Mechanical and Thermal Properties of Polymethyl Methacrylate-BN Nanotube Composites

C. Y. Zhi, Yoshio Bando, Wenlong L. Wang, Chengchun C. Tang, Hiroaki Kuwahara, and Dmitri Golberg

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
Innovation Research Institute, Teijin Ltd., 2-1, Hinode-cho, Iwakuni, Yamaguchi 740-8511, Japan

Correspondence should be addressed to C. Y. Zhi, zhi.chunyi@nims.go.jp

Received 23 July 2008; Revised 18 October 2008; Accepted 6 November 2008

Polymethyl methacrylate (PMMA)-BN nanotube (BNNT) composites were fabricated and their mechanical and thermal properties were analyzed. Using a 1 wt.% BNNTs fraction in a polymer, the elastic modulus of PMMA was increased up to 19%. In addition, thermal stability and glass transition temperature of PMMA were also positively affected. The thermal conductivity of PMMA with BNNT additions increased three times. The resultant BNNT-PMMA composites possess the high electrical breakover voltages. Thus our studies clearly indicate that BNNTs are promising nanofillers for improvement of mechanical and thermal conductivity of dielectric polymers under preservation of their electrical insulation.

Copyright © 2008 C. Y. Zhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The discovery of carbon nanotubes (CNTs) and observations of their unique, mechanical, thermal, and electrical properties have soon stimulated the studies on their usage in composites [1–3]. The composites with a matrix made of metal or ceramic have in fact been intensively studied, but the polymeric composite researches have become more widespread due to many comprehensive applications. For example, CNTs have been used to improve mechanical properties, thermal conductivity, and electrical conductance of polystyrene, polyacrylonitrile, polymethyl methacrylate (PMMA), and so forth [4–14]. However, there have been some unsolved problems with respect to real applications of CNTs-polymer composites, for example, nanotube dispersion at high concentrations. In addition, the mechanical performance of a CNT-polymer composite strongly depends on which kind of tubes, that is, arc-discharge-grown or catalytically produced, is in use. The arc-discharge CNTs possess excellent mechanical properties due to a high-temperature growth, but their production yield is typically low. Oppositely, a large amount of CNTs can be produced through a catalytic growth, but such tubes have plenty of structural defects, which is harmful for applications [15, 16].

Boron nitride nanotubes (BNNTs), which have very similar atomic structure to CNTs, exhibit a number of physical properties which could be advantageous (compared to CNTs) in polymeric composites. For example, a BNNT is a constant wide band gap material [17–19]. BNNTs could emit ultraviolet light under excitation by an electron beam. The theoretical estimates of the elastic modulus of a BNNT gave a value of ~850 GPa, [20], that is, approximately 0.8 times of CNT. Moreover, BNNTs are chemically inert and structurally stable; they withstand heating in air up to 900°C [21]. It is worth noting that the thermal conductivity of BNNTs has been predicted to be even higher than that of CNTs [22, 23]. All these factors make a BNNT useful as a filler in polymeric composites. We envisage that BNNTs can improve mechanical properties and thermal conductivity of a polymer while preserving its dielectric properties. Moreover, since BNNTs are pure white in color, the BNNT-loaded polymers should keep good transparency at low fraction of BNNTs. However, the BNNT-polymer composite-related studies have been overlooked in the literature. Only recently, the present authors have reported that BNNTs improve the tensile modulus of a polystyrene [24]. The detailed studies on other polymers and their properties have still been lacking.
1: Elastic modulus, strength and elongation of a blank PMMA, and its BNNTs’ composites.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Thickness (μm)</th>
<th>Modulus (GPa)</th>
<th>Strength (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>25</td>
<td>2.07</td>
<td>58.31</td>
<td>9.91</td>
</tr>
<tr>
<td>PMMA; 1 wt.% BNNT</td>
<td>27</td>
<td>2.47</td>
<td>54.35</td>
<td>3.93</td>
</tr>
<tr>
<td>PMMA; 1 wt.% BNNT</td>
<td>52</td>
<td>2.51</td>
<td>54.73</td>
<td>4.21</td>
</tr>
</tbody>
</table>

The tensile mechanical properties of BNNT/PMMA composite films are summarized in Table 1. With a 1 wt.% BNNTs fraction, the elastic modulus of PMMA was improved by 19%, but the tensile strength slightly decreased. No behavioral variations were observed for the different film thicknesses, as shown in Table 1. The slit widths of the doctor blades used were 200 μm and 400 μm, thus much larger than the BNNTs lengths, and it is thought that a change in slit width should not affect the arrangement of BNNTs in a polymer matrix. It is worth noting that the film’s thicknesses significantly decrease after solvent evaporation. These results show that the external force can be transferred to BNNTs in some degree, which results in an increase in elastic modulus; while the defects induced by BNNTs are still a problem, which leads to a decrease of strength. In all cases, the addition of fillers induces a dramatic reduction in elongation, which also indicates that the interaction between BNNTs and polymer chains exists.

