite groups of order p2qr in which the
number of elements of maximal order is p3q, where p< q< r are different primes.

1. Introduction

All groups considered in the present paper are finite. Let n be
an integer. We denote by π(n) the set of all prime divisors of
n. Let G be a finite group. +en π(|G|) is denoted by π(G).
And we denote by k(G) and m(G) the maximal order of
elements in G and the number of elements of order k(G) in
G, respectively. We write H char G if H is a characteristic
subgroup of G. G � N × Q stands for the split extension of a
normal subgroup N of G by a complement Q. By M≲G we
denote M is isomorphic to a subgroup of G. And we denote
byZn a cyclic group of order n. All unexplained notations are
standard and can be found in [1].

As is well known, for a finite group G, |G| and m(G) have
an important influence on the structure of G. +e authors in
[2–4] proved that finite groups with m(G) � lp are soluble,
where l � 2, 4, or 18. In [5] it was proved that finite groups
with m(G) � 2p2 are soluble. +e authors in [6, 7] gave a
classification of the finite groups with m(G) � 30 and
m(G) � 24. +ese studies are closely related to the following
conjecture.

1.1.  ompson’s Conjecture. Let G be a finite group. For a
positive integer d, define G(d) � | x ∈ G‖x| �d{ }|. If H is a
soluble group, G(d) � H(d) for d � 1, 2, . . ., then G is
soluble.

In this paper we classify the finite groups of order p2qr in
which the number of elements of maximal order is p3q,
where p< q< r are different primes. Our result is:

1.2. Main  eorem. Suppose that G is a finite group satis-
fying |G| � p2qr and m(G) � p3q, where p< q< r are dif-
ferent primes. +en one of the following statements holds:

(1) G � M< imesZr, where M is a group of order 4q.
Moreover, M/Z2≲ Aut (Zr), (M/Z2)< imesZr is a
Frobenius group and r − 1 � 8q.

(2) G � Z4r⋊Zq. Moreover, Zq≲ Aut (Z4r) and
r − 1 � 4q.

(3) G � H< imesZqr, where H is a group of order 4, q �

3 and r � 13 or q � 5 and r � 11. Moreover, H is
isomorphic to a subgroup of Aut (Zqr). Hence
H≲Z2 × Z12 or H≲Z4 × Z10.

(4) G � Z84.
(5) G � (Z2 × Z2) × Z15.
(6) G � M< imesZqr, where M is a group of order 4,

q � 3 and r � 13 or q � 5 and r � 11. Moreover,
M/Z2 is isomorphic to a subgroup of Aut (Zqr).
Hence M/Z2≲Z2 × Z12 or M/Z2≲Z4 × Z10.

(7) G is a Frobenius group and G � Z4q < imesZr.
Moreover, r − 1 � 8q.

(8) G � A5.
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2. Preliminaries

We need the following lemmas to show the main theorem.

Lemma 1 (see [8]). Let G be a finite group.  en the number
of elements whose orders are multiples of n is either zero, or a
multiple of the greatest divisor of |G| that is prime to n.

Lemma 2 (see [2]). Let G be a finite group. We denote by Ai

(1≤ i≤ s) a complete representative system of conjugate
classes of cyclic subgroups of order k(G), respectively.  en we
have the following:

(1) m(G) � φ(k(G))  ni, where φ(k(G)) is the Euler
function, ni � |G: NG(Ai)| and 1≤ i≤ s.

(2) |G| � |G: NG(Ai)‖NG(Ai): CG(Ai)‖CG(Ai)|, where
1≤ i≤ s.

(3) |NG(Ai): CG(Ai)
����φ(k(G)), where 1≤ i≤ s.

(4) π(CG(Ai)) � π(Ai), where 1≤ i≤ s.

Lemma 3 (see [9]). Let G be a soluble group of order mn,
where m is prime to n.  en the number of subgroups of G of
order m may be expressed as a product of factors, each of
which (i) is congruent to 1 modulo some prime factor of m and
(ii) is a power of a prime and divides the order of some chief
factor of G.

Lemma 4 (see [10]). Let G be a finite simple group. If
|π(G)| � 3, then we call G a simple K3-group. If G is a simple
K3-group, then G is isomorphic to one of the following groups:
A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) or U4(2).

3. Proof of the Theorem

We know that π(G)⊆π(m(G))⋃ π(k(G)) by Lemma 1.
+en r ∈ π(k(G)). In the following, we discuss four cases.

Case 1. If π(k(G)) � p, r , then k(G) � pr or p2r.

