Research Article
Hydrothermal Synthesis and Characterization of Single-Crystalline α-Fe_2O_3 Nanocubes

Wenqing Qin,1, 2 Congren Yang,1, 2 Ran Yi,1, 2 and Guanhua Gao1, 2

1 School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
2 Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan 410083, China

Correspondence should be addressed to Wenqing Qin, qinwenqing369@126.com

Received 11 April 2010; Accepted 15 June 2010

1. Introduction

Iron oxides are conventional semiconductor materials, mainly in forms of α- and γ-Fe_2O_3. The unit cell of α-Fe_2O_3 (hematite) is hexagonal, containing only octahedral coordinated Fe^{3+} atoms (corundum structure), while γ-Fe_2O_3 (magnetite) particles have cubic unit cells with both octahedral and tetrahedral coordinated Fe^{3+} sites (defect spinel structure) [1]. They are both technologically important because of their special magnetic and electrical properties, and potential applications in sorbents [2], ion exchangers [3], information storage [4], and magnetic refrigeration [5].

Controlling the morphologies of these materials during synthetic process is of great importance because of their shape-dependent properties. Various synthetic methods are continually being improved. To date, a variety of novel shapes of iron oxides nanocrystals have been successfully synthesized via various approaches. Magnetite nanorods with high aspect ratio have been synthesized by one-step wet chemistry process that a surfactant, polyethylene glycol, served as the template, and a ferrous ammonia sulphate served as iron source [6]. Uniform α-Fe_2O_3 particles within the nanometer range (100–300 nm) have been obtained by precipitation of iron (III) perchlorate in the presence of urea. Different morphology, from spheres to ellipsoidal particles with axial ratio up to 10, was obtained by adding to the initial solution increasing amounts of phosphate anions up to 7 mM [7]. Plate-shaped γ-Fe_2O_3 nanocrystals have been successfully prepared in a water system by a simple reduction-oxidation method at room temperature and under ambient pressure. The reactions contain two steps: first, Fe(II) is reduced into Fe atoms by γ-ray irradiation in nitrogen atmosphere; then, Fe atoms are oxidized into γ-Fe_2O_3 in air [8]. Continuous iron oxide gel fibers were prepared by the sol-gel method using ferric alkoxide and acetic acid as starting materials and alcohol as solvent, and continuous hollow α-Fe_2O_3 fibers produced after the gel fibers were heat treated at 400 degrees C for 1 hour [9]. Vertically aligned iron oxide nanobelts and nanowire arrays have been synthesized on a large-area surface by direct thermal oxidation of iron substrates under the flow of O_2. It was found that nanobelts (width, tens of nanometers; thickness, a few nanometers) were produced in the low-temperature region (similar to 700°C) whereas cylindrical nanowires which are tens of nanometers thick are formed at relatively higher temperatures (similar to 800°C) [10]. Sphere-like maghemite (γ-Fe_2O_3) nanocrystals are formed by utilizing a solution-based one-step thermolysis method; modulating
the growth parameters, such as the type and amount of capping ligands as well as the growth time, is shown to have a significant effect on the overall shape and size of the obtained nanocrystals and on the ripening process itself [11]. Hou et al. report a facile organic-phase synthesis of monodisperse FeO nanoparticles through high-temperature reductive decomposition of iron (III) acetylacetonate ([Fe-(acac)3]) with oleic acid (OA) and oleylamine (OAm) both as surfactants and solvents; the sizes of the particles are tuned from 14 to 100 nm by controlling the heating conditions and the shapes of the particles are controlled to be either spherical or truncated octahedral depending on the volume ratio of OA and OAm used in the reaction. Thermal annealing under an argon atmosphere converted these FeO nanoparticles into composite Fe-Fe3O4 nanoparticles, while controlled oxidation of the FeO nanoparticles resulted in the formation of Fe3O4, γ-Fe2O3, or α-Fe2O3 nanoparticles [12]. The highly crystalline and monodisperse γ-Fe2O3 nanocrystallites are fabricated from the controlled oxidation of uniform iron nanoparticles which are generated from the thermal decomposition of iron complex. Particle size can be varied from 4 to 16 nm by controlling the experimental parameters [13]. Nevertheless, the production of Fe2O3 nanocubes has not been realized ever. Nanocubes exposed a specific surface, which provided an ideal model for the study of surface related properties [14, 15].

In this paper, we demonstrated that single-crystalline α-Fe2O3 nanocubes could be successfully synthesized via a facile hydrothermal synthetic method under mild conditions. The morphologies of α-Fe2O3 samples could be easily controlled via simply varying the reaction time, and the probable formation mechanism was proposed to explain their growth processes. Moreover, this synthetic approach provided a simple and economical route to synthesize nanocrystals, some of which have a variety of potential applications.

2. Experimental Procedures

The aqueous iron (III) nitrate (Fe(NO3)3·9H2O) was purchased from Sinopharm Chemical Reagent Co., Ltd. The triethylamine was purchased from Beijing Chemical Factory, China. Both Fe(NO3)3·9H2O and triethylamine were of analytical grade and no further purification was conducted. Deionized water was used throughout the experiment.

2.1. Synthesis. In a typical procedure, 0.404 g Fe(NO3)3·9H2O and 3 mL triethylamine were dissolved in deionized water (10 mL) to form a homogeneous solution and then the solution was stirred vigorously for 5 minutes. After that, the solution was sealed in a 50 mL teflon-lined autoclave filled with deionized water till up to 80% of the total volume, and the container was maintained at 160°C for 1–24 hours without shaking or stirring. The resulting products were filtered and then washed successively with deionized water and anhydrous ethanol for several times, and finally, the product was dried for 5 h under vacuum at a temperature of 50°C.

2.2. Characterization. The obtained samples were characterized by powder X-ray diffraction (XRD) with a D/max2550 VB+, and Cu Kα (λ = 1.54178 Å) was used as the radiation source, while the operation voltage and current were kept at 40 kV and 40 mA, respectively. Particle size and morphology of the as-synthesized products were observed using field emission scanning electron microscopy (FESEM) with Philips XL30 S-FEG at an accelerating voltage of 20 kV and transmission electron microscopy (TEM) with JEM-200CX at an accelerating voltage of 160 kV and high-resolution transmission electron microscopy (HRTEM) with JEOL JEM-2010F at an accelerating voltage of 200 kV. Meanwhile, selected area electron diffraction (SAED) was performed to identify the crystallinity. The Fourier transform infrared (FTIR) spectra was recorded on a Nicolet Impact 410 infrared spectrophotometer, and, as for sample preparation, the synthesized powder was added into KBr to press a KBr pellet for FTIR analysis.

3. Results and Discussion

3.1. Crystal Structure. XRD pattern of the sample obtained at 160°C for 24 hours was shown in Figure 1. It could be concluded that all the diffraction peaks could be readily indexed as the pure rhombohedral α-Fe₂O₃ (a = 5.038 Å, c = 13.772 Å) (JCPDS file Card, no. 33-0664). The XRD diffraction patterns peaks of α-Fe₂O₃ became narrower with prolonging the reaction time, and the narrower peaks suggested that the α-Fe₂O₃ samples were higher crystalline, and it testified that iron oxide nanocrystallines could be synthesized through this method. No other peaks were observed, indicating high purity of the as-prepared samples.

The characteristic peaks of orthorhombic α-FeOOH (a = 4.6048 Å, b = 9.9595 Å, c = 3.023 Å) (JCPDS file Card, no. 81-0464) were observed in Figure 1 when the reaction time was 1 hour, 3 hours, 6 hours, and 12 hours, but the characteristic peaks of α-FeOOH decreased with prolonging

![Figure 1: X-ray powder diffraction pattern of various as-prepared sample.](image-url)
the reaction time, and there were only the characteristic peaks of \(\alpha-\text{Fe}_2\text{O}_3 \) when the reaction time was 24 hours. The narrow sharp peaks suggested that the \(\alpha-\text{Fe}_2\text{O}_3 \) samples were highly crystalline.

