Research Article

Fabrication and Characterization of Manganese Ferrite Nanospheres as a Magnetic Adsorbent of Chromium

Li-Xia Yang,1 Feng Wang,1 Yan-Feng Meng,1 Qing-Hua Tang,1 and Zi-Qi Liu2

1 School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
2 College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Correspondence should be addressed to Li-Xia Yang; yanglx2003@163.com

Received 13 December 2012; Accepted 30 January 2013

1. Introduction

Manganese ferrite is a kind of magnetic materials with cubic spinel structure which have been extensively used in various technological applications. The properties of manganese ferrite highly depend on the composition, morphology, and size, which are strongly connected with the preparation conditions. Up to now, various morphologies and sizes of manganese ferrite have been synthesized. For example, nanoparticles of MnFe2O4 (M = Mn, Co, and Ni) with diameters ranging from 5 to 10 nm have been obtained through a solvothermal method [1]. Zhang et al. reported the preparation of octahedral-like MnFe2O4 crystallites fabricated using a TEA-assisted route under mild conditions [2]. A large number of high-purity Mn1−xZnxFe2O4 nanocrystallites were synthesized and these nanocrystallites oriented aggregation to nanospheres [3]. Hollow spheres and colloidal nanocrystal clusters of MnFe2O4 with similar submicron scales have been synthesized controllably by a solvothermal method through simply adjusting the synthesis microenvironment [4].

Chromium (Cr(VI)), one of the most toxic heavy metals, is usually generated by the electroplating, metal finishing, leather tanning, dye, and textile industries. Trivalent chromium is less toxic than hexavalent chromium which is carcinogenic to living organism [5, 6]. Therefore, Cr(VI) should be removed from aqueous solution in order to protect human health. Adsorption is a simple and effective method in the removal of Cr(VI). Several kinds of materials were used as adsorbents for heavy metal ions, such as zeolite [6], active carbon [7, 8], boehmite [9], activated alumina [10], aluminum magnesium mixed hydroxide [11] and, chitosan [12]. These materials showed good performance for the removal of Cr(VI) from aqueous solutions. However, these kinds of adsorbents suffer from a common problem that it needs a next separation process from the solution, which will increase the operation cost. In order to avoid this problem, some researchers have find that magnetic materials can be a promising candidate to be easily separated from solution through a magnetic field [13, 14], which is convenient for the separation of adsorbents from aqueous solution.

Magnetic adsorbent can provide a quick and effective route for magnetic separation from an aqueous solution. Various applications have been carried out by using magnetic materials in environmental protection [15], catalytic chemistry [16], and drug delivery [17]. In this paper, the application of magnetic separation technology was employed to solve environmental problem. Although nanoparticles usually showed a high surface area, the magnetic respond was low. In this case, nanospheres constructed by nanoparticles have a high surface area; at the same time, magnetization is high...
enough for separating the adsorbent from aqueous solution in a few seconds.

2. Experimental

2.1. Preparation of Manganese Ferrite Nanospheres. All reagents are analytically pure and used as-received without further purification. In a typical experiment, 4 mmol FeCl$_3$·6H$_2$O and 2 mmol MnCl$_2$·4H$_2$O were dissolved in 50 mL of ethylene glycol using magnetic stirring under room temperature. 5 mL ethanolamine was added to the above solution and followed by magnetic stirring to form a homogeneous solution. Then, this solution was transferred into a Teflon-lined stainless steel autoclave for hydrothermal treatment at 200°C for 24 h. After the autoclave was allowed to cool down to room temperature naturally, the solid products were collected by centrifugation, washed separately with distilled water and ethanol for several times, and then dried in an oven at 60°C before characterization and application.

2.2. Characterization. X-ray diffraction (XRD, Rigaku D/max 2500 VPC, Japan) was used to analyze the composition and crystal structure of the prepared products. The shapes of the products were characterized by transmission electron microscopy (TEM, JEM-1230, Japan) and scanning electron microscope (SEM, Hitachi S4800, Japan). N$_2$ adsorption and desorption isotherm was measured on a Micromeritics ASAP-2020 nitrogen adsorption apparatus (USA). Magnetic property data were collected with a quantum design physical property measurement system (PPMS). The absorption spectra of the solutions were obtained on a UNIC 7200 spectrophotometer (China).

