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�e well-posedness problem is an important but challenging research topic in nonlinear partial di�erential equations. In this
paper, we establish a global-in-time existence result of strong solutions for small initial data in terms of the _H

1/2(R3) norm on
three-dimensional tropical climate model with viscosities by derive a blow-up criterion combine with energy estimates.�is result
can be regard as a generalization of the famous Fujita–Kato result to 3D Navier–Stokes equations.

1. Introduction

In this paper, we investigate the global existence of smooth
solutions to the tropical climate model (TCM) in R3:

ztu − Δu + u · ∇u + ∇p + ∇ · (v⊗ v) � 0,

ztv − Δv + v · ∇u + u · ∇v + ∇θ � 0,

ztθ − Δθ + u · ∇θ + ∇ · v � 0,

∇ · u � 0,




(1)

with initial data

u(x, 0) � u0(x), v(x, 0) � v0(x), θ(x, 0) � θ0(x), (2)

where u � (u1, u2, u3) and v � (v1, v2, v3) denote the baro-
tropic mode and the �rst baroclinic mode of the velocity,
while the scalar functions θ, p denote the temperature and
pressure, respectively.

It should be pointed out that the original system derived
in [1] has no viscous terms because it is derived from the
inviscid primitive equations. In many research studies of
tropical atmospheric dynamics, Gill and Matsuno [2, 3] �rst
used the baroclinic mode models. Majda-Biello [4] pointed
out that the transport of momentum between the barotropic
and baroclinic model is an important e�ect, it is necessary to

retain both the barotropic and baroclinic modes of the
velocity. �ere are geophysical circumstances in which the
Laplacian may arise. Fundamental issues such as the global
existence and regularity of solutions have attracted con-
siderable attention. Some important results in terms of the
global existence and uniqueness of classical solutions in 2D
have been obtained, see [5–7] etc. In addition, some results
on the global well-posedness issue for the 3D tropical climate
model with fractional dissipation and damping terms can be
referred to [8, 9].

�is paper focuses on the global existence of the classical
solutions for TCM in R3. System (1) contains the 3D in-
compressible Navier–Stokes (NS) equations as a special case
(v � 0, θ � 0), for which the issue of global well-posedness
with small initial data in the Sobolev spaces _H

1/2(R3) has
been solved by Fujita and Kato [10]. Our goal of this paper is
to extend similar results to TCM. We should point out the
_H
1/2(R3) space is a critical space with respect to the scaling

invariance in terms of Navier–Stokes equations, but to
system (1) which is not scaling-invariant. System (1) contains
the Navier–Stokes equations as a subsystem, so in general,
we cannot expect any better results than those for the
Navier-Stokes equations. �erefore, a natural problem is
whether we can establish the global existence and regularity
of (1) under the same assumption. It should be noted that the
result for (1) is not completely parallel to that for the
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Navier–Stokes equations. .e difficulty is coming from
without ∇ · v � 0. .us, it seems difficult to obtain the de-
sired results by using the same process. Here, we use the trick
from a series of works on the Hall-magnetohydrodynamcis
equations by Dongho Chae and his collaborators [12, 13] etc.
and by utilizing the structure of the system to overcome this
difficulty. .e main results of this paper are the following:

Theorem 1. Let s> 5/2, and (u0, v0, θ0) ∈ Hs(R3) with
∇ · u0 � 0. &en, there exists a constant c0 > 0, such that

u0
����

���� _H
1/2 + v0

����
���� _H

1/2+ϵ + θ0
����

���� _H
1/2 < c0, 0< ϵ< 1. (3)

.en, there exists a unique global classical solution
(u, v, θ) ∈ L∞([0, +∞); Hs(R3)).

Remark 1. In the case of v � 0, θ � 0, system (1) can be read
as the incompressible Navier–Stokes equations, and what
proved in [10] is a straightforward consequence of .eorem
1. An interesting point is that the parameter ϵ goes to zero.
.e detailed discussion of this case will be given in a separate
paper.

2. Proof of the Theorem

.e homogeneous Sobolev space _H
s
(R3) is defined as

follows:

‖f‖ _H
s � Λs

f
����

����L2 � 
R3

|ξ|
2s

|f(ξ)|
2dξ 

1/2
, (4)

where Λ � (− Δ)1/2.
.e BMO is the space of bounded mean oscillation

defined by

f ∈ L
1
loc R

3
 , sup

x,R

1
BR





BR(x)
f(y) − fBR

(x)


dy< +∞,

(5)

where fBR
(x) is the average of f over

BR(x) y ∈ R3
����x − y|<R .

.e following lemma is essential in the process of proof
[11].

