Research Article

Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiO\textsubscript{x} Nanowires

Guozhang Dai,1,2 Shengyi Yang,1 Min Yan,2 Qiang Wan,2 Qinglin Zhang,2 Anlian Pan,2 and Bingsuo Zou1,2

1 Laboratory of Nanophotonics Materials and Technology, School of Material Science and Engineering of Beijing, Institute of Technology, Beijing 100081, China
2 Key Lab for Micro-Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China

Correspondence should be addressed to Bingsuo Zou, bszou@hnu.cn

Received 25 October 2009; Accepted 28 December 2009

Academic Editor: Renzhi Ma

Copyright © 2010 Guozhang Dai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Core-shell-structured CdSe/SiO\textsubscript{x} nanowires were synthesized on an equilateral triangle Si (111) substrate through a simple one-step thermal evaporation process. SEM, TEM, and XRD investigations confirmed the core-shell structure; that is, the core zone is single crystalline CdSe and the shell zone is SiO\textsubscript{x} amorphous layer and CdSe core was grown along (001) direction. Two-stage growth process was present to explain the growth mechanism of the core/shell nanowires. The silicon substrate of designed equilateral triangle providing the silicon source is the key factor to form the core-shell nanowires, which is significant for fabrication of nanowire-core sheathed with a silica system. The PL of the product studied at room temperature showed two emission bands around 715 and 560 nm, which originate from the band-band transition of CdSe cores and the amorphous SiO\textsubscript{x} shells, respectively.

1. Introduction

In recent years, great efforts have been made to overcome the numerous challenges associated with the design of one-dimensional (1D) nanostructures with well-controlled size, phase purity, crystallinity, and chemical composition, due to their fascinating properties and unique applications \[1–3\]. With the ongoing development of nanodevices, the preparation of nanocables, such as semiconducting nanowires sheathed with an insulating shell which can passivate existing surface states, enables new interface properties and introduces unique electronic and photonic function that has attracted particular attention \[2–7\]. Amorphous silicon oxide is optically transparent for the visible absorption/emission of semiconductor nanowires and produces little destruction of their intrinsic optical properties; therefore it is widely used as passivation or insulation layers materials. So far, several kinds of 1D nanocables based on semiconductors sheathed with a silica system have been achieved by employing a thermal evaporation method, such as CdS/Si coaxial nanowires \[8\], SiO\textsubscript{2}-sheathed ZnO nanowires \[9\], and ZnS/SiO\textsubscript{2} core-shell nanowires \[10, 11\]. In this context, the Si source of the passivation layers was provided by coevaporation of Si-based source and the core-semiconducting powder in high temperature (>1000°C) or by the pretreatment of Si wafer in HF solution, in which the high temperature and venenous solution should avoid in the developed growth technologies. Development of simple, low-cost, and environment-friendly growth processes is necessary.

CdSe, with a direct band gap of 1.7 eV at room temperature, is one of the most important materials in making optoelectronic devices \[12–14\]. As a selenide, unprotected nanostructured CdSe easily suffers surface degradation (such as oxidation) and contamination in atmosphere which severely damage there intrinsic properties. As a heavy metal Cadmium-compound, the decreasing toxicity of the nanostructures is highly desired especial for biorelated applications. Therefore, surface modification on CdSe nanostructures with coating a shell layer is very crucial and urgent
for their commercial or industrial utilization. In the last few years, the majority of reports on the synthesis of CdSe-core/shell nanostructures were focused on nanoparticles [15, 16], and very few work has been done in the coaxial nanowires except for one paper report on the synthesis of CdSe/SiO₂ nanocables [17], in which the reaction source was added in the Si powder and was sublimated in the temperature above 1200°C. In this article, we report the synthesis of coaxial CdSe/SiO₂ nanowires on an equilateral triangle Si substrate through a simple one-step thermal evaporation process at 900°C. The effects of the equilateral triangle Si substrate and local temperatures on the coaxial nanowires growth are significant, which is in contrast to early publications. Photoluminescence properties of these coaxial nanowires were also briefly investigated at room temperature.

2. Experimental

Core-shell nanostructures were synthesized by thermal evaporation. The substrates used for the growth of CdSe nanowires with a coaxial silicon shell were p-type (111) Si wafers. Before used, the Si wafers were cut into an equilateral triangle (the vertex angle is about 60 degrees) and then cleaned ultrasonically for 30 minutes in acetone solution. An Au film about 20 nm in thickness was deposited onto the ultrasonically-cleaned Si wafers by sputtering. About 0.1 g commercial-grade CdSe powder (Strem Chemicals, 99.999+-%-Cd purity) was placed in the center of a single zone tube furnace and evacuated for several hours to purge oxygen in the chamber. The treated Si substrates were placed 5 cm away from the CdSe powders and along the downstream side of the flowing Ar (90%) and H₂ (10%). Typically, the CdSe source temperature was controlled at about 900°C at a rate of 100°C /min. During the growth process, the mixture carrier-gas flow was kept at a constant rate of 10~20 sccm. After 60 minutes of typical deposition time the samples were cooled down to room temperature. Dark-brown products appeared on the Si wafers.

X-ray powder diffraction (XRD) data were obtained on a Siemens D-5000 type diffractometer equipped with graphite-monochromatized CuKa1 radiation (λ = 1.54056 Å). The morphologies and chemical composition of the products were examined by a field emission scanning electron microscope (FE-SEM, JSM-6700F) and transmission electron microscopy (TEM, JEM-3010) with an energy-dispersive X-ray (EDX) spectroscope attached to the JEM. Room-temperature photoluminescence (PL) was taken on a Confocal Optical Microscope (Witec) using an Ar-ion laser (488 nm) as an excitation light source.

