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Two-dimensional TiO
2
nanosheet films with visible light trapping nanostructures were successfully fabricated by alkali hydro-

thermal reaction using Ti sheet as precursor. Metallic Au nanoparticles (NPs) were then deposited on the surface of TiO
2
film

through a microwave-assisted reduction process. The investigations reveal that the localized surface plasmon resonance (LSPR)
of Au NPs is greatly enhanced by the overlapped light harvesting nanostructures between TiO

2
film and Au NPs, resulting in an

enhanced LSPR-absorption with two peaks at 389 nm and 540 nm.The photocatalytic performance of the samples was evaluated by
degradation of methylene blue (MB) as a model pollutant. The experimental results indicate that the photocatalytic performance
of TiO

2
is greatly promoted by a synergetic effect between the overlapped light harvesting nanostructures and the improved charge

carrier separation processes. The MB degradation over the optimal sample is much faster than that of pure TiO
2
film by a factor

of 3.0 and 5.7 under UV light and UV + visible light irradiation, respectively. This study provides a simple strategy to develop
film-shaped plasmonic photocatalysts with high efficiency.

1. Introduction

Since the discovery of hydrogen evolution by photoinduced
water splitting over TiO

2
electrode [1], semiconductor-based

photocatalysis has attracted great attention in the field of
solar energy conversion and environment remediation [2–9],
and considerable efforts have been dedicated to the design of
various semiconductor photocatalysts with improved perfor-
mance. TiO

2
-based semiconductors with good chemical sta-

bility and environmental-friendly features have received far
more attention in the field of photocatalytic water splitting,
reduction of CO

2
with H

2
O to form hydrocarbon fuels, and

wastewater treatment by photodegradation of organic pollu-
tants [10–15]. However, its utilization is negatively affected by
the high recombination probability of photoexcited electron-
hole pairs and its relatively large band gap (Eg = 3.2 eV).
The latter makes TiO

2
without visible light (𝜆 > 400 nm)

activity, resulting in a poor solar energy utilization. As a
consequence, intense research activities have been devoted
to the development of visible light active TiO

2
with high

photocatalytic efficiency, such as surface photosensitization,
element doping, semiconductor combination, and structural
control [16–28].

In 2008, Awazu et al. observed that the photocatalytic
behavior of TiO

2
was greatly boosted by the localized surface

plasmon resonance (LSPR) of Ag NPs during photocatalytic
decomposition of methylene blue (MB) [29]. The enhance-
ment is attributed to the enhanced near-field amplitudes of
LSPR from Ag NPs. This enhanced near field could boost
the excitation of electron-hole pairs in TiO

2
and result in

an improved photocatalytic activity. It immediately sparked
a surge of research into plasmonic photocatalysis, especially
noble Ag and Au contained systems [30–38]. Further investi-
gations reveal that the localized surface plasmonic resonance
and the Schottky junction are two prominent features of
plasmonicmetal/semiconductor composites [39].The former
contributes to the strong absorption of visible light and
the excitation of active charge carriers, whereas the latter
facilitates charge separation and transfer, and they work
together to achieve higher photocatalytic efficiency.
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Although much work has been done to investigate LSPR-
enhanced photocatalysis, the enhancement mechanism is
still under debate. Jose et al. observed that the localized
electric field created by Au NPs could not induce charge
carriers in the near-surface region of TiO

2
, because the LSPR-

absorption of AuNPs does not overlap with the TiO
2
absorp-

tion [40]. The LSPR-absorption band of Au NPs is usually
larger than 500 nm, and the overlap between the absorption
of TiO

2
and LSPR-absorption of Au NPs is very weak,

leading to a relative poor photocatalytic activity. Ingram et al.
observed that N-doping could improve the optical overlap
between TiO

2
andAgNPs, andAg-loadedN-TiO

2
composite

exhibited much higher visible activity [41, 42]. Later, an
enhanced photocurrent in a thin-film iron oxide photoanode
coated on arrays of Au nanopillars was observed by Gao et al.
[43]. The enhancement was attributed primarily to the
increased optical absorption originating from both surface
plasmon resonances and photonic-mode light trapping in the
nanostructured topography. Their study provides an appli-
cable solution to concentrating light in the active regions of
semiconductors. In order for efficiency energy and charge
transfer to take place between the metal NPs and the sem-
iconductor photocatalyst, it is important that the spectral
enhancement of the metal NPs overlaps with the spectrum
absorption of the semiconductor photocatalyst.This is crucial
factor for reaching maximum plasmon enhancement [41]. To
the best of our knowledge, the investigation on enhanced light
trapping in metal/semiconductor systems has not received
much attention.

In this work, Au/TiO
2
nanosheet film was successfully

fabricated through a joint hydrothermal method and micro-
wave-assisted reduction process. This film-shaped photocat-
alyst can eliminate the necessity of inconvenient filtration
processes required by powdered catalysts, suggesting attrac-
tive perspectives for on-site utilization. More importantly, an
overlapped light harvesting phenomenon was observed in
Au/TiO

2
composite film due to the unique nanostructures of

TiO
2
film and LSPR of AuNPs.We found that the overlapped

light harvesting nanostructures can greatly enhance the
LSPR-absorption of Au NPs and improve the photocatalytic
activity of Au/TiO

2
system.

