Research Article

High Photocatalytic Activity of Fe$_3$O$_4$-SiO$_2$-TiO$_2$ Functional Particles with Core-Shell Structure

Chenyang Xue, Qiang Zhang, Junyang Li, Xiujian Chou, Wendong Zhang, Hua Ye, Zhanfeng Cui, and Peter J. Dobson

1 Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China
2 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX12JD, UK

Correspondence should be addressed to Chenyang Xue; xuechenyang@nuc.edu.cn

Received 16 October 2013; Accepted 3 November 2013

Academic Editor: Hui Xia

Copyright © 2013 Chenyang Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes a novel method of synthesizing Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional nanoparticles with the core-shell structure. The Fe$_3$O$_4$ cores which were mainly superparamagnetic were synthesized through a novel carbon reduction method. The Fe$_3$O$_4$ cores were then modified with SiO$_2$ and finally encapsulated with TiO$_2$ by the sol-gel method. The results of characterizations showed that the encapsulated 700 nm Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles have a relatively uniform size distribution, an anatase TiO$_2$ shell, and suitable magnetic properties for allowing collection in a magnetic field. These magnetic properties, large area, relative high saturation intensity, and low retentive magnetism make the particles have high dispersibility in suspension and yet enable them to be recovered well using magnetic fields. The functionality of these particles was tested by measuring the photocatalytic activity of the decolouring of methyl orange (MO) and methylene blue (MB) under ultraviolet light and sunlight. The results showed that the introduction of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional nanoparticles significantly increased the decoloration rates so that an MO solution at a concentration of 10 mg/L could be decoloured completely within 180 minutes. The particles were recovered after utilization, washing, and drying and the primary recovery ratio was 87.5%.

1. Introduction

Nanoparticles could find their uses in many important industrial processes [1–3]. One of these could be the treatment of chemicals [4] and biological molecules [5] in wastewater. Specifically titania can catalyse the decomposition of a wide range of chemicals such as azo dyes [6, 7], aromatic compounds [8], and endocrine disruptors [9]. The properties of titania, which is well known for the high productivity of hydroxyl free radicals when exposed to ultraviolet light, low toxicity, and low cost [10, 11] make it a popular choice in wastewater treatment.

One of the main obstacles to the application of nanoparticles in industrial applications is the concern of the release and the fate of the nanoparticles in the environment. It is hence desirable to retain and recover the nanoparticles in such applications, particularly, in wastewater treatment. One approach would be to introduce superparamagnetic properties and hence to recover the nanoparticles using magnetic fields [6, 12, 13]. The magnetic composite photocatalyst can be magnetically agitated by an alternating magnetic field in a suspension system [14]. In this way, the superparamagnetism of nanoscale Fe$_3$O$_4$ particles makes it a suitable material.

The technical challenge here is coupling the Fe$_3$O$_4$ to SiO$_2$ with TiO$_2$ exposed as the outer surface to provide the catalytic sites and Fe$_3$O$_4$ as the core for magnetic separation and recovery [15]. This has proved to be difficult due to the fact that the photocatalytic activity of the nanoparticles shows a decline when the magnetic cores experience photodissolution [16].

In this paper, a novel approach to synthesize three-layer core-shell nanoparticles is described. Between the Fe$_3$O$_4$ core and outside surface TiO$_2$ layer, an SiO$_2$ layer is introduced to avoid the interaction between the two layers and inhibit photodissolution of the core. The inert SiO$_2$ acts as a barrier
for both electrons and holes and blocks any photoexcitation effects from the iron oxide, and it prevents the iron oxide from scavenging excited carriers from the titania [13, 17–19]. The resulting nanoparticles were characterized with TEM, XRD, differential light scattering, ultraviolet visible absorption spectroscopy, and VSM and the activity as a photocatalyst was tested by the decolouring of MO as an assay method. The particles showed significantly higher catalytic activity than that of the pure TiO₂ particles under visible light irradiation.

2. Materials and Methods

2.1. Synthesis of Core-Shell Structure Fe₃O₄-SiO₂-TiO₂ Functional Particles

Materials. Ferric chloride, tetraethoxysilane (TEOS), tetra-butyl orthotitanate (TBOT), ethanol, hydrochloric acid, nitric acid, MO, and MB (AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). P25 is a mixture of anatase (80%) and rutile (20% TiO₂). P25 was purchased from Evonik Degussa (Germany).

