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The well-posedness problem is an important but challenging research topic in nonlinear partial differential .el%lations. In this
paper, we establish a global-in-time existence result of strong solutions for small initial data in terms of the H '~ (R*®) norm on
three-dimensional tropical climate model with viscosities by derive a blow-up criterion combine with energy estimates. This result
can be regard as a generalization of the famous Fujita-Kato result to 3D Navier-Stokes equations.

1. Introduction

In this paper, we investigate the global existence of smooth
solutions to the tropical climate model (TCM) in R>:

ou—Au+u-Vu+Vp+V- (vev) =0,

0v—Av+v-Vu+u-Vv+V0 =0,
1
0,0-A0+u-VO+V.-v=0,

V-u=0,

with initial data

u(x,0) = uy(x),v(x,0) = vy (x),0(x,0) = 6, (x), (2)

where u = (u,,u,,u;) and v = (v, v,,v;) denote the baro-
tropic mode and the first baroclinic mode of the velocity,
while the scalar functions 0, p denote the temperature and
pressure, respectively.

It should be pointed out that the original system derived
in [1] has no viscous terms because it is derived from the
inviscid primitive equations. In many research studies of
tropical atmospheric dynamics, Gill and Matsuno [2, 3] first
used the baroclinic mode models. Majda-Biello [4] pointed
out that the transport of momentum between the barotropic
and baroclinic model is an important effect, it is necessary to

retain both the barotropic and baroclinic modes of the
velocity. There are geophysical circumstances in which the
Laplacian may arise. Fundamental issues such as the global
existence and regularity of solutions have attracted con-
siderable attention. Some important results in terms of the
global existence and uniqueness of classical solutions in 2D
have been obtained, see [5-7] etc. In addition, some results
on the global well-posedness issue for the 3D tropical climate
model with fractional dissipation and damping terms can be
referred to [8, 9].

This paper focuses on the global existence of the classical
solutions for TCM in R?. System (1) contains the 3D in-
compressible Navier-Stokes (NS) equations as a special case
(v=0,0=0), for which the issue of global we.lll—/gosedness
with small initial data in the Sobolev spaces H '~ (R®) has
been solved by Fujita and Kato [10]. Our goal of this paper is
to extend similar results to TCM. We should point out the
H " (R?) space is a critical space with respect to the scaling
invariance in terms of Navier-Stokes equations, but to
system (1) which is not scaling-invariant. System (1) contains
the Navier—Stokes equations as a subsystem, so in general,
we cannot expect any better results than those for the
Navier-Stokes equations. Therefore, a natural problem is
whether we can establish the global existence and regularity
of (1) under the same assumption. It should be noted that the
result for (1) is not completely parallel to that for the
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Navier-Stokes equations. The difficulty is coming from
without V- v = 0. Thus, it seems difficult to obtain the de-
sired results by using the same process. Here, we use the trick
from a series of works on the Hall-magnetohydrodynamcis
equations by Dongho Chae and his collaborators [12, 13] etc.
and by utilizing the structure of the system to overcome this
difficulty. The main results of this paper are the following:

Theorem 1. Let s>5/2, and (ugy,v,,0,) € H (R®) with
V -uy = 0. Then, there exists a constant c, >0, such that

||u0||H1/2 +||V0”H1/2+e +||90||H1/2 <<€y, O<e<l1. (3)

Then, there exists a unique global classical solution
(1, v,0) € L® ([0, +00); H* (R?)).

Remark 1. In the case of v = 0,0 = 0, system (1) can be read
as the incompressible Navier-Stokes equations, and what
proved in [10] is a straightforward consequence of Theorem
1. An interesting point is that the parameter € goes to zero.
The detailed discussion of this case will be given in a separate

paper.
2. Proof of the Theorem

The homogeneous Sobolev space H’(R?) is defined as
follows:

e =l =([ ePrera)”, @

where A = (-A)Y2,
The BMO is the space of bounded mean oscillation
defined by

1 _
fetu(®)sup [ 1700 =Ty 0fdy < seo

(5)

where 7BR (x) is  the of f over
By (x){y € [R3||x -y <R}.
The following lemma is essential in the process of proof

[11].

average

Lemma 1. Let 1<r < oo, then we have the following:

3£ - #g], <C1lawo] (-2 ], +1ghsnio] - 1], )
(6)

forall f,g € BMONW!IHBY when a = (ay, ay, ) and B =
(B1> By B3) are multi-indices with |al; || > 1.

We begin with the local existence and uniqueness the-
orem of strong solutions.

