The Field Emission Properties of Graphene Aggregates Films Deposited on Fe-Cr-Ni alloy Substrates

Zhanling Lu, 1 Wanjie Wang, 1 Xiaotian Ma, 1 Ning Yao, 2 Lan Zhang, 3 and Binglin Zhang 3

1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 Materials Physics Laboratory of Education Ministry of China, Zhengzhou University, Zhengzhou 450052, China
3 Department of Engineering Mechanics, Zhengzhou University, Zhengzhou 450001, China

Correspondence should be addressed to Zhanling Lu, zllu@zzu.edu.cn

Received 31 May 2010; Accepted 21 June 2010

Academic Editor: Rakesh Joshi

Copyright © 2010 Zhanling Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The graphene aggregates films were fabricated directly on Fe-Cr-Ni alloy substrates by microwave plasma chemical vapor deposition system (MPCVD). The source gas was a mixture of H 2 and CH 4 with flow rates of 100 sccm and 12 sccm, respectively. The micro- and nanostructures of the samples were characterized by Raman scattering spectroscopy, field emission scanning electron microscopy (SEM), and transparent electron microscopy (TEM). The field emission properties of the films were measured using a diode structure in a vacuum chamber. The turn-on field was about 1.0 V/µm. The current density of 2.1 mA/cm 2 at electric field of 2.4 V/µm was obtained.

1. Introduction

Graphene has grabbed appreciable attention due to its exceptional electronic and optoelectronic properties [1]. One of the potential applications of graphene is in field emission (FE) displays. Malesevic et al. synthesized vertically aligned few-layer graphenes (FLGSs) using plasma-enhanced chemical vapor deposition (PECVD) on titanium substrate, and turn-on field of the field emission from the graphene layer was as low as 1 V/µm [2]. Qi et al. prepared FLGSs by radio-frequency PECVD on Si(100) substrates without any catalyst, and turn-on field of its emission was 3.91 V/µm [3]. We previously reported that nanocrystalline graphitic films on ceramic substrates by MPCVD using Fe-Ni-Cr layer as catalyst were deposited, the turn-on field of 1.26 V/µm was obtained [4].

In this paper, we present the field emission characteristics of the graphene aggregates films, which were synthesized by MPCVD directly on stainless steel substrate without any catalyst. The structure of the films was also studied.

2. Experiment

The Fe-Cr-Ni alloy substrates were polished with abrasive paper of W7 (particle size was about 15 µm) and then ultrasonically cleaned with deionized water and acetone. The graphene films were deposited directly on the substrates without any catalyst by MPCVD. The source gas was a mixture of H 2 and CH 4 with flow rates of 100 sccm and 12 sccm, respectively. During the deposition, the total pressure of 6.0 KPa, substrate temperature of 700 °C, and microwave power of 1600 W were kept for 10 mins.

The structure of deposited films were analyzed by Raman scattering, SEM, and TEM. The field emission properties were measured using a diode structure, which was placed in a vacuum chamber. The deposited film with area of 0.2 cm 2 was used as a cathode. The anode of an indium tin oxide (ITO-) coated glass was separated from the cathode by a mica spacer with thickness of 600 µm. The base pressure in the vacuum chamber was maintained below 1 × 10 −4 Pa during the measurements. The voltage was stepped up from 0 to 2500 V.

3. Results and Discussion

The Raman spectrum of the sample was shown in Figure 1. The G- band appearing at 1583 cm −1 originates from in-plane vibration of sp 2 carbon atoms and is a doubly degenerate (TO and LO) phonon mode (E 2g symmetry) at
the Brillouin zone center. The band located at 1353 cm\(^{-1}\) corresponds to the D band of graphitic carbon species, which is a disorder-activated Raman mode and is associated with the TO branch near the K-point. The 2D band at 2700 cm\(^{-1}\) originates from a two-phonon double resonance Raman process, and it is closely related to the band structure of graphene layers and is to be used to confirm the presence of graphene [5, 6]. The band at 1620 cm\(^{-1}\), termed as D', which arises from phonon scattering at the crystal-lattice defects. The band at 2950 cm\(^{-1}\) originates from D+G mode.
The field emission characteristics of the graphene aggregates film were tested. The turn-on field of about 1.0 V/μm and the current density of 2.1 mA/cm² at electric field of 2.4 V/μm were obtained. Figure 3 showed the current versus voltage (I-V) curve of the field emission, and the corresponding Fowler-Nordheim (F-N) plot was inserted in Figure 3, which characterized the tunnel effect of the field emission from the graphene aggregates film. The F-N plot exhibited two different slopes at low-field region and high-field region. The current saturation of the emission and the slope deviation of the F-N plot at high-field region were observed in Figure 3. The same phenomena were observed for carbon nanotubes emitter, reported by Choi et al. [8]. In the present case, we suggested that the current saturation and F-N plot deviation were attributed to the same reason, which was adsorbate desorption effect, especially hydrogen-adsorbate desorption during the emission measurement. We had also reported the hydrogen desorption effect during the emission measurement for amorphous carbon emitter [9]. During the graphene film deposition by CVD method, hydrogen atoms were adsorbed on the surface and edges of graphene aggregates to form the localized states near the Fermi level, which were responsible for the emission. During the emission measurement, the hydrogen adsorbates gradually desorbed, and the localized states disappeared, which probably led to the current saturation and F-N plot deviation phenomena.

The above measured results indicate that the graphene aggregates film was a good material for field electron emitter. The good field emission properties would be attributed to two possible mechanisms. (1) The graphene sheets were extending to a height of several hundreds of nanometers vertically aligned to their surfaces along the applied electric field, and the field sites of which would cause a large-field enhancement factor [10]. (2) The defects of the graphene sheet lowered electron affinity that provided a low-energy barrier and enhanced electron emission. Fillet et al. reported that energy barrier of single-layer graphene grown epitaxially on 6H-SiC (0001) had been determined to be 135 ± 9 meV by means of the Kelvin probe force microscopy [11], which was much lower than that of 4.5 eV for graphite.

4. Conclusion

In summary, we have demonstrated that the graphene film can be directly grown on stainless steel surface employing methane as the source gas in about a 10-min growth time. The growth temperature was about 700°C. The graphene aggregates emitter has a very low turn-on field of only about 1 V/μm and an emission current density of 2.1 mA/cm² at an applied field of 2.4 V/μm. This promising field emission performance can be attributed to the electric field enhancement, and the defects induced low-work function of the graphene aggregates film.

References


