Research Article

Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

Dongmei Han, Chunfeng Song, and Xiaoyu Li

1 School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3 Key Laboratory for Nanomaterials, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China

Correspondence should be addressed to Xiaoyu Li, lixy@mail.buct.edu.cn

Received 1 November 2009; Revised 27 April 2010; Accepted 27 May 2010

Academic Editor: Raymond Whitby

Copyright © 2010 Dongmei Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

1. Introduction

As biomedical labeling reagents, high-quality colloidal luminescent semiconductor nanocrystals, such as CdSe, have attracted much attention because of their apparent, narrow, and symmetric photoluminescence, broad and intense absorption band, and tunable emission peak positions [1, 2]. However, many results indicate that any leakage of cadmium from the nanocrystals would be toxic and fatal to biological systems. Some attempts have been made to develop non-cadmium materials. Transition metal ion-doped quantum dots (d-dots) can meet this requirement. The sp-d exchange interaction between the semiconductor and the transition metal ions induces unique optoelectronic properties [3]; Mn-doped II-VI semiconductors arouse general interest in particular, [4–6]. As a wide-band-gap material, ZnSe is suitable for the fabrication of various optoelectronic devices, biolabeling, and hosts for the formation of doped nanocrystal [7–9]. Recent researches have been carried out to explore for the synthesis of transition metal ion-doped ZnSe nanocrystals such as Cu−, Mn−, and Co-doped ZnSe nanomaterials. [10–12]

At present, the main method of preparing transition metal ion-doped ZnSe nanomaterials is colloid chemistry route. The experiments are typically carried out with high temperature, toxic, and explosive chemical reagents. In particular, as-prepared products cannot be directly dispersed in the water phase due to their hydrophobic surfaces. A further reaction is needed to achieve the phase transfer for the aqueous environment. More recently, Nie and his co-workers [13] developed an alternative method to synthesize nanocrystals in aqueous solution. On the basis of those and other encouraging results [14, 15], we recently focused on the possibilities to synthesize metal ion-doped ZnSe directly in aqueous solution and explored the impact of system on morphology and performance of the nanomaterials.

In this paper, we report on the preparation of high-crystalline Mn-doped ZnSe nanowires (NWs) by a simple method, solution synthetic methodology using α-cyclodextrins as stabilizer, and investigated the relationship between the structures and the properties.

2. Experimental

All chemicals and solvents in our work were commercial products used as received without further purification. α-cyclodextrin (α-CD) was a product of Alfa Company, selenium powder (99.95%) was obtained from Beijing Reagent
Company. Zinc acetate \((\text{Zn(OAc)}_2 \cdot 2\text{H}_2\text{O})\), manganese acetate \((\text{Mn(OAc)}_2 \cdot 4\text{H}_2\text{O})\), sodium sulfate, sodium hydroxide \((\text{NaOH})\), sodium citrate, and anhydrous ethanol were analytical grade and purchased from Beijing Reagent Company. Deionized water was used throughout all experiments.

The synthesis of \(\text{ZnSe}\) and Mn-doped \(\text{ZnSe}\) nanowires was adapted from a procedure developed for CdSe nanoparticles [16]. A brief description is provided as follows. A total of 0.2588 g of sodium citrate, 10 mL of 0.04 M \(\text{Zn(OAc)}_2\) solution and 0.08 mmol \(\text{Mn(OAc)}_2\) were added to 225 mL of deionized water. Under the magnetic agitation, 2 g of \(\alpha\)-CD was introduced to the flask. After the pH value was adjusted to 10 with 1 M \(\text{NaOH}\) solution, the mixture was purged with \(\text{N}_2\) for 30 min. Then 6 mL of 0.05 M \(\text{Na}_2\text{SeSO}_3\) solution was added. When mixed uniformly, the solution was transferred to the vessel. It was laid to the oven with temperature 180°C for 4 days. After being naturally cooled to the room temperature, the mixture was centrifuged at 5000 rpm/min for 10 minutes and washed several times by deionized water and absolute ethanol. Having dried in vacuum at 80°C for 3 hours, the yellow products were obtained.

The transmission electron microscope (TEM) images were taken by H-800 microscope with an accelerating voltage of 80 kV. The high-resolution TEM images were obtained by employing a JEOL 3010 microscope with a 300 kV accelerating voltage. Samples for TEM were prepared by placing a drop of the sample suspension on a copper grid coated with carbon and were allowed to dry in air. The samples were characterized by X-ray diffraction (XRD), with scanning rate 10°/min, on D/max 2500 VB2+/PC X-ray diffractometer using graphite monochromatized Cu Ka radiation \((\lambda = 1.5406\) Å). The UV-vis absorbance spectra were obtained on a Shimadzu UV-3150 spectrophotometer in the range of 200~800 nm at room temperature. Optical densities were kept within 0.2 at the excitation wavelength. The photoluminescence (PL) spectra of the as-prepared Mn-doped \(\text{ZnSe}\) nanomaterials were measured using a Varian Cary-Eclipse fluorophotometer.