Protocols. Ferric chloride and carbon were used as reactants in a ratio of 1 : 3 to obtain the Fe₃O₄ superparamagnetic particles after heating at 400°C for 3 hours under 0.2 torr vacuum conditions. A tube furnace (OTF-1200X-III) from KJ Group (Hefei, China) was used to keep the reactants at this temperature. After the solid product was milled using an agate mortar 700 nm Fe₃O₄ particles were obtained. The carbon acts as a reducing agent and protector in this reaction. A part of the Fe³⁺ of ferric chloride is reduced to Fe²⁺, and Fe₃O₄ is generated under low oxygen conditions in this way. An excessive amount of carbon produces a carbon coating around the Fe₃O₄ particles; the Fe₃O₄ particles can be protected from being oxidized to Fe₂O₃ in this way. TEOS, hydrochloric acid, ethanol, and deionized water were mixed in a ratio of 4.6 : 0.5 : 12.3 : 1 to obtain an SiO₂ suspension. The solution was mixed with fast stirring and the water must be added last. Deionized water of 18.25 MΩ was purified through Ultrapure (UPR) System which was purchased from Ultrapure Water Visible Ltd. The 10 g of Fe₃O₄ particles were put into the oven with the SiO₂ solution. After ultrasonication for half an hour, the SiO₂ solution was used to coat around the surface of the Fe₃O₄ particles. After further reaction for three hours at room temperature, the wet particles were calcined at 500°C for 2 hours so that the SiO₂ was encapsulated around the Fe₃O₄ particles. The Fe₃O₄-SiO₂ particles were obtained in this way. Then, the Fe₃O₄-SiO₂ particles were encapsulated with TiO₂ through the following steps: the 10 g of particles were put into a beaker with 100 mL solution whose ratio of TBOT, nitric acid, alcohol, and deionized water was 30.3 : 0.6 : 12.5 : 1 with continuous stirring. A multifunctional magnetic stirrer (MPL-CJ-88) was used to stir and heat the solution (Jintandadi Automation Factory, Zhejiang, China). The beaker of solution and 10 g of particles (the obtained TiO₂ solution is about 150 mL) were ultrasonicated using ultrasonic bath (KQ-2500DE) from Ultrasonic Instrument Co., Ltd.), and then it was stirred for 30 min. The wet particles were heated at 500°C for 2 h after reacting for three hours. After milling using an agate mortar the Fe₃O₄-SiO₂-TiO₂ particles were finally obtained.

Characterization. The particles of Fe₃O₄, Fe₃O₄-SiO₂, and Fe₃O₄-SiO₂-TiO₂ were characterized by XRD and TEM. The components of the particles were measured by XRD advanced X-ray diffraction system (a Bruker D8) using Cu K radiation of wavelength 1.5406 Å. The particle shapes and sizes were characterized by TEM measurements (JEOL JEM-1200EX). The working voltage is 120 kV. The particles were put into ethanol and sonicated for half an hour and several drops of the ethanol suspension were dropped onto a carbon-coated copper electron microscope grid. The particles’ size distribution was measured using a Malvern Mastersizer. The ultraviolet visible absorption spectra were measured with a UV-Vis-NIR Spectrophotometer 5000 (Varian). Magnetic properties were characterized on a Lake Shore 7307 Vibrating Sample Magnetometer.

Catalytic Activity Assay. In order to check the photocatalytic effects, 10 mg/L MO or MB were mixed with 0.2 g of P25 particles or the synthesized Fe₃O₄-SiO₂-TiO₂ particles under ultraviolet and visible light, respectively. Before light irradiation, the MO or MB molecules must be absorbed by the core-shell particles completely. The MO or MB solution with the core-shell particles was put into a dark place for 48 hours before the photocatalysis. An ultraviolet light (TL-K 40W/05, Philips) is used to irradiate the reactant. After centrifuging the particle suspension, the absorbance (A) of the solution treated for some time was measured. A high-speed desktop centrifuge (TGL-16K Zhuhai Black Horse Medical Equipment Co., Ltd.) was used to centrifuge the particles and the treated solution to avoid the particles affecting the absorbance of the solution. The absorbance of the solution degenerated with time and the decoloration rate was calculated via the following equation:

\[D = \frac{A_0 - A_t}{A_0} \times 100\% \]

where D is decoloration rate and A₀ and Aₜ represent the initial absorbance and the absorbance at particular time.