Suppose that k(G) � pr. Since φ(k(G)) � (p − 1)(r − 1)

|m(G) � p3q by Lemma 2, we have p � 2. Choose an ar-
bitrary element x of order k(G) in G and let 〈x〉 � A. It
is clear that xp ∈ Z(CG(A)) and so G has a Sylow
r-subgroup Pr such that Pr ≤Z(CG(A)). +erefore Pr

char CG(A) and it follows that Pr ⊲NG(A) since
CG(A)⊲NG(A). +erefore NG(A)≤NG(Pr) and thus
|G: NG(Pr)

����|G: NG(A)|. By Lemma 2 we get that
|G: NG(A)

����2q. So |G: NG(Pr)
����2q.

If Pr⋬G, then |G: NG(Pr)| � |G: NG(A)| � 2q by Syl-
ow’s theorem. Consequently, we have 2q|n by Lemma 2,
where n is the number of cyclic subgroups of order k(G) in
G. Note that n � m(G)/φ(pr) � 8q/r − 1, thus r − 1 � 4 and
so r � 5. It follows that q � 3. It is well known that a group of
order 60 is isomorphic to A5, if it is not 5-closed.+erefore G

is isomorphic to A5, which is a contradiction since A5 has no
elements of order 10.

If Pr ⊲G, then CG(Pr) contains all the elements of order
k(G) in G since A≤CG(A)≤CG(Pr). Note that
Pr ≤Z(CG(Pr)), thus |CG(Pr)| � 2αr, where 1≤ α≤ 2.

Moreover, CG(Pr) � H × Pr by Schur–Zassenhaus’s theo-
rem, where H is a group of order 2α. If α � 2, then H is an
elementary abelian group of order 4. +us 3(r − 1) � 8q

and it follows that r − 1 � 8, which is a contradiction
since r is a prime. If α � 1, then r − 1 � 8q. By
Schur–Zassenhaus’s theorem we get that G � M< imesZr,
where M is a group of order 4q. It is obvious that M/Z2≲
Aut (Zr) and (M/Z2)< imesZr is a Frobenius group.
Hence (1) holds.

Suppose that k(G) � p2r. Since φ(k(G)) � p(p − 1)(r −

1)|m(G) � p3q by Lemma 2, we get that p − 1 � 1 and so
p � 2. Choose an arbitrary element x of order k(G) in G and
let 〈x〉 � A. It is clear that xp2 ∈ Z(CG(A)) and so G has a
Sylow r-subgroup Pr such that Pr ≤Z(CG(A)). +erefore Pr

char CG(A) and it follows that Pr ⊲NG(A) since
CG(A)⊲NG(A). So NG(A)≤NG(Pr). +en
|G: NG(Pr)

����|G: NG(A)|. Note that |G: NG(A)|q by Lemma
2, thus |G: NG(Pr)| � 1 by Sylow’s theorem. It follows that
Pr ⊲G and CG(Pr) contains all the elements of order k(G) in
G. Furthermore, |CG(Pr)| � 4qαr, where 0≤ α≤ 1.

If α � 0, then CG(Pr) � Z4r. +erefore φ(4r) � 8q and
thus r − 1 � 4q. Since CG(Pr)⊲G, we obtain G � Z4r⋊Zq by
Schur–Zassenhaus’s theorem. Moreover, Zq≲ Aut (Z4r).
Hence (2) holds.

If α � 1, then CG(Pr) � G and so Pr ≤Z(G). Hence G

has elements of order qr, but has no elements of order 2q

since k(G) � 4r is the maximal element order of G. Since
k(G) � 4r> qr, we get that q � 3. Note that the Sylow 2-
subgroup P2 of G is cyclic, then G has a normal 2-com-
plement H. Obviously H � Z3r and so the Sylow 3-subgroup
P3 of G is normal in G. Since G has no elements of 6, we get
that P2 acts fixed-point-freely on P3. +erefore
|P2|(|P3| − 1), namely, 4|2, which is a contradiction.