3. Results and Discussion

The XRD patterns of the \(\text{ZnSe}\) and Mn-doped \(\text{ZnSe}\) NWs are displayed in Figure 1. The XRD peaks of the undoped \(\text{ZnSe}\) NWs can be well indexed to zinc blende \(\text{ZnSe}\) crystals (JCPDS Card No. 37-1463). In the case of Mn-doped \(\text{ZnSe}\) NWs synthesized under the same conditions, the peaks are well-crystallized XRD pattern of \(\text{ZnSe}\). The ED pattern is displayed, respectively. From the further analysis, it was found that the growths of crystal lattice are clear, even though the nanowires are very thick. The selected area ED pattern, consisted of discrete and bright spots, indicating that the nanowires are all typically single well-crystallized diffraction pattern of \(\text{ZnSe}\). The ED pattern confirms that the zinc blende-structured \(\text{ZnSe}\) nanowires grow along the (200) direction. The image shows that the highly crystalline (200) planes, separated by 2.819 Å, are close to that of cubic structured \(\text{ZnSe}\) crystal 2.834 Å.

UV-vis absorption spectra of Mn-doped \(\text{ZnSe}\) NWs with different Mn\(^{2+}\)-doped concentrations are presented in Figure 3. An interesting pattern was revealed by this set of experiments. The absorption peaks of all samples are very strong. With the increase of Mn\(^{2+}\)-doped concentration, the absorbance shows large difference. The two weak absorption peaks of 5% Mn-doped \(\text{ZnSe}\) NWs emerge at 250 nm and 370 nm. While Mn\(^{2+}\)-doped concentration is increased to 10%, the location of absorption peak is at 360 nm with stronger absorption intensity, but the absorption peaks are

![Figure 1: XRD patterns of the ZnSe (a) and Mn-doped ZnSe (b) nanowires.](image-url)
similar with the pure ZnSe except of small red shift when the doped concentration is 20%. It has been reported that the transition metal ion-doped semiconductor could form a doping energy level with the band gap of ZnSe [20]. The doping concentration could have an influence on optical properties to a large extent.

In our case, when doping concentration is low (5%), the content of Mn is inadequate to reduce the band gap of ZnSe which results in ZnSe characteristic absorption and doped absorption emerging at the same time. The optimal doping concentration is 10%. The dopant can serve to retard charge traps and effectively reduce the band gap within the suitable concentration. When the doping concentration is too high (20%), the inconsistency of precipitation reaction may lead to precipitation separation and dopants failure to enter the internal lattice [20].

Figure 4 shows the optical absorption feature of Mn-doped ZnSe NWs (10% Mn²⁺-doped concentration). A sharp absorption band appears at 360 nm. A red shift in the absorption band compared with pure ZnSe nanoparticles [14] suggests that the injected metal ions are isomorphic to Zn²⁺ ions and decrease the band gap. The corresponding luminescence spectrum with 350 nm excitation wavelength shows signs of two distinct emission bands centered at 432 and 540 nm, respectively. These bands can be assigned to ZnSe trap state and Mn²⁺ ⁴T₁ → ⁶A₁ emission. The half-peak-wide of the highest emission peak is 29 nm, which is very narrow and almost symmetrical.

Band-edge luminescence and Mn²⁺-related luminescence are competing processes. The absorption of a photon leads to the formation of an exciton. Luminescence results from recombination of the exciton as well as from the energy transfer to Mn²⁺ d-d levels. Mn²⁺ doping clearly leads the near-band-edge luminescence at 412 nm to the disappearance of, and the manganese orange emission band emerges at about 580 nm in Mn-doped ZnSe nanowires [18].
4. Conclusion

In summary, Mn-doped ZnSe nanowires were synthesized by hydrothermal method using α-cyclodextrins as stabilizer. It was a convenient, efficient method to obtain the transition metal ion-doped one-dimensional ZnSe nanomaterial which can be directly dispersed in the water phase. The average length of nanowires was about 2-3 μm, and the diameter was 80 nm. Mn-doped ZnSe NWs were indexed to zinc blende ZnSe crystals. After being doped, the peak of the absorption spectra of the nanowires appeared at 360 nm, and their emission band lied at about 580 nm. This method is simple for synthesizing Mn-doped ZnSe nanowires and provides a flexible approach for applications of biomedical labeling reagents.

Acknowledgment

This paper was financially supported by the National Natural Science Foundation of China (no. 50673008).

References

Submit your manuscripts at http://www.hindawi.com