Lemma 1. Let 1< r<∞, then we have the following:

z
α
f · z

β
g

�����

�����Lr
≤C ‖f‖BMO (− Δ)|α|+|β|/2

g
�����

�����Lr
+‖g‖BMO (− Δ)|α|+|β|/2

f
�����

�����Lr
 ,

(6)

for all f, g ∈ BMO∩W|α|+|β|,r, when α � (α1, α2, α3) and β �

(β1, β2, β3) are multi-indices with |α|; |β|≥ 1.

We begin with the local existence and uniqueness the-
orem of strong solutions.

Lemma 2. Let (u0, v0, θ0) ∈ Hs(R3); s> 5/2, there exists a
positive time T∗ and a unique strong solution (u, v, θ) on
[0, T∗) to system (1) satisfying

(u, v, θ) ∈ L
∞ 0, T

∗
 ; H

s
R

3
  ∩L

2 0, T
∗
; H

s+1
R

3
  . (7)

Proof. .e main part of the proof consists of a priori es-
timates. To make the proof rigorous requires some ap-
proximation procedure such as that employed in [12], to
which we refer for details. Nevertheless, we would like to
point out two key observations in the proof for the con-
venience of the reader. We can establish priori estimates (the
process is similar as a part of the proof of .eorem 1).

d
dt
Λs

u(t)
����

����
2
L2 + Λs

v(t)
����

����
2
L2 + Λsθ(t)

����
����
2
L2 

+ Λs+1
u(t)

����
����
2
L2 + Λs+1

v(t)
����

����
2
L2 + Λs+1θ(t)

����
����
2
L2

≤C Λs
u(t)

����
����
2
L2 + Λs

v
����

����
2
L2 + Λsθ

����
����
2
L2 + 1 

Λs
u(t)

����
����
2
L2 + Λs

v(t)
����

����
2
L2 + Λsθ(t)

����
����
2
L2 .

(8)

We set

X(t) � Λs
u(t)

����
����
2
L2 + Λs

v(t)
����

����
2
L2 + Λsθ(t)

����
����
2
L2 + 1. (9)

.en, from the above inequality, we have
d
dt

X≤CX
2
. (10)

.en, by applying the Gronwall inequality, we have

X(t)≤
X(0)

1 − C0X(0)t
, (11)

Now, choose T � 1/2C0X(0). .en,

X(t)≤ 2X(0), ∀t ∈ [0, T]. (12)

By applying the same argument as [12], we can obtain the
desired result. □

.e proof of .eorem 1 will be divided into two steps.

Proof
Step 1. We will derive a blow-up criterion for the strong
solutions to (1).

Applying ∇3 to system (1), multiplying the resultant by
∇3u,∇3v and ∇3θ, respectively, and integrating over R3, we
obtain the following:
1
2
d
dt
∇3u(t)

����
����
2
L2 + ∇3v(t)

����
����
2
L2 + ∇3θ(t)

����
����
2
L2 

+ ∇4u(t)
����

����
2
L2 + ∇4v(t)

����
����
2
L2 + ∇4θ(t)

����
����
2
L2

� − 
R3
∇3(u · ∇u)∇3udx − 

R3
∇3∇ · (v⊗ v)∇3udx

− 
R3
∇3(v · ∇u)∇3vdx − 

R3
∇3(u · ∇v)∇3vdx

− 
R3
∇3∇θ∇3vdx − 

R3
∇3(u · ∇θ)∇3θdx

− 
R3
∇3∇ · v∇3θdx � I1 + I2 + · · · + I7.

(13)

□
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Remark 2. .e operator ∇3 � D3/zx
α1
1 x

α2
2 x

α3
3 , α1+ α2 +

α3 � 3.

By using the cancellation property,

 (u · ∇)∇3u · ∇3udx � 0. (14)

By virtue of integrating by part and H €o lder inequality
and Lemma 2, we have the following:

I1


 � − 
R3
∇3(u · ∇u)∇3u − (u · ∇)∇3u · ∇3u dx




,

� − 
|α|+|β|�3;|α|≥1


R3
∇αu · ∇∇βu∇3udx





≤C 
|α|+|β|�3;|α|≥1

∇αu · ∇∇βu
�����

�����L2 ∇
3
u

����
����L2

≤C‖u‖BMO ∇
3
u

����
����L2 ∇4u

����
����L2

≤C‖u‖
2
BMO ∇

3
u

����
����
2
L2 + C1 ∇

4
u

����
����
2
L2 .

