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Abstract. 
Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.


1. Introduction
Reactive multilayered materials have recently gained increasing interest in various applications, including joining, brazing, sealing, and ignition of secondary reactions [1–13]. Typically, these materials are fabricated in the form of multilayered foils [13–20] using vapor deposition techniques [13, 14, 21, 22], ball-milling [23–25], and rolling [26]. The former result in films with precisely engineering microstructures, with layering ranging from nanometers to microns. The layers alternate between materials that mix exothermically; their structure is characterized in terms of the bilayer period, 
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, defined as the thickness of a pair of chemically distinct layers, where 
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 is the Al layer half-thickness and 
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 is the ratio of Ni layer thickness to Al layer thickness (Figure 1). For instance, Ni/Al multilayered foils, which fall within the scope of the present study, are routinely made with 
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 in the range of 10–250 nm. For such bilayer values, sustained reactions can be initiated via a localized stimulus (e.g., electric or laser discharge), resulting in self-propagating fronts travelling at speeds ranging from 1 to 20 m/s [13, 21, 27]
























































	
		
		
			
		
	


	
		
		
			
		
	





	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
		
	


	
		
		
		
		
	


	
		
		
	


	
		
	


	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
		
			
		
	


	
		
			
		
			
		
		
			
		
	



Figure 1: Schematic illustration of an idealized compact of five multilayered particles. Note that each particle contains multiple bilayers, but only one is illustrated. The individual layers are assumed to be separated by a premixed region, labeled NiAl, of thickness, 
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. The particles are identical of fixed length 
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 mm. The contact area, 
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, between the particles and thickness 
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 are the same across the compact, but different values are considered in the computations. The flame is initiated at the leftmost particle, with a thermal “spark” of temperature 
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 and width 
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. The grid is schematically shown on the second and third particles. Similar gridding is applied to all particles but is not shown.


