Conductivity-Type Sensor Based on CNT-WO\textsubscript{3} Composite for NO\textsubscript{2} Detection

Takeshi Hashishin and Jun Tamaki

Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Correspondence should be addressed to Takeshi Hashishin, hasisin@se.ritsumei.ac.jp

Received 27 June 2007; Accepted 14 March 2008

Recommended by Y. Wang

The CNTs with 20–50 nm in diameter were directly grown on Au microgap electrode by means of thermal CVD at 700°C for 60 minutes under EtOH-Ar-H\textsubscript{2} atmosphere (6 kPa). The CNTs with entangled shape formed the network structure with contacting each other. In the CNTs-WO\textsubscript{3} composite, WO\textsubscript{3} grains with disk shape (50–200 nm) were independently trapped. The CNTs-WO\textsubscript{3} composite sensor showed the fairly good sensor response (Ra/Rg = 3.8 at 200°C). The sensor response was greatly improved with CNTs-WO\textsubscript{3} composite, comparing with that of CNT sensor (Ra/Rg = 1.05). This phenomenon can be explained by formation of p-n junction, between CNT(p) and WO\textsubscript{3}(n), and thus improvement of NO\textsubscript{2} adsorption. The sensor response was decreased with increasing the WO\textsubscript{3} amount in CNTs-WO\textsubscript{3} composite, suggesting the electronic conduction due to WO\textsubscript{3} connection.

Copyright © 2008 T. Hashishin and J. Tamaki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Conductivity-type gas sensors based on carbon nanotubes (CNTs) have received considerable attention because of their intrinsic properties such as high-surface area, size, hollow geometry, and chemical inertness [1–6]. To elucidate the effects of gas adsorption on the electrical properties of CNTs for gas sensing, it has been estimated that NO\textsubscript{2} and O\textsubscript{2} molecules would yield considerable larger adsorption energies than H\textsubscript{2}O, NH\textsubscript{3}, CH\textsubscript{4}, CO\textsubscript{2}, and so on [7, 8]. However, it has been reported that sensor response (Ra/Rg), which is used for resistance decrease of sensing materials by adsorption of gas molecule, was as low as 1.2, or 1.3 to 5 ppm NO\textsubscript{2} [9–13]. It is important to enhance the sensor response to NO\textsubscript{2} for future application of CNTs gas sensor. It was well known that WO\textsubscript{3} is an excellent sensing material for NO\textsubscript{2} detection [14]. The conductive-type sensors using WO\textsubscript{3} have enhanced their sensor response to NO\textsubscript{2} by adopting thin film structure [15–17] and by doping foreign oxides [18, 19]. Recently, we have developed the high sensitivity NO\textsubscript{2} sensor by employing disk shape WO\textsubscript{3} particles and Au interdigitated microelectrode [20, 21]. These WO\textsubscript{3} sensors can detect dilute NO\textsubscript{2} less than 1 ppm with high sensitivity. Interestingly, the modification of CNT with WO\textsubscript{3} nanoparticles would be nanocomposite with p-n junction and might give us new concept for effect of interaction between CNT and WO\textsubscript{3} on NO\textsubscript{2} detection.

In this paper, we modified the surface of CNT with the WO\textsubscript{3} grains with 300 nm in diameter and 50 nm in thickness to improve sensor response to NO\textsubscript{2}, and discuss the interaction between CNT and WO\textsubscript{3} when varied the additional amount of WO\textsubscript{3} to CNT.

2. EXPERIMENTAL

At first, the microgap electrodes with various gap sizes were fabricated by means of MEMS techniques [16]. The Au line with width of 20 \(\mu \)m, gap size of 5 \(\mu \)m, and thickness of 0.3 \(\mu \)m was formed on SiO\textsubscript{2} substrate by photolithography (lift off), as shown in Figure 1. Second, growth catalyst for CNTs, Ni was deposited on Au electrode with 5 \(\mu \)m gap, in which 0.05 wt% Ni(CH\textsubscript{3}COO)\textsubscript{2} aqueous solution was dropped by using microinjector, and dried at room temperature for 30 minutes. The Ni-deposited substrate was subsequently set on the electric furnace, and CNTs were grown on the microgap at 700°C for 60 minutes from the nickel growth catalyst under gas mixture of ethanol, argon, and hydrogen (33/53/14 vol% = 6 kPa).
The WO$_3$ powder was prepared from (NH$_4$)$_{10}$W$_{12}$O$_{41}$·5H$_2$O by wet process. Aqueous solution of (NH$_4$)$_{10}$W$_{12}$O$_{41}$·5H$_2$O was neutralized by dilute nitric acid solution. The precipitate obtained (H$_2$WO$_4$) was thoroughly washed with deionized water, dried, and dispersed into deionized water to be a suspension. The microdrop of suspension ranged from 0.1 to 7 wt%H$_2$WO$_4$ was directly dropped on the surface of CNTs grown between Au electrodes with microgap (5 μm) by using microinjection, dried, and calcined at 400°C for 3 hours under inert gas of argon to prevent oxidation of CNTs. The microstructure of the WO$_3$ trapped on CNTs microsensor was measured by high-resolution FE-SEM (S-4800, Hitachi Ltd.), TEM (JEM-2010, Jeol Ltd.), and Raman spectroscopy (NRS-2100, JASCO Co. Ltd.).

The CNTs-WO$_3$ composite microsensor was set into a flow apparatus equipped with electric furnace and the sensing properties to dilute NO$_2$ (5 ppm) were measured at room temperature to 200°C. The sensor response (S = Ra/Rg) was defined as a ratio of resistance in air (Ra) to that in NO$_2$-containing atmosphere (Rg).

3. RESULTS AND DISCUSSION

The CNTs with 20–50 nm in diameter were grown at 700°C for 60 minutes under gas mixture of ethanol, argon, and H$_2$ (6 kPa) have entangled shape, as shown in Figures 2(a), 2(b). The microstructural analysis by means of Raman and TEM techniques indicated that the ratio of G- to D-band was mostly closed to 1 and they had multiwalled carbon layers. The entangled CNTs formed the network structure with contacting each other (Figure 2(b)).

The SEM images of CNT-WO$_3$ composites with various WO$_3$ amounts are shown in Figure 3. In the CNT-WO$_3$ composite with 0.1 wt% WO$_3$, WO$_3$ grains were independently trapped and CNTs were clearly observed (Figure 3(a)). The grain size of WO$_3$ trapped on CNTs was ranging from 50 to 200 nm and the grains were almost disk-like or platelet. With increasing WO$_3$ amount (Figures 3(b), 3(c)), WO$_3$ grains were increased and CNTs could not be visible, suggesting the formation of WO$_3$ connection.

Figure 4 shows the response transients of CNT and CNT-WO$_3$ microsensors to 5 ppm NO$_2$ at 200°C. The resistances of both CNT and CNT-WO$_3$ microsensors were decreased upon exposure to NO$_2$, suggesting that the conduction occurs through p-type CNT in both CNT and CNT-WO$_3$ microsensors. The sensor response (Ra/Rg) of CNT-0.1 wt% WO$_3$ microsensor was as high as 3.8, while the CNT microsensor showed almost no response (Ra/Rg = 1.05).

Figure 5 depicts the sensor resistance and the sensor response of CNTs-WO$_3$ composite microsensors as a function of amount of WO$_3$. The resistance was steeply increased at 0.1 wt% WO$_3$ addition. After the maximum at 0.1 wt%, the resistance was gradually decreased with increasing WO$_3$ amount. This behaviour can be explained by the formation of p-n junction at 0.1 wt% and the WO$_3$ connection higher than 1 wt%. The similar behaviour was observed for the sensor response, which had the maximum at 0.1 wt%. At 0.1 wt%, the p-n junction was formed between CNT and WO$_3$ grains to generate the large depletion layer within CNT, inducing the large resistance of CNTs-WO$_3$ composite sensor. The highly depleted surface state of CNT resulted in the increasing amount of NO$_2$ adsorption on CNT and
Figure 3: SEM images of (a) CNT-0.1 wt% WO3 composite microsensor; (b) CNT-1 wt% WO3 composite microsensor; and (c) 7 wt% WO3 composite microsensor.

Figure 4: Response transients of CNT and CNT-WO3 microsensors to 5 ppm NO2 at 200°C.

Figure 5: The sensor resistance and the sensor response of CNTs-WO3 composite microsensors as function of amount of WO3.

thus high sensor response to NO2 of CNT-WO3 composite sensor. When higher than 1 wt%, the conduction pass was formed via WO3 grains to decrease the sensor resistance. At more than 1 wt% WO3, the WO3 grains begin to contact with each other to dominant n-type conduction pass due to WO3. It is well known that WO3 is excellent sensing material for NO2 detection. Although the WO3 sensor shows the response of resistance-increase, the CNT-WO3 (7 wt%) composite sensor exhibited no response to 5 ppm NO2 (Ra/Rg = 1). It is considered that the sensor response (Ra/Rg) would be decreased to less than unity (resistance increase) at higher amount of WO3. Finally, the reproducibility of sensor response to 5 ppm NO2 was examined at 200°C for 0.1 and 1 wt% WO3-CNT composites. As the result, the sensor response of both composites was, respectively, 3.6 and 1.4, which was closed to the plotted data of Figure 5.

4. CONCLUSION

Conductivity-type gas sensor based on carbon nanotubes (CNTs)-WO3 composite showed the fairly good sensor response (Ra/Rg) to dilute NO2, comparing that the sensor fabricated from only CNT exhibited almost no response. The large depletion layer due to p-n junction was formed on CNT, inducing the enhancement of NO2 adsorption on the surface of CNT.

ACKNOWLEDGMENTS

This work was partly supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 17750136), from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and the 21st Century COE Program, “Micro-Nano Science Integrated System”.

REFERENCES