2. Experiment

2.1. Preparation of Au/TiO2 Nanosheet Films. Au/TiO
2

nanosheet films were fabricated through a joint hydrother-
mal method and microwave-assisted reduction process. The
detailed experimental process is shown in Figure 1. First,
TiO
2
film was obtained via a one-step hydrothermal method

described in our previous study [44]. In detail, surface
polished Ti sheet (99.5% purity, 2.1mm × 4.2mm × 0.5mm)
was immerged and sealed in a 100mL Teflon-lined vessel
containing NaOH aqueous solution (50mL, 1mol⋅L−1) and
thenmaintained at 180∘C for 24 h. Subsequently, the sheet was
cleaned with water and immerged in 0.25 wt% HCl aqueous
solutions for 24 h and thenwashedwithwater again. Finally, it
was annealed at 450∘C for 2 h to obtain TiO

2
nanosheet film.
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Thermal reaction
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Acid treated by
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Na2Ti2O4(OH)2 sheet

TiO2 nanosheet film
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DEG (20mL)
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Microwave-assisted
reduction process

140
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HAuCl4·4H2O
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Ti sheet (99.5% purity) + PVP (K30, 0.5 g) +

Figure 1: The detailed preparation process of Au/TiO
2
composite

films.

Au NPs were deposited on the surface of TiO
2
film by a

microwave-assisted reduction process in PVP-DEG solution
medium inspired by Park’s work [29]. First, polyvinylpyrroli-
done (PVP) was dispersed in diethylene glycol (DEG) and
stirred vigorously to give a transparent solution (solution A).
Meanwhile, HAuCl

4
⋅4H
2
O was dissolved in water and kept

stirring in dark for use (solution B). Subsequently, solution
B was poured into solution A and kept stirring for 20min to
obtain solution C. Thereafter, pure TiO

2
film was immerged

into the above solution C, and then they were exposed to
microwave irradiation. Finally, Au/TiO

2
film was obtained

after washing the sheet with water and ethanol for several
times. The obtained samples were denoted as 𝑥Au/TiO

2
,

with 𝑥 representing the millimolar concentration of Au3+ in
reaction solution. In this work, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6
Au/TiO

2
films were prepared by changing the concentration

of HAuCl
4
⋅4H
2
O precursor.

2.2. Characterizations and Photocatalytic Activity Test. The
crystalline phases and morphologies of the samples were
characterized by a ShimadzuXRD-6000 powder diffractome-
ter and a scanning electron microscopy (SEM, JEOL JSM-
6390A).TheUV-Vis diffuse reflectance spectra were obtained
on a Shimadzu UV-3600 UV/vis/NIR spectrophotometer
with an integrating sphere detector, and BaSO

4
was used

as the reflectance standard material. Besides, photolumi-
nescence (PL) spectra were investigated on Hitachi F-7000
florescence spectrophotometer. X-ray photoelectron spec-
troscopy (XPS) was performed by Kratos AXIS NOVA spec-
trometer. Photocatalytic degradation of MB was carried out
in an outer irradiation-type quartz reactor, which irradiated
using a 300W Xe-lamp (Beijing Perfectlight Technology Co.
Ltd., China, Microsolar300UV, ultraviolet light: 6.6W, visible
light: 17.6W, and the light flux about 3400 lm). Two filters
were employed to achieve UV light (UVREF, 𝜆 < 400 nm)
and visible light (UVCUT400, 𝜆 > 400 nm) irradiation,
respectively. The system was shielded by a black box during
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Figure 2: XRD patterns of the samples.

the reaction to prevent interference from outside light. The
filmwas immerged in 100mLMB aqueous solution (10mg/L,
the pH value of MB solution is about 6.3) and air was
bubbled through the system continuously. It was kept in the
dark for 1 h prior to irradiation for establishing adsorption-
desorption equilibrium. At different times, the absorbance
of MB solution was determined using a Shimadzu UV-3600
spectrophotometer. The concentration variation of MB was
obtained according to the concentration-absorbance rela-
tionship (𝜆 = 664 nm).

3. Results and Discussion

3.1. Characteristics of the Photocatalysts. The crystalline
phases of the samples were investigated by XRD (Figure 2).
All the peaks can be indexed using the Ti substrate (JCPDS
fileNo: 65-6231), anatase TiO

2
(JCPDS fileNo: 21-1272), rutile

TiO
2
(JCPDS file No: 21-1276), and metallic Au (JCPDS file

number: 65-2870), respectively. The content of rutile TiO
2
is

very low and it has very little effect on the UV-Vis absorption
of TiO

2
(see Figure 5). Besides, the introduction of Au NPs

does not affect the phase structure of TiO
2
film. The signals

around 44.6∘ and 64.6∘ are attributed to metallic Au NPs,
they can only be observed in the samples with a higher Au
concentration. Aside from XRD analysis, the existence of Au
NPs is also observed by SEM, XPS and UV-Vis investigations
below (Figures 3 to 5).

Figure 3(a) presents a typical SEM image of pure TiO
2

film, which is composed by a large number of continuous
distributed TiO

2
nanosheets, which are hard to detach from

the Ti substrate. This is beneficial for the practical utilization
of film-shaped photocatalysts. Figure 3(b) shows a typical
SEM image of Aumodified TiO

2
film. It can be observed that

lots of spherical nanoparticles are uniformly deposited on the
surface of the sheets. This two dimensional nanosheet with a
rough surface can providemore active sites for the adsorption
of reactantmolecules, and the photogenerated charge carriers

can effectively contribute to the chemical reactions on the
surface. It is also worth noting that the density of Au
NPs can be effectively regulated by changing the initial
concentration of HAuCl

4
⋅4H
2