Case 2. If π(k(G)) � q, r , then k(G) � qr.
Since φ(k(G)) � (q − 1)(r − 1)|m(G) � p3q by Lemma

2, we get that q − 1|p3. Since 2|q − 1, we have 2|p3 and so
p � 2. Choose an arbitrary element x of order k(G) in G and
let 〈x〉 � A. It is clear that Z(CG(A)) contains elements of
order r, and so G has a Sylow r-subgroup Pr such that
Pr ≤Z(CG(A)). +erefore Pr char CG(A) and it follows that
Pr ⊲NG(A) since CG(A)⊲NG(A). So NG(A)≤NG(Pr).
+en |G: NG(Pr)

����|G: NG(A)|. Note that |G: NG(A)‖4 by
Lemma 2, thus we get that |G: NG(Pr)‖4. Since 2< q< r, we
get that |G: NG(Pr)| � 1 by Sylow’s theorem. It follows that
Pr ⊲G. +en G is soluble. It follows that |G: NG(A)| � 1 or
4 by Lemma 3. If |G: NG(A)| � 4, then 4 ≡ 1 (mod q)
by Lemma 3. +erefore q � 3 and thus
n � 24/φ(k(G) � 24/(q − 1)(r − 1) � 4, where n is the
number of cyclic subgroups of order k(G) in G. +en r � 4,
which is a contradiction since r is a prime. If
|G: NG(A)| � 1, then from φ(qr) � (q − 1)(r − 1) � 8q we
get that q � 3 and r � 13 or q � 5 and r � 11. Furthermore,
G � H< imesZqr by Schur–Zassenhaus’s theorem, where H

is a group of order 4. It is evident that the conjugate action of
H on Zqr is faithful. +erefore H is isomorphic to a sub-
group of Aut (Zqr). Hence H≲Z2 × Z12 or H≲Z4 × Z10 and
so (3) holds.
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Case 3. If π(k(G)) � p, q, r , then k(G) � p2qr or pqr.

If k(G) � p2qr, then φ(p2qr) � p(p − 1)(q − 1)

(r − 1) � p3q. +erefore p − 1 � 1 and so p � 2. Conse-
quently, q − 1/2 · r − 1/2 � q. Since r − 1/2> 1, we have q −

1/2 � 1 and so q � 3. It follows that r � 7. Hence G � Z84
and thus (4) holds.

If k(G) � pqr, then by
φ(k(G)) � (p − 1)(q − 1)(r − 1)|p3q we know that p − 1 �

1 and so p � 2. Choose an arbitrary element x of order k(G)

in G and let 〈x〉 � A. It is clear that Z(CG(A)) contains
elements of order qr, and so G has a subgroup H of order qr

such that H≤Z(CG(A)). +erefore H char CG(A) and it
follows that H⊲NG(A) since CG(A)⊲NG(A). So
NG(A)≤NG(H). +en |G: NG(H)

����|G: NG(A)|. Note that
||G: NG(A)| � 1, thus |G: NG(H)| � 1 and so H⊲G.
+erefore CG(H) contains all the elements of order k(G) in
G and so |CG(H)| � 2αqr, where 1≤ α≤ 2.

If α � 2, then H≤Z(G). So G � K × H by
Schur–Zassenhaus’s theorem. Obviously H is a non-cyclic
group of order 4. Hence 3(q − 1)(r − 1) � 8q and so q � 3,
r � 5. +erefore G � (Z2 × Z2) × Z15. Hence (5) holds.

If α � 1, then CG(H) � Z2 × H. So (q − 1)(r − 1) � 8q.
It follows that q � 3 and r � 13 or q � 5 and r � 11. Fur-
thermore, G � M< imesZqr by Schur–Zassenhaus’s theorem,
whereM is a group of order 4. It is evident that the kernel of the
conjugate action of M on Zqr is isomorphic to Z2. +erefore
M/Z2 is isomorphic to a subgroup of Aut (Zqr). Hence
M/Z2≲Z2 × Z12 or M/Z2≲Z4 × Z10. +us (6) holds.

Case 4. If π(k(G)) � r{ }, then k(G) � r.

Since r − 1|p3q and 2|r − 1, we get that p � 2. We know
that the number nr of Sylow r-subgroups of G is equal to 1,
2q, or 4q by Sylow’s theorem.

If nr � 1, then the Sylow r-subgroup Pr is normal in G

and r − 1 � 8q. Moreover, G has an r-complement H of
order 4q by Schur–Zassenhaus’s theorem. Note that the
conjugate action of H on Pr is fixed-point-free, thus G is a
Frobenius group with Frobenius kernel Pr and Frobenius
complement H. Note that Pr � Zr and H is a cyclic group,
thus G � Z4q < imesZr. Hence (7) holds.

If nr � 4q, then 4q(r − 1) � 8q, which is impossible.
If nr � 2q, then G is non-soluble by Lemma 3 and so

G � A5 by Lemma 4. Hence (8) holds.
Now the proof of the theorem is complete.
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