(15)

We rewrite it as follows:

∇ · (v⊗ v) � v · ∇v + v∇ · v. (16)

We choose |α| � 3, α � (α1, α2, α3),


R3

(v · ∇)zαu · z
α
vdx � 

R3
viziz

α
ujz

α
vjdx

� − 
R3

ziviz
α
uj · z

α
vjdx

− 
R3

viz
α
uj · ziz

α
vjdx.

(17)

.en, we have the following equality:


R3

(v · ∇)∇3u · ∇3vdx + 
R3

(v · ∇)∇3v · ∇3udx

� − 
R3
∇ · v∇3u∇3vdx.

(18)

Now, we split I2 as follows:

− 
R3
∇3∇ · (v⊗ v)∇3udx � − 

R3
∇3[v · ∇v]∇3udx

− 
R3
∇3[v∇ · v]∇3udx,

� I21 + I22.

(19)

.en we can estimate I21 + I3 by using Lemma 2,

I21 + I3


≤ 
R3
∇3(v · ∇v)∇3u + ∇3(v · ∇u)∇3vdx



− v∇3∇ · v · ∇3u − (v · ∇)∇3v · ∇3udx



+ 
R3
∇ · v∇3v∇3udx




,

≤C ‖u‖BMO ∇
3
v

����
����L2 +‖v‖BMO ∇

3
u

����
����L2 

∇4u
����

����L2 + ∇4v
����

����L2 

≤C ‖u‖
2
BMO +‖v‖

2
BMO  ∇3v

����
����
2
L2 + ∇3u

����
����
2
L2 

+ C2 ∇
4
v

����
����
2
L2 + ∇4u

����
����
2
L2 .

(20)

Next, we consider the term I22

I22


 � 
R3
∇3[v∇ · v]∇3udx





≤ 
|α|+|β|�3;|α|≥1


R3
∇αu · ∇β(∇ · v)∇3udx





+ 
R3

v∇3(∇ · v)∇3udx




� I221 + I222.

(21)

We can estimate I221 by using Lemma 2

I221


≤C ‖u‖BMO ∇
3
v

����
����L2 +‖v‖BMO ∇

3
u

����
����L2  ∇3u

����
����L2 + ∇3v

����
����L2 ,

≤C ‖u‖BMO +‖v‖BMO(  ∇3u
����

����
2
L2 + ∇3v

����
����
2
L2 .

(22)

It is necessary to point out we cannot use Lemma 1 to
estimate I222 due to we have not ∇ · v � 0. .us, we can
estimate it by H €o lder inequality only,

I222


≤C‖v‖L∞ ∇
3
u

����
����L2 ∇4v

����
����L2 ,

≤C‖v‖
2
L∞ ∇

3
u

����
����
2
L2 + C3 ∇

4
v

����
����
2
L2 ,

(23)

By using the cancellation property,

 (u · ∇)∇3v · ∇3vdx � 0;

 (u · ∇)∇3θ · ∇3θdx � 0.

(24)

We can estimate I4 and I6 by using Lemma 2.
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I4


 � 
R3
∇3(u · ∇v) − (u · ∇)∇3v · ∇3v ∇3vdx




,

≤C ‖u‖BMO ∇
3
v

����
����L2 +‖v‖BMO ∇

3
u

����
����L2 

· ∇4u
����

����L2 + ∇4v
����

����L2 ,

≤C ‖u‖
2
BMO +‖v‖

2
BMO  ∇3v

����
����
2
L2 + ∇3u

����
����
2
L2 

+ C4 ∇
4
v

����
����
2
L2 + ∇4u

����
����
2
L2 .

(25)

I6


 � 
R3
∇3(u · ∇θ) − (u · ∇)∇3θ · ∇3θ ∇3vdx




,

≤C ‖u‖BMO ∇
3θ

����
����L2 +‖θ‖BMO ∇

3
u

����
����L2 

· ∇4u
����

����L2 + ∇4θ
����

����L2 

≤C ‖u‖
2
BMO +‖θ‖

2
BMO  ∇3θ

����
����
2
L2 + ∇3u

����
����
2
L2 

+ C5 ∇
4θ

����
����
2
L2 + ∇4u

����
����
2
L2 .

(26)

By using the H €o lder inequality, we have the following:

I5 + I7


 � 
R3
∇3∇θ∇3vdx + 

R3
∇3∇ · v∇3θdx




,

≤C ∇3θ
����

����L2 + ∇3v
����

����L2  ∇4v
����

����L2 + ∇4θ
����

����L2 

≤C ∇3θ
����

����
2
L2 + ∇3v

����
����
2
L2  + C6 ∇

4θ
����

����
2
L2 + ∇4u

����
����
2
L2 .