3. Results and Discussion

The as-deposited products were first examined by SEM observation. Figure 1(a) showed the typical low-SEM images taken from the as-prepared products on Si substrates. The image shows that samples were formed in long and wirelike
nanostructures. The high-magnification SEM image was given in Figure 1(b) which indicated that the diameter of the nanowire is about 100 nm. Furthermore, nanosized particles (marked with an arrow in Figure 1(b)) were found attached to the ends of the nanowires, indicating a likely vapor-liquid-solid (VLS) process for the formation of core nanowires [18]. XRD measurements were made on the nanowires to assess the structure and phase purity. A typical XRD pattern of the nanowires was shown in Figure 2. The main diffraction peaks match well with a wurtzite (hexagonal) structure of bulk CdSe with lattice constants of $a = 4.299$ Å and $c = 7.010$ Å (PDF No. 77–2307). A weak Au diffraction peak from catalytic Au nanoparticles was detected. Besides, a broad peak located at ~ 22 degree, which indicates that there are some amorphous materials in the product.

Morphology and microstructural analyses were further performed using TEM. Figure 3(a) shows a typical TEM image of the nanowires. From this image we can identify clearly that the nanowires have a core-shell nanostructure; that is, a relatively thick sheath with light contrast is formed outside the surface of nanowires with dark contrast. Furthermore, the diameter of the core and the thickness of the shell of individual nanowire are uniform and the typical dimensions are all in the range of 30 to 40 nm. To further investigate the composition of the sample, EDX was taken of the core and shell areas of the nanowire and is presented in Figure 3(b). It can be found that the core of the nanowire is mainly composed of Se and Cd and the shell is mainly made up of Si and O. The extra Cu shown in the EDX spectrum stems from the Cu grid. HRTEM image was taken with the electron beam along a single nanowire, as is shown in Figure 3(c), which reveals the clear crystalline-core/amorphous-shell interface. Moreover, the measured lattice spacing of crystalline core is 0.35 nm, corresponding to the (001) lattice planes of hexagonal wurtzite CdSe. Figure 3(d) shows a selected-area electron diffraction (SAED) pattern taken from the core zone of
Figure 4: SEM image of the sample with different temperature region: (a) 750–800°C; (b) 700–750°C; (c) schematic illustration of the growth process of the core-shell CdSe/SiOx nanowires.

Thus, we can assume that the first step is a fast growth CdSe as guided by a gold catalyst based on the VLS growth process.

With the reaction continue and the CdSe powders exhausting, the Si vapor density starts to increase and is carried by the mixture carrier gas to a lower temperature zone, where it condenses. In the second stage, the CdSe nanowires serves as the preferable adsorption site for the Si in the vapor phase and eventually works as the template for the one-dimensional growth of Si. Meanwhile, the surface of the silicon was oxidized to form SiOx (the trace remnant of oxygen that was not eliminated completely by flushing with mixed gas and/or from the leakage of the furnace serves as the oxidant) during heating, resulting in the CdSe-core/SiOx-sheath nanocable structure. Therefore, this process is mainly grows the SiOx shell on the CdSe-core nanowires via the vapor-solid (VS) mechanism. The growth of nanostructures always abides to the thermodynamic/kinetic issues [19]. In the high-temperature region, the dynamics effect is remarkable and the Si vapor is sufficient. The CdSe-core/SiOx-sheath structure of the uniform diameter and smooth surface can be obtained (Figure 4(a)). However, in the comparatively low-temperature position where is far away from the CdSe powder, the situations are different. The intensity of Si steam is comparatively low and Si aerosol adsorbed on CdSe nanowire templat slowly and unorderly, liking semiwraps nanowires. (Figure 4(b)). Then, we can regard it as the intermediate state of the final core/sheath nanowires shown in Figure 4(a). The stage of the growth process can be seen in Figure 4(c).

We need to point out that the silicon source is provided by the silicon substrate. This was in contrast to early publication which added the silicon-based materials in the mixture source powder [17]. The supported experimental
SiOx shell. Literatures [21] have reported the oxidized SiO2 lower PL intensity peak may be attributed to the amorphous nanowires [22]. Here, we think that the visible emission at around 550 nm also was indexed to the SiOx shell of Si/SiOx nanotubes emission peak at about 570 nm. The PL bands spectrum of the CdSe/SiOx coaxial nanowires is shown in Figure 5, which reveals an intensive peak centered at 560 nm also come from the amorphous silica shell, in which the dissimilar peak position may be linked to the different density of oxygen vacancies.

4. Conclusion

In summary, we synthesized coaxial CdSe/SiOx nanowires through simple one-step thermal evaporation process on an equilateral triangle Si substrate. The structures and growth mechanism have been presented. We found that the temperature and the Si substrates of designed equilateral triangle have the critical effect on the formation core/shell nanowires. The PL studies present two emission bands about 560 nm and 715 nm, which originate from the intrinsic transition of CdSe cores and the amorphous SiOx shells, respectively. We believe that this simple preparation technique can be useful for synthesis of other core-semiconductor/shell-Si nanostructures.

Acknowledgments

The authors thank the financial supports of NSFC of China (no. 90606001, 90923014, and 20903038), Program for New Century Excellent Talents in University (NCET-06-0077), and Beijing NOVA program (2006B20) for financial support.

References