One of the advantages of multilayered foils concerns their controlled microstructure, which enables a reaction front with a well-defined velocity, which in many cases can be made insensitive to environmental conditions or boundary conditions imposed by the application [28]. One drawback, however, concerns the fact that, with multilayered foils, it is difficult to achieve sustained reaction fronts with slow propagation velocity, at least without the risk of quenching the reaction. Slow moving fronts may be required for certain applications, including chemical time delays, or in situations where the heating provided by the reactions must be sustained over extended durations. To overcome this drawback, Fritz et al. [29] investigated the self-propagation of exothermic formation reactions within loose compacts of Ni/Al multilayered particles. The particles were fabricated by DC magnetron sputtering onto nylon mesh substrates. The sputtered multilayered coating was broken into particles that matched the size of the mesh elements by bending the mesh under water. The loose particles were then collected and loosely packed into a glass tube. This fabrication method resulted in compacts supporting a self-propagation velocity, that is, substantially smaller than in foils with similar multilayering, and that can be controlled by varying the packing density.
The present study aims at ultimately developing computational models that can predict the behavior of reaction fronts in compacts of multilayered particles and characterize their dependence on the particle distribution and on the layering within individual particles. To this end, in this paper we consider an idealized two-dimensional model of a compact comprising rectangular multilayered particles in thermal contact. The model is used to examine the evolution of self-propagating reactions, particularly as the front traverses neighboring particles. The computations are then used to analyze the dependence of the front velocity on the contact area, the thermal contact resistance, and the number of particles within the idealized compact.
2. Formulation
2.1. Idealized Particle Compact
We will focus primarily on a simplified two-dimensional compact comprising rectangularly shaped, multilayered particles that are in thermal contact. A schematic of a typical configuration is shown in Figure 1. Note that each particle contains multiple bilayers, though only one is shown in the schematic. The particles are assumed to be identically shaped, namely, with width 
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 and thickness 
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, and to have the same internal microstructure. The latter consists of uniform layers alternating between chemically distinct reactant layers that are separated by a thin premixed product region; within each bilayer, a 1 : 1 molar ratio of Al and Ni is assumed. The contact area, 
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, between the neighboring particles is also assumed to be uniform across the compact. This contact area allows the conduction of heat, and if possible the transfer of the reactive front from one particle to the next. In the schematic of Figure 1, five particles are shown for illustration purposes, though a smaller or larger number can be considered.
2.2. Reaction Model
 The evolution of the reaction within the particle compact is analyzed using the reduced model developed in [30–32]. This model, originally developed for a single multilayered solid, is adapted to the present setup by treating individual particles as separate regions, while accounting for thermal conduction through the contact areas.
Within individual particles, the reaction is described in terms of a coarse-grained continuum model, coupling the conservation of energy equation to a mixture evolution equation. Dividing the particle into a finite number of regions or cells, conservation of energy within each cell is expressed in terms of the region-averaged enthalpy equation: 
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The evolution of the mean concentration and its second moment, 
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In the computations below, we assume the local heat flux 
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2.3. Simulation
 The coupled system, (1) and (6), is solved numerically using the finite difference scheme adapted from [31]. In the present implementation, each layered particle is considered as a 
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, are discretized at cell centers, and conservative second-order differences are used to compute fluxes. All other local physical quantities can be readily obtained based on these two field variables. Interparticle mass diffusion is ignored, and adiabatic conditions are imposed on all domain boundaries, expect for contact areas where continuity of temperature and heat flux is imposed. These relationships may be readily generalized by incorporating a simplified model for thermal contact resistance. Specifically, with the present second-order centered difference discretization, the impact of thermal resistance is accounted for by modifying the value of the thermal conductivity at the contact surfaces, namely; according to 
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3. Results
Simulations were conducted to characterize the evolution of reactive fronts within the idealized compacts and to examine their dependence on the properties of the compact. To this end, the particle length is held fixed, 
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The self-propagating reactions are initiated using a thermal spark of temperature 
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 μm. We start by characterizing how the self-propagation front crosses from one particle to another and then characterize the dependence of the reaction front speed on the properties of the compact. As in [32], the 2D front position is tracked through the first moment of the heat release rate:
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 denotes the entire computational domain. For the compacts considered in the present study, the reaction front remains predominantly vertical, and thus we focus exclusively on its 
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 coordinate. Differentiating the latter with time then yields its instantaneous velocity. Unless otherwise noted, perfect thermal contact conditions are assumed.
3.1. Front Propagation in Particle Compact
Figure 2 shows the flame position (
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-direction) versus time for a compact comprising five layered particles of thickness 
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 mm); this corresponds to about half the total reaction time. At the second contact position, a similar delay occurs, though its duration is considerably smaller, approximately 
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 ms. For the subsequent crossovers, the time delay remains nearly the same, approximately 4 ms. It is thus seen that a substantial reduction in the front propagation speed occurs due to the delay in the crossover of the front from one particle to the next. The flame retardation is a manifestation of the nonpremixed structure of the system, and of the fact that the thermal conductivity is several orders of magnitude larger than atomic diffusivity, even at high temperature. This results in a local quenching of the front, as further described below.





















	



	



	
	



	
	



	
	



	
	


	
	


	



	



	



	



	


	



	


	
	




































































	
	
	






















































































	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	


	
		
			
		
		
			
		
		
			
			
			
			
		
	









Figure 2: Flame front position versus time for contact area 
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 μm with perfect thermal contact. The dashed lines indicate the region at the contact area between successive particles.


To further investigate the mechanism of front crossover, we plot in Figure 3 distributions of temperature and heat release rate at selected time instants. Attention is focused on the front crossover between the first and second layered particles. At 
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 ms (Figure 3(a)), the reactive front is clearly located in the middle of the first particle. At this instant, the maximum temperature in the compact corresponds to the flame adiabatic temperature, 
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				a
				x
			

			
				=
				1
				9
				1
				2
			

		
	
 K, and the width of the reaction zone is around 
	
		
			
				1
				0
				0
				𝜇
			

		
	
m. At 
	
		
			
				𝑡
				=
				5
				m
				s
			

		
	
, the front enters the first contact region, as shown in Figure 3(b). A noticeable rise in the temperature of the second particle can also be observed. As heat is lost from the first particle to the second, a slight reduction in the peak temperature occurs, 
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				1
				8
				4
				6
			

		
	
 K. This is accompanied by a dramatic decrease in the peak instantaneous heat release rate, from about 7 MW/m3 at
	
		
			
				𝑡
				=
				1
			

		
	
 ms to about 
	
		
			
				0
				.
				0
				5
			

		
	
 MW/m3 at 
	
		
			
				𝑡
				=
				5
			

		
	
 ms, and a substantial widening of the reaction zone width. Figure 3(c) shows that, at 
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				=
				1
				2
			

		
	
 ms, the reactive front is still located within the contact area. The peak temperature has dropped to 
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				a
				x
			

			
				=
				1
				2
				9
				6
			

		
	
 K. This phenomenon is dependent on the size of the contact area, as illustrated in Figure 4. There appears to be little change in the width of the reaction zone between 
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				=
				5
			

		
	
 ms and 
	
		
			
				𝑡
				=
				1
				2
			

		
	
 ms, though the peak heat release rate has increased to 
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				.
				1
				4
			

		
	
 MW/m3. At 
	
		
			
				𝑡
				=
				1
				3
				.
				6
			

		
	
 ms, the flame front has completely transferred to the second particle, as shown in Figure 3(d). At this time, the maximum temperature (1912 K) and heat release rate (15 MW/m3) once again reach values associated with a steadily propagating front.
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(d)
Figure 3: Instantaneous distributions of temperature in K (left) and local heat release rate in MW/m3 (right) at selected times ((a)–(d)). The contact area 
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				𝑐
			

			
				=
				2
				0
				0
			

		
	
 μm and perfect thermal contact is assumed. Distributions are shown on the front crossover between the first and second particles.






















	



	



	



	
	



	
	



	
	


	
	


	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	



	
	
	
	


	
	
	
	



	
	
	
	


	
	
	
	
	
	
	
	


	


	


	


	


	
		
			
		
		
			
			
			
		
		
			
			
			
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	

Figure 4: Evolution of the maximum temperature within the compact for different values of 
	
		
			

				𝐴
			

			

				𝑐
			

		
	
, as indicated. The results are obtained assuming perfect thermal contact. 


It appears that, for the present configuration, the flame crossover from one particle to the next can be characterized by a front propagation phase that essentially leads to the consumption of the reactants in the first particle, followed by an extended heating phase, and followed by a rapid ignition and the formation of a self-propagating front in the neighboring particle. This succession of regimes is further illustrated in Figure 5(a), which clearly shows that the heat release rate drops to very small values during the heating phase (
	
		
			
				5
				m
				s
				≤
				𝑡
				≤
				1
				2
				m
				s
			

		
	
). Another perspective is provided from section-averaged temperature profiles plotted in Figure 5(b). It is interesting to note that at 
	
		
			
				𝑡
				=
				1
				3
				.
				6
			

		
	
 ms, that is, following the formation of a front in the second particle, heat is being conducted away from the reaction zone in two directions, towards the first particle and towards the third. This phenomenon can be readily appreciated from the nonmonotonic behavior of the corresponding temperature profile; it is due to the sudden rise in heat release rate and the substantial heat loss from the first particle to the second during the heating phase.
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(b)
Figure 5: Instantaneous (a) local heat release rate and (b) temperature profiles at selected time instants for 
	
		
			

				𝐴
			

			

				𝑐
			

			
				=
				2
				0
				0
			

		
	
 μm with perfect thermal contact. The 
	
		
			

				𝑥
			

		
	
-axis spans the first two particles in the compact. The overlap region between the two particles is shown as a dashed curve.


The results obtained for the present configuration indicate that the motion of 