(27)

.us, combining (15) to (27), we obtain the following:

d
dt
∇3u(t)

����
����
2
L2 + ∇3v(t)

����
����
2
L2 + ∇3θ(t)

����
����
2
L2 

+ ∇4u(t)
����

����
2
L2 + ∇4v(t)

����
����
2
L2 + ∇4θ(t)

����
����
2
L2 ,

≤C ‖u‖
2
BMO +‖v‖

2
L∞ +‖θ‖

2
BMO + 1 

· ∇3u(t)
����

����
2
L2 + ∇3v(t)

����
����
2
L2 + ∇3θ(t)

����
����
2
L2 .

(28)

Here, we used the inclusion relation: L∞(R3)⊊
BMO(R3).

Now, we set

H(t) � ∇3u(t)
����

����
2
L2 + ∇3v(t)

����
����
2
L2 + ∇3θ(t)

����
����
2
L2 . (29)

We can obtain the following inequality:

d
dt

H(t)≤C ‖u‖
2
BMO +‖v‖

2
L∞ +‖θ‖

2
BMO + 1 H(t), (30)

By using Gronwall type inequality, we have the
following:

sup
0≤t≤T

H(t) ≤CH(0)exp 
T

0
‖u‖

2
BMO +‖v‖

2
L∞ +‖θ‖

2
BMO dt. (31)

From the above inequalities, we obtain that if


T

0
‖u‖

2
BMO +‖v‖

2
L∞ +‖θ‖

2
BMO dt< +∞, (32)

then

sup
0≤t≤T
∇3u(t)

����
����
2
L2 + ∇3v(t)

����
����
2
L2 + ∇3θ(t)

����
����
2
L2 ,

+ 
T

0
∇4u(τ)

����
����
2
L2 + ∇4v(τ)

����
����
2
L2 + ∇4θ(τ)

����
����
2
L2dτ < +∞.

(33)

Let (u, v, θ) be a unique local strong solutions and T∗ be
the first blow-up time, then

T
∗ < +∞⇔ 

T∗

0
‖u‖

2
BMO +‖v‖

2
L∞ +‖θ‖

2
BMO dt � +∞. (34)

Step 2. We take the operator Λ1/2 on both sides of
u-equation and θ-equation of (1); taking the scalar product
with Λ1/2u,Λ1/2θ, then
1
2
d
dt
Λ1/2u(t)

����
����
2
L2 + Λ1/2θ(t)

����
����
2
L2  + Λ3/2u(t)

����
����
2
L2

+ Λ3/2θ(t)
����

����
2
L2 � − 

R3
Λ1/2(u · ∇u)Λ1/2udx,

− 
R3
Λ1/2∇ · (v⊗ v)Λ1/2udx

− 
R3
Λ1/2(u · ∇θ)Λ1/2θdx − 

R3
Λ1/2∇ · vΛ1/2θdx.

(35)

We take operator Λ1/2+ϵ on both sides of v-equation of
(1); taking a scalar product with Λ1/2+ϵv, then

1
2
d
dt
Λ1/2+ϵ

v(t)
����

����
2
L2 + Λ3/2+ϵ

v(t)
����

����
2
L2 � − 

R3
Λ1/2+ϵ

(v · ∇u)Λ1/2+ϵ
vdx

− 
R3
Λ1/2+ϵ

(u · ∇v)Λ1/2+ϵ
vdx

− 
R3
Λ1/2+ϵ∇θΛ1/2+ϵ

vdx,

(36)

By using H €o lder inequality and Gagliardo–Nirenberg
type interpolation inequality, we can obtain the following
estimates:


R3
Λ1/2(u · ∇u)Λ1/2udx




≤C‖u · ∇u‖L3/2‖Λu‖L3

≤C Λ1/2u
����

����L2 Λ3/2u
����

����
2
L2 .

(37)


R3
Λ1/2(u · ∇θ)Λ1/2θdx




≤C Λ1/2u

����
����L2 Λ3/2θ

����
����
2
L2 , (38)
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R3
Λ1/2∇ · (v⊗ v)Λ1/2udx





≤ ‖∇ · (v⊗ v)‖L3/2‖Λu‖L3 ,

≤C Λ1/2v
����

����L2 Λ3/2v
����

����L2 Λ3/2u
����

����L2 ,

≤C Λ1/2+ϵ
v

����
����L2 Λ3/2u

����
����
2
L2 + Λ3/2v

����
����
2
L2 ,

(39)


R3
Λ1/2∇ · vΛvθdx





≤C Λ1/2v
����

����L2 Λ3/2θ
����

����L2 ,

(40)


R3
Λ1/2+ϵ

(v · ∇u)Λ1/2+ϵ
vdx




,

≤C Λ1/2v
����

����L6 Λ3/2u
����

����L2 Λ1/2+2ϵ
v

����
����L3

≤C Λ3/2v
����

����L2 Λ3/2u
����

����L2 Λ1/2+2ϵ
v

����
����L3

≤C Λ1/2+ϵ
v

����
����L2 Λ3/2u

����
����L2 Λ3/2+ϵ

v
����

����L3 .