Lemma 2. Let (ugy,v,,0,) € H (R®); s>5/2, there exists a
positive time T* and a unique strong solution (u,v,0) on
[0, T*) to system (1) satisfying

(w1,0) € L2([0, 1), ' (R)) n 130, T HPU(RY)). (7)
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Proof. The main part of the proof consists of a priori es-
timates. To make the proof rigorous requires some ap-
proximation procedure such as that employed in [12], to
which we refer for details. Nevertheless, we would like to
point out two key observations in the proof for the con-
venience of the reader. We can establish priori estimates (the
process is similar as a part of the proof of Theorem 1).

d
S (ol +|av ol +|a0ol;,)

HaTu@ A v o5 AT 0]

(8)
<c(Invul. +|avl el +1)
(Il +Javol vl )
We set
X0 =|Au@[ +|Av @ Ao +1. )
Then, from the above inequality, we have
dx<cx (10)
dr
Then, by applying the Gronwall inequality, we have
X (0)
X(t)SI—COX(O)t’ (1
Now, choose T = 1/2C,X (0). Then,
X(t)<2X(0), Vtel0,T] (12)

By applying the same argument as [12], we can obtain the
desired result. O

The proof of Theorem 1 will be divided into two steps.

Proof
Step 1. We will derive a blow-up criterion for the strong
solutions to (1).

Applying V* to system (1), multiplying the resultant by
V3u, V?v and V36, respectively, and integrating over R?, we
obtain the following:

d
(19wl + 9@l + 70l
V[ [Tl o],
= _J V2 (u - Vu)V>udx — J V'V (v®v)Vudx
R3 R3
(13)

V2 (v-Vu)Vivdx — J v? (u- V) Vivdx
R?a

-J..

- j VYOV vdx — j V2 (u- VOV 0dx
R3 R3

N ,|-IR3

V'V W ldx =1, + 1, +---+ 1.



Journal of Mathematics

Remark 2. The operator V° = D%/0x)'x5x5, a1+ a,+
a; = 3.

By using the cancellation property,

[ 6 09u- Pudx o (14)
By virtue of integrating by part and H 6 lder inequality
and Lemma 2, we have the following:

|Il| = ‘—J , [V3 (u-Vu)Vu—(u-V)Vu- VSu]dxl,
R

- Z J Veu - VPV udx
R3

laHBI=3;]al>1
15
<Cc Yy v vV V], 13
e 4BI=3;]al>1
< Clullgyo|Vul 1 [V 2
< Clulipio] Vsl + G|Vl
We rewrite it as follows:
V-(v®y)=v-Vv+vV .. (16)

We choose |a| =3, a = (o), a, @3),

[ oo atax = [ vaaruotyx
R’ R’
—-| awdtu;dvax )
R3
- JW v,0"u; - 0,0"v;dx.

Then, we have the following equality:

J , (v-V)V’u - Vvdx + J . (v-V)V?v- Vudx
R R (18)
= —J VW uVvdx.
R3

Now, we split I, as follows:

—J V’V. (v&v)Vudx = —J vV’ [v- Vv]Vudx
R3 3

R
-J VW vVPudx, (19
R3

=1, +1,,

Then we can estimate I,, + I; by using Lemma 2,

3
|121 + I3| < J [V3 (v-V)Vu+ V° (v Vu)Vvdx
R3
WV v - Vu-(v-V)Vy. V3u]dx|
+ J V. vV3vV3udx’,
R3
< Cllullgaro [V 2 +1Maso| V) (20
(97 ul: +19°.:)
< C(1ulpi0 +1¥05000) (194152 9w
+ GVl +vul )
Next, we consider the term I,,
|1,,| = U V[V V]V3udx‘
R3
< J Viu- VA (V- v)VPudx (21)
lad4pi=3:lalz1 7
+ J WV V)Vsudx’ =1, + 1L,
R
We can estimate I,,; by using Lemma 2
|Loos| < C(Illmaio [VV] > +Mmaio [ Vel ) (197 +]VP12),
<C(ulwio +Whanio) (Il +174: )
(22)

It is necessary to point out we cannot use Lemma 1 to
estimate I,,, due to we have not V-v =0. Thus, we can
estimate it by H 0 lder inequality only,

3 4
|1222| SC||V||L°°||v ”"LZ"V V"LZ’

2 o3, |1 4112 (23)
< Oz [Vul: + G5V es
By using the cancellation property,
3. o3
j (u-V)Vv-Vvdx = 0;
(24)

J (- V)V*0. V*0dx = 0.

We can estimate I, and I, by using Lemma 2.



|I4| =

J [V3 (u-Vv) = (u-V)Vy. V3V]V3vdx|,
R3

lullsaio [V V]2 + Ilenio V7w 12)

< C(
(Il #1912, (25)
(

< Cluliso + o) (9015 1)

+ GV +vul? )

|14 = UW [V? (u-VO) - (u-V)V0- V39]V3vdx‘,
< C(llullpaio V6 2 +16lnio | Vu] 1)
(I9*ul,s +[v°]..) (26)
< C(lulfuso +100ni0) (V017 +]vul )
+ Co( 76l +|7*ul. )
By using the H ¢ lder inequality, we have the following:
[Is+1,] = UR3V3V0V3vdx + JR3V3V - vV39dxl,
<C(Iv6l,: +19° )19l +196].)
<c(Iw6l5: +Ivuls: ) + o Iv0l5. +[v°ul:. )
(27)