3. Results and Discussion

3.1. Characterization of the Fe₃O₄-SiO₂-TiO₂ Particles

3.1.1. Particles’ Components. Figure 1 shows the XRD spectra of the Fe₃O₄ particles, Fe₃O₄-SiO₂ particles, and Fe₃O₄-SiO₂-TiO₂ particles. The XRD spectrum of the Fe₃O₄ particle sample is shown as curve (a). The phases of Fe₃O₄ and α-Fe₂O₃ exist in the sample, which is illustrated by curve (a). This suggests that the Fe₃O₄ particles sample is partly oxidized. Curve (b) shows the XRD spectrum of Fe₃O₄-SiO₂ particles. The characteristic peaks of α-Fe₂O₃ cannot be seen in curve (b) when comparing with curve (a). This suggests that the Fe₃O₄ particles are prevented from being oxidized by
the SiO₂ surface coating. There is a broad envelope between 20° and 30°, which is suggestive of the presence of amorphous silica in the sample.

The XRD spectrum of Fe₃O₄·SiO₂·TiO₂ particles is shown as curve (c). The magnitude of the characteristic peaks suggests that the amount of the anatase phase of TiO₂ is large. Meanwhile, the crystal form of the magnetite nucleus is still Fe₃O₄. Therefore, the particles are still probably superparamagnetic or ferromagnetic in nature. It is clear that the magnitudes of the Fe₃O₄ characteristic peaks decrease sequentially from curve (a) to curve (c). This is suggestive that the successive coatings around the Fe₃O₄ shield the cores from the X-rays and this behavior is consistent with our assumption that the Fe₃O₄·SiO₂ particles were encapsulated well by a TiO₂ layer.

Particle Morphology. Fe₃O₄ particles, Fe₃O₄·SiO₂ particles, and Fe₃O₄·SiO₂·TiO₂ particles were characterized by TEM. Figure 2 shows the TEM images of these three samples.

Figure 2(a) is the TEM image of the Fe₃O₄ particles. It is shown that cubic particles of about 700 nm dimension were obtained by our procedure. There is still some evidence of carbon around the particles. The carbon can protect Fe₃O₄ particles from oxidizing to Fe₂O₃. This result shows that cubic shaped Fe₃O₄ particles were obtained through the high temperature reduction method. Figure 2(b) is the TEM image of Fe₃O₄·SiO₂ particles. It can be seen that there is a very thin layer around the dark contrast Fe₃O₄ particles which can be seen clearly in Figure 2 and this is probably the SiO₂ layer. It seems that the dispersion of the Fe₃O₄·SiO₂ particles is better than the Fe₃O₄ particles. The TEM image of Fe₃O₄·SiO₂·TiO₂ particles is shown as Figure 2(c). It is clear that the Fe₃O₄·SiO₂ particles were encapsulated by a TiO₂ layer which is composed of many little spherical particles. The results show that the layer-by-layer Fe₃O₄·SiO₂·TiO₂ functional particles have been made successfully.

3.1.2. Size Distribution and Specific Area. Figure 3 shows the size distribution spectrum of the final Fe₃O₄·SiO₂·TiO₂ particles. The results demonstrate that the average size is around 700 nm with a very big spread of sizes. The photocatalysis efficiency of the Fe₃O₄·SiO₂·TiO₂ particles is closely related to the specific area. The characterization result shows that the BET surface area of the composite Fe₃O₄·SiO₂·TiO₂ particles is 55 m²/g ± 2% while the BET surface area of the P25 is 42 m²/g ± 2%. This suggests that, despite the large overall size, the titania formed a rough and high area surface distributed around the particles and this was confirmed in Figure 2(c). That is the reason why our particles have a relatively large specific area and this in turn is expected to lead to higher photocatalysis efficiency.

Magnetic Properties. The magnetization behavior shown in Figure 4 indicates that the saturation intensity of the Fe₃O₄·SiO₂·TiO₂ particles is 46.5 emu/g. The result illustrates that the saturation intensity of the particles is large when compared with the particles size. The retentive magnetism of the Fe₃O₄·SiO₂·TiO₂ particles is 7.7 emu/g. The result shows that the saturation intensity of the Fe₃O₄·SiO₂·TiO₂ particles is large enough to enable the particles to be recovered magnetically. Meanwhile, the retentive magnetism of the particles is small enough, so that the particles can be dispersed without agglomeration. These samples appear to have a mixture of ferrimagnetic and superparamagnetic properties, with only a slight indication of hysteresis.