For comparison, it is worth mentioning some related results on CNT/PMMA composites. W.-J. Lee et al. fabricated an MWCNT/PMMA nanocomposite by using both the injection molding and film casting processes [29]. The tensile strength of an MWCNT/PMMA nanocomposite increased by more than 15% and the tensile toughness increased by ~17.5%, compared to the blank PMMA. It is well known that surface modification can improve the nanotube dispersion and filler/matrix interfacial bonding. Recently, Liu and Wagner have used MWCNTs functionalized through covalent linking of long alkyl chains and prepared PMMA/CNT composites [30]. A 32% rise in tensile modulus and a 28% increase in tensile strength were observed for a composite loaded with a 1.0 wt.% fraction of CNT fillers. Keeping in mind that no surface functionalization and/or surfactants...
Figure 2: (a) DSC and (b) TGA of a blank PMMA and BNNTs/PMMA composites, which indicate that the thermal stability and glass transition temperature are only slightly modified.

Figure 3: Thermal conductivity of a blank PMMA and BNNTs/PMMA composites, almost 3-fold improvement was obtained with a 10 wt.% BNNT loading fraction.

were used in our experiments, our results are considered to rival this literature data.

In most of previous experiments related to CNT/polymer composites catalytically grown CNTs were utilized. However, the catalytically produced CNTs are not structurally perfect and are prone to defects. By contrast, the present BNNTs grown via the BOCVD method are well structured and possess a high elastic modulus of 500–700 GPa, as was documented using the in situ TEM techniques \[31\]. We note that it is rather difficult to directly compare the pre-existing CNTs and the present BNNTs impacts since very different numbers have been reported for the CNT-loaded composites.

Since we did not use any special pretreatments of the BNNTs and special techniques for composite film fabrication it is envisaged here that there is still a plenty of room for further modulus improvement. In this respect, an estimate was performed to elucidate the theoretical mechanical properties of BNNTs/PMMA composites. Ideally, if BNNTs strongly bond to PMMA, the external tensile load will be transmitted from a matrix to BNNTs through the interfacial shear stress. Thus, a BNNTs/PMMA composite film can be considered as a randomly oriented discontinuous fiber lamina and the composite modulus, \(E_c\), can be estimated using the following equations \[32\]:

\[
E_C = \left[\frac{3}{8} \frac{1 + 2(l_{NT}/d_{NT})\eta_L V_{NT}}{1 - \eta_L V_{NT}} + \frac{5}{8} \frac{1 + 2\eta_T V_{NT}}{1 - \eta_T V_{NT}} \right] E_{PMMA},
\]

\[
\eta_L = \frac{(E_{NT}/E_{PMMA}) - 1}{(E_{NT}/E_{PMMA}) + 2(l_{NT}/d_{NT})},
\]

\[
\eta_T = \frac{(E_{NT}/E_{PMMA}) - 1}{(E_{NT}/E_{PMMA}) + 2},
\]

(1)

where \(E\) is the modulus, \(l_{NT}\) is the length, and \(d_{NT}\) is the outer diameter of BNNTs. The volume fraction, \(V_{NT}\), is estimated to be ~0.70 vol.% for a 1 wt.% BNNT fraction. For the sonicated BNNTs used in our experiments, the average diameter and length are 50 nm and ~6 \(\mu\)m, respectively. Thus \(E_c\) was calculated to be 1.35 \(E_{PMMA}\) for a composite with a 1 wt.% BNNTs loading fraction. By taking a 3 wt.% BNNTs fraction the modulus of 1.98 \(E_{PMMA}\) was obtained. These estimates confirm that BNNTs are indeed very promising nanomaterials for the mechanical enhancement of polymeric composites. It is also predicted that, experimentally, notably better reinforcement can be achieved for covalently modified BNNTs.

The coefficient of thermal expansion (CTE) of composite films is shown in Figure 1. After adding BNNTs, the CTE of PMMA dramatically decreases from 215 to 115 ppm/\(^\circ\)C, that indicates that BNNTs significantly restrict the mobility of polymer chains. This is consistent with the above-discussed variations in the reinforced PMMA film elasticity and toughness.

TGA data is presented in Figure 2(a). The oxidation of the composites was characterized by the parameter \(T_{0.1}\), which is the temperature corresponding to a 10% weight loss rate. \(T_{0.1}\) is slightly changed when a 1 wt.% BNNTs fraction is in use. In line with our previous studies, it is suggested that BNNTs can in fact improve stability to oxidation. However, the effect is much smaller than in case of conventional phenolic antioxidants \[33\]. Such results are reasonable; on one hand, there are some localized states, such as vacancies,
dangling bonds, and functional groups on BNNT surfaces which may be responsible for radical termination during polymer degradation. On the other hand, the effect only takes place on the interfaces between BNNTs and polymers, and the concentration of such lattice defects in BNNTs is low. These factors result in only marginal improvement of thermal conductivity, and the concentration of such lattice defects in BNNTs is 30. The coexistence of BNNTs loading fraction. The coefficient of thermal expansion of a PMMA film dramatically reduced due to profound interactions between BNNTs and PMMA chains. This fact was consistent with the corresponding variations in glass transition temperatures. Thermal conductivity of PMMA loaded with a 10 wt.% BNNT fraction was improved 3 times compared to blank PMMA. The developed BNNT/PMMA composite films simultaneously possessing (i) improved thermal conductivity, (ii) enhanced mechanical properties, and (iii) perfect electrical insulation were envisaged to find diverse applications in many polymeric fields.

ACKNOWLEDGMENTS

The authors thank Dr. H. Sakurai, Dr. Y. Uemura, Dr. M. Mitome, and Dr. K. Kurashima for their cooperation and kind help. This work was in part supported by World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan.

REFERENCES

Submit your manuscripts at http://www.hindawi.com