2.3. Adsorption of Cr$^{6+}$. Adsorption experiments were carried out with a desk-type constant temperature oscillator (SHA-CA, China) at 25°C at a rate of 200 r/min. 0.1 g Mn ferrite adsorbent was added in 50 mL chromium(VI) solution (100 mg/L) prepared by dissolving required amount of potassium dichromate ($K_2Cr_2O_7$) in distilled water. Chromium(VI) concentrations were measured by 1,5-diphenylcarbazide spectrophotometric method. The sorption kinetics was investigated. After shaking for various time intervals, the suspensions were separated with a magnet in a few seconds. The equilibrium concentrations of chromium...
Figure 2: EDAX spectrum of manganese ferrite sample.

Figure 3: Nitrogen adsorption-desorption isotherms and the inset—the BJH pore-size distribution of manganese ferrite product prepared at 200 °C for 24 h.

Figure 4: The magnetization hysteresis of manganese ferrite nanospheres at room temperature.

The removal percentage (R%) of chromium was calculated using the following equation:

\[(R\%) = \frac{C_i - C_e}{C_i} \times 100, \]

where \(C_i \) and \(C_e \) are the initial and equilibrium concentrations of chromium.

3. Results and Discussion

The powder XRD pattern of the product synthesized at 200 °C for 24 h using 5 mL ethanolamine is depicted in Figure I(a). Crystalline nature can be derived from the appearance of sharp diffraction peaks in the XRD pattern prepared by the solvothermal method, which can be well indexed to a pure cubic phase of spinel manganese ferrite (JCPDS Card no. 38-0430). Morphology of the sample is studied by TEM and SEM. The SEM image of sample shows that the diameters of most of the spheres are in the range of 200–400 nm. The surface roughness demonstrates the formation of a ferrite sphere via the construction of nanoparticles (Figures I(b) and I(c)). Careful observation from an enlarged spheres, as shown in Figure I(d), can further confirm the assembly of nanoparticles.

Figure 2 was the EDAX spectrum of the obtained manganese ferrite sample. The result shows that the as-prepared manganese ferrite nanospheres contained Fe, O and Mn, and no contamination element is detected. The atomic ratio of Fe:Mn is about 5.5, indicating that the chemical formula of the as-synthesized Mn ferrite is nonstoichiometric in nature.

Figure 3 shows the nitrogen adsorption-desorption isotherm and pore-size distribution curve of manganese ferrite nanospheres. Manganese ferrite nanospheres exhibit a type IV isotherm with an H3 type hysteresis loop, namely, typical hysteresis loops of mesoporous materials. Moreover, a sharp peak at 7 nm can be observed in the Barrett-Joyner-Halenda (BJH) pore-size distribution curve (the inset of Figure 3), which further demonstrates the existence of...
The relationship between contact time and chromium adsorption onto Mn ferrite is shown in Figure 5. The adsorption increased from the beginning to 60 min, and the removal percentage increased to 35% at a contact time of 60 min. With a further increase in time, the adsorption approached to equilibrium in all the cases. The fast adsorption at the initial stage is probably due to the increased concentration gradient between the adsorbate in solution and adsorbate in adsorbent as there must be increased number of vacant sites available in the beginning. The attainment of equilibrium adsorption may be due to limited mass transfer of the adsorbate molecules from the bulk liquid to the external surface of ferrite. As shown in the inset of Figure 5, manganese ferrite nanospheres were attracted toward the magnet within 10 s, demonstrating directly that manganese ferrite nanospheres could be easily separated from wastewater by applying a magnetic field.

4. Conclusion

In summary, the solvothermal method has been used to successfully synthesize manganese ferrite nanospheres with high magnetization. This approach developed a simple and efficient route to fabricate manganese ferrite nanospheres in large scale. The maximum saturation magnetization value of the product is 75 emu/g, which showed a magnetic manipulation of chromium in wastewater.

Acknowledgments

The authors are grateful for the financial support by National Natural Science Foundation of China (no. 51102128 and no. 20904018), the Applied Project of Yantai City (no. 2008308), the Foundation of Innovation Team Building of Ludong University (08-CXB001), and Shandong Province Natural Science Foundation (ZR2011EL005).

References