3.1.3. Absorption Spectra. Figure 5 shows the ultraviolet visible absorption spectra of the Fe₃O₄·SiO₂·TiO₂ particles and P25 pure TiO₂ particles. The absorption spectrum of P25 has a strong peak between 200 and 400 nm, corresponding to the band edge absorption of light by titania. The absorption spectrum of the Fe₃O₄·SiO₂·TiO₂ particles has a broad absorption across the whole of the visible spectrum. Evidently, the introduction of the Fe₃O₄ core makes the core-shell particles’ absorption spectrum better match with the visible spectrum [13]. This is consistent with the fact that magnetite has a very small energy gap of around 0.1 eV. This result suggests that the Fe₃O₄·SiO₂·TiO₂ particles obtained in this work might be suitable to have high photocatalysis efficiency in the visible part of the spectrum.

To summarize, the Fe₃O₄·SiO₂·TiO₂ particles (~700 nm) with core-shell structure have a relatively uniform size distribution and have enough anatase TiO₂ shell thickness and suitable magnetic properties to be used for this project to have a recoverable particle that can be used to photocatalyse the degradation of contaminating molecules. Moreover, the novel structure that the introduction of the Fe₃O₄ core provides makes the core-shell particles’ absorption spectrum match better with the visible spectrum.

3.2. Photocatalytic Activity. Figure 6 shows the relationships between irradiation time and decoloration rate of the methyl orange solution treated by P25 particles, Fe₃O₄·SiO₂·TiO₂ particles and no particles under ultraviolet light. The decoloration rates of the MO solution are 71% and 90%, respectively, for the P25 particles, and Fe₃O₄·SiO₂·TiO₂ particles.
after 180 minutes of UV light irritation, while the decoloration rate of the MO solution without any particles is 4%. The photocatalytic activity of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles is a little higher than that of P25 under ultraviolet light irradiation, which is illustrated by the curves in Figure 6. The decline after 90 min in the P25 degradation curve can be seen clearly while the activity of the core-shell particles is increasing gradually. This performance suggests that the catalytic persistence of these particles is better than that of P25.

The relationships between irradiation time and decoloration rate of the methyl orange solution treated by P25 particles, Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles, and no particles under visible light are shown in Figure 7. The decoloration rates of the MO solution are 25% and 93%, respectively, for the P25 particles and Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles after 180 minutes of visible light irritation. The decoloration rates of the P25 particles under visible light irritation are always
about 20% in this work, which is shown as Figure 7. The results of Figures 6 and 7 are consistent with the suggestion inferred from Figure 5 that the Fe₃O₄-SiO₂-TiO₂ functional particles should have high photocatalysis activity under the longer wavelength light. Furthermore, the pure P25 TiO₂ particles cannot easily be recovered after the experiments. Due to the magnetism of the Fe₃O₄-SiO₂-TiO₂ functional particles, at least 0.175 g particles can be recovered from the original 0.2 g that were used giving a recovery ratio of 87.5%. Comparing Figure 6 with Figure 7, the photocatalytic activity of the Fe₃O₄-SiO₂-TiO₂ functional particles under visible light irradiation is higher than that under ultraviolet light irradiation and this should have important consequences for future applications.

\[
\ln \left(\frac{A_0}{A} \right) = K_{\text{app}} t, \tag{2}
\]

where \(K_{\text{app}} \) is apparent rate constant, \(A \) is the solution-phase absorbance of MO, and \(A_0 \) is the initial absorbance of the MO solution. The corresponding linear transforms in \(\ln(A_0/A) \) as a function of irradiation time are given in Figure 8(b). From the figure, we can obtain the apparent rate constant for the degradation process by the particles irradiated by different light. The values are 0.0124 and 0.0120 min⁻¹ for the degradation of the MO by these particles under UV light and visible light, respectively. The results show that the reaction rates are almost the same under UV light and visible light irradiation.

Under normal circumstances, the electrons of TiO₂ cannot be excited under visible light, but composite particles of visible light absorbing phenomenon are found in the experiment and this internal mechanism is described in Figure 9. Figure 9 is the diagram of the energy band of the Fe₃O₄-SiO₂-TiO₂ core-shell nanoparticles, plotted by the relative layer thickness on the horizontal axis and the relative energy band gap on the vertical axis. The TiO₂ band gap is
of the MB solution are 5.3%, 7.9%, and 88.1%, respectively for the P25 particles, SiO$_2$-TiO$_2$ particles, and Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles after 16 hours of visible light irradiation. The highest decoloration rate of the P25 particles under visible light irradiation is 5.3% in this work, which demonstrates that the pure TiO$_2$ particles cannot effectively catalyse the MB under visible light irradiation. The SiO$_2$-TiO$_2$ particles' highest decoloration rate under visible light irradiation is 8.7% in this work. These results show that the introduction of the SiO$_2$ is not the reason why the core-shell Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles can photocatalyse the MB under visible light irradiation.