(41)

Here, we used the condition ϵ< 1.

− 
R3
Λ1/2+ϵ

(u · ∇v)Λ1/2+ϵ
vdx




,

≤C Λ1/2u
����

����L6 Λ3/2v
����

����L2 Λ1/2+2ϵ
v

����
����L3 ,

≤C Λ1/2+ϵ
v

����
����L2 Λ3/2u

����
����L2 Λ3/2+ϵ

v
����

����L3 .

(42)

From (35) to (42), we have the following:

1
2
d
dt
Λ1/2u(t)

����
����
2
L2 + Λ1/2+ϵ

v(t)
����

����
2
L2 + Λ1/2θ(t)

����
����
2
L2 

+ Λ3/2u(t)
����

����
2
L2 + Λ3/2+ϵ

v(t)
����

����
2
L2 + Λ3/2θ(t)

����
����
2
L2 ,

≤C Λ1/2u(t)
����

����L2 + Λ1/2+ϵ
v(t)

����
����L2 + Λ1/2θ(t)

����
����L2 

· Λ3/2u(t)
����

����
2
L2 + Λ3/2+ϵ

v(t)
����

����
2
L2 + Λ3/2θ(t)

����
����
2
L2 .

(43)

Choosing c0 so small that

C Λ1/2u0
����

����L2 + Λ1/2+ϵ
v0

����
����L2 + Λ1/2θ0

����
����L2 ≤

1
2
, (44)

Now, we have the following:

1
2
d
dt
Λ1/2u(t)

����
����
2
L2 + Λ1/2v(t)

����
����
2
L2 + Λ1/2θ(t)

����
����
2
L2 ≤ 0, (45)

Integrating in time from 0 to t,

Λ1/2u(t)
����

����
2
L2 + Λ1/2+ϵ

v(t)
����

����
2
L2 + Λ1/2θ(t)

����
����
2
L2

≤ Λ1/2u0
����

����
2
L2 + Λ1/2+ϵ

v0
����

����
2
L2 + Λ1/2θ0

����
����
2
L2 ,

(46)

Applying the following inequalities

Λ1/2u(t)
����

����
2
L2 + Λ1/2+ϵ

v(t)
����

����
2
L2 + Λ1/2θ(t)

����
����
2
L2

≥
1
3
Λ1/2u(t)

����
����L2 + Λ1/2+ϵ

v(t)
����

����L2 + Λ1/2θ(t)
����

����L2 
2
,

Λ1/2u0
����

����
2
L2 + Λ1/2+ϵ

v0
����

����
2
L2 + Λ1/2θ0

����
����
2
L2

≤ Λ1/2u0
����

����L2 + Λ1/2+ϵ
v0

����
����L2 + Λ1/2θ0

����
����L2 

2
,

(47)

then we yield

sup
0≤t≤T
Λ1/2u(t)

����
����
2
L2 + Λ1/2+ϵ

v(t)
����

����
2
L2 + Λ1/2θ(t)

����
����
2
L2 <

�
3

√

2C
. (48)

From (48), we further know that

(u, θ) ∈ L
∞ 0, T; _H

1/2
R

3
  ∩ L

2 0, T; _H
3/2

R
3

  ,

v ∈ L
∞ 0, T; _H

1/2+ϵ
R

3
  ∩ L

2 0, T; _H
3/2+ϵ

R
3

  .

(49)

Applying the fact

_H
3/2

R
3

 ⟶ BMO R
3

 ,

_H
3/2+ϵ

R
3

 ⟶ L
∞

R
3

 ,
(50)

then we imply that

u, θ ∈ L
2
(0, T;BMO), v ∈ L

2 0, T; L
∞

R
3

  , for allT ∈ 0, T
∗

( .

(51)

Now, we suppose T<T∗ is the maximal existence time
for solutions, from the blow-up criterion, the existence time
can be extended after t � T which contradicts the max-
imality of t � T. .is completes the proof of .eorem 1.

3. Conclusion

It is deserving to point out that our method is not adapt to
ϵ � 0..e reason is that we have not∇ · v � 0.We need some
new ideas and methods to deal with the parameter ϵ goes to
zero. .e detailed discussion of this case will be given in a
separate paper.
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