Thus, combining (15) to (27), we obtain the following:

d
S(IPu@l 7 v ol + ol )

V@[ VoL + Voo
(28)

2 2 2
<C(Iulyio + Ve +16120 +1)

(IVuof +|7v ol + Vo], )

Here, we used the inclusion relation: L (R?)¢
BMO (R?).
Now, we set

H() = |[Vu@) +|[Pv @[ Vo). (29)
We can obtain the following inequality:

d
SHO<C(Iulfo + Vs +16y0 + H@, (30

By using Gronwall type inequality, we have the
following:

T
sup H(t) sCH(O)exp(JO(HuHZBMO +viZe +161300 )dt.  (31)

0<t<T
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From the above inequalities, we obtain that if
T
2 2 2
[ (Weliso +101Ee +100 o )t < o0, (32
then

sup ([Vu @ +[vvol. + [0l
0<t<T

T 4 2 4 2 4 2
+ . ||V u(T)"L2 +||V v(T)”L2 +||V 9(1)||L2dr< +00.

—_—

(33)

Let (u, v, 0) be a unique local strong solutions and T be
the first blow-up time, then

-
T" < +c0 & JO (o +IVIZe +16l5y0 )dt = +oo.  (34)

Step 2. We take the operator AY? on both sides of
u-equation and 6-equation of (1); taking the scalar product
with A2, AY26, then

1d
> 3 (1A a0 o} ) + ]2 u ]
+||A3/26(t)||i2 _ _J' AV (- Vi) A udx,
R3
(35)
_ J Al/zv . (V® V)Allzudx
R3

- J A (- VOA0dx - J A2V . pA"20dx.
R3 R3

We take operator AY*** on both sides of v-equation of
(1); taking a scalar product with A**¢y, then

1d

2 2
3 a"f\m’fev(t)"u APl = _JR3A1/2+€ (v Vi) A v

_J 3A”2+e(u-Vv)A”2+€vdx
R

_ J A1/2+€V9A1/2+€de,
RS
(36)

By using H 0 lder inequality and Gagliardo-Nirenberg
type interpolation inequality, we can obtain the following
estimates:

lj A2 (u- Vu)A”zudx
RS

< C”M . VM"LM "AM”LJ
(37)

<Al A7

ST I RS FRES

J A (1. VO A 0dx
R3
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lj APV . (V®V)A1/2udx’
R3

<V - (v@ )l llAul s,
<CIA Va7 A

<l vl (Il + a7 )

J 3A”ZV -vA"0dx
R

<A [a7 ] s

>

U 3A1/2+e (v Vi) AV € vdx
R

<CIA |47l A
<A A ul o AT

<CIA A |47

Here, we used the condition e < 1.
‘_J 3A1/2+e (u- VV)A1/2+€de‘,
R

<Ol ul Ao A7
<O A7 a7

From (35) to (42), we have the following:

e (IO R IO R TN

+”A3/2u(t)”iz +||A3/2+€v(t)"iz +l|A3/26(t)||iz:

<], ] 0 -] 000)],.)

(I8l +[a v o], +|a0 ] )

Choosing ¢, so small that

c 1
(1A uollz +[A" o2 + 478 2) <35,

Now, we have the following:
1d
2 dt

Integrating in time from 0 to ¢,

[A2u ;. +|A" v @) +|A 0@,

<IN Pl +A" v [+

Applying the following inequalities

<||A1/2M(t)"i2 +||A1/2V(t)”]2} +||A1/26(t)“il> <0,

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

5
[a @ | vl + | o]
1
><(IAPu O], +]a" v @) +]a"00)],.)
(47)
P A P e P
S (ST P S P P P
then we yield
sup (|2 O+ <y O, +]a" 0 ) )<@ (48)
ynd v v 2)Sac
From (48), we further know that
(u,0) € L°°<0,T; H”z(u@)) nL2<O,T; H3/2(R3)>,
ve L°°<O,T; H”Z*e(u;@)) nL2<0,T; H3’2*€(R3)>.
(49)
Applying the fact
g7 (R BMO(R?),
(%) — BMo(®) -

H3/2+6(R3) SN LOO(R3),

then we imply that
u,0 € L*(0,T; BMO), v € LZ(O,T; LOO(R3)), forallT € (0,T7).
(51)
Now, we suppose T'<T™ is the maximal existence time
for solutions, from the blow-up criterion, the existence time

can be extended after t+ = T which contradicts the max-
imality of t = T. This completes the proof of Theorem 1.

3. Conclusion

It is deserving to point out that our method is not adapt to
€ = 0. The reason is that we have not V - v = 0. We need some
new ideas and methods to deal with the parameter € goes to
zero. The detailed discussion of this case will be given in a
separate paper.
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