The results of Figures 6, 7, 8, and 10 are consistent with the suggestion inferred from Figure 5 that the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles should have high photocatalytic activity under the longer wavelength light. Furthermore, the pure P25 TiO$_2$ particles cannot easily be recovered after the experiments. Because of the magnetic properties of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles, at least 0.35 g particles can be recovered from the original 0.4 g that were used giving a recovery ratio of 87.5%. Comparing Figure 6 with Figure 7, the photocatalytic activity of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles under visible light irradiation is almost the same as that under ultraviolet light irradiation. This phenomenon is also demonstrated by the kinetic curves in Figure 8(b). This result should have important consequences for future applications. The results of Figures 7 and 10 illustrate the high photocatalytic activity of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles in degrading dyes molecules under visible light irradiation.

The key role Fe$_3$O$_4$ cores play in the visible light photocatalysis of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles is demonstrated by Figure 10. The ultraviolet visible absorption spectra of Fe$_3$O$_4$ and Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles in Figure 10(a) illustrate that...
the magnetic core makes the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ particles active under visible light irradiation. In the SiO$_2$-TiO$_2$ experiment, this point is confirmed. Figure 10(b) demonstrates that the composite particles without magnetic core only obtain 7.9% degradation in visible light. So Figure 10 shows that the visible light absorption is extremely based on the magnetic core.

The specific degradation mechanism is that the MB is reduced by photoexcited electrons via a series of processes. In accordance with the new understanding, the composite structure is rather special, which is formed by three different semiconductors. Visible light passes through the TiO$_2$ and SiO$_2$ layer and excites the electrons from the internal magnetite core [20]. Then the SiO$_2$ middle layer is formed after calcining precursor which is prepared by sol-gel method and the layer may crack somewhere or generate uneven film [21], leading to the thickness of SiO$_2$ layer partly reaching angstroms level. We know that the energy of incident visible light is 1.8 eV and the energy of excited electrons from Fe$_3$O$_4$ is 1.7 eV, while the barrier height of SiO$_2$ is 8.9 eV. When the conditions of energy and thickness are met, the electrons in Fe$_3$O$_4$ excited by the visible light can eventually tunnel through the SiO$_2$ layer with a large probability [22, 23]. Then the electrons drop into the conduction band of the titania and hence escape into the surrounding liquid. Further they interact with the lowest unoccupied molecular orbital (LUMO) of the MO and thus chemically reduce that molecule.

4. Conclusions

In this paper we have presented a novel method of synthesizing Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional nanoparticles with core-shell structure. The Fe$_3$O$_4$ cores were synthesized through a novel carbon reduction method. The recovery problem of titania-based photocatalytic particles can be solved by introducing these superparamagnetic/ferrimagnetic cores. An SiO$_2$ layer has been introduced successfully between the two layers, which makes the three-layer core-shell nanostructure more stable. The core-shell nanoparticles have been characterized by TEM, XRD, particle size measurement, ultraviolet visible absorption spectroscopy, and magnetic characterizations, respectively. All the results are consistent and show that the 700 nm Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles with a core-shell structure are photocatalysts and recoverable. The results for the decoloration of methyl orange show that the introduction of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional particles has a significant photocatalytic effect in breaking down the 10 mg/L MO by 90% and 93% under UV light and visible light over 180 minutes, while the P25 particles have very low activity under visible light irradiation. Moreover, the approximate core-shell functional particles can be recovered after use, and the primary recovery ratio is 87.5%. The mechanism of the visible light is dedicated in this paper, and the experiment results show that the magnetic core plays an irreplaceable role in the photocatalytic processes. The high photocatalytic activity of the Fe$_3$O$_4$-SiO$_2$-TiO$_2$ functional
particles under visible light makes them attractive for large scale industrial applications.

Acknowledgments

This work is supported by the Natural Science Foundation (Grant no. 2010101013-2) and the International Co-operation Program of Science and Technology Agency (Grant no. 2010081024) of Shanxi province, China.

References