3.2. Morphology. TEM data and analyses of the iron oxide particles prepared at 160°C for 24 hours using 3 mL triethylamine were illustrated in Figure 2(a). These cubes had a regular cubic structure and a uniform width of about 100 to 200 nm. The surfaces of the cubes were equal and the boundaries of them are evident. The SAED pattern in Figure 2(a), which was parallel to uprightness axis of cube surface, indicates that the cubes were single crystallines. The fringe spacing measured 3.62 Å and 2.49 Å (Figure 2(b)), which concurred well with the interplanar spacing of (012) and (110).

Figure 2(c) was a typical SEM image of the \(\text{Fe}_2\text{O}_3 \) nanocubes obtained at 160°C for 24 hours using 3 mL triethylamine and Figure 2(d) is the magnified image of Figure 2(c). Both images showed that the regular \(\text{Fe}_2\text{O}_3 \) nanocubes could be prepared by this approach. The nanocubes were 100 to 200 nm in width and the nanocube morphology was more evident in Figure 2(d). The inset in Figure 2(d) was the high-magnification image of a typical particle in the highlighted section marked with a white colored circle, which indicates that these particles possess regular cubic morphology and had smooth facies.

The influence of reaction time on the morphology of the products was also investigated and TEM images of iron oxides nanocubes obtained at 160°C using 3 mL triethylamine for 1, 3, 6, and 12 hours were displayed in Figures 3(a), 3(b), 3(c), and 3(d), respectively. For a short reaction time of 1 hour, as shown in Figure 3(a), most of the synthesized particles were in irregular shape and the particle size varied a lot. Yet, by prolonging the reaction time, a tendency was deduced that the particles became more and more regular in size and morphology, and, gradually, these particles formed into cubic patterns, as shown in Figures 3(b), 3(c), and 3(d). Compared with these TEM data, prolonging the reaction time was helpful to the formation of iron oxides nanocubes.

3.3. FTIR Spectrum. Figure 4 represented the FTIR spectrum between 4000 to 400 cm\(^{-1}\) of \(\alpha-\text{Fe}_2\text{O}_3 \) nanocubes. The peaks
Figure 3: TEM images of Fe₂O₃ nanocubes were prepared at 160°C using 3 mL triethylamine for 1 hour (a), 3 hours (b), 6 hours (c) and 12 hours (d).

Figure 4: FT-IR image of Fe₂O₃ sample at 160°C using 3 mL triethylamine for 24 hours.

caused by the remnant of triethylamine on the surface of particles and the peaks at around 1629 cm⁻¹ were tentatively assigned to the vibration of C–N bond [16]. The peaks at 3134 cm⁻¹ were assigned to the ν(N⁺–H) vibrations [17], and peaks at 3448 cm⁻¹ were assigned to the O–H stretching vibration of absorbed water.

4. Discussion and Conclusion

Iron oxide nanocubes were prepared by a hydrolysis reaction of Fe³⁺ in triethylamine at the temperature of 160°C and the triethylamine provides OH⁻ to form the Fe(OH)₃ deposition. After reacting in hydrothermal environment, the Fe(OH)₃ translated into α-FeOOH through heat decomposition at first, and then the α-FeOOH translated into α-Fe₂O₃ through heat decomposition (Figure 1). With the Fe₂O₃ crystal particles growing, the cubes were formed because triethylamine influenced the growth rate of some crystal faces. Furthermore, the iron oxide cubes’ formation was influenced by reaction time. The formation mechanism and influenced factors of iron oxide cubes will be discussed thoroughly in our further investigation.
In summary, iron oxide nanocubes were successfully synthesized via hydrothermal synthetic route under mild conditions. It is expected that the iron oxide of uniform nanocrystallines may be promoted to some important applications in fields, for example, sensors, magnetic media, and catalytic, and so forth. This synthetic approach provided a simple and economical route to synthesize Nanocrystals. We have also discovered that many of our synthesis techniques could be utilized in the preparation of other nanostructured metal oxides, which will be reported later.

Acknowledgment

This paper was supported by the National Natural Science Foundation of China (Project no. 50774094).

References

Submit your manuscripts at http://www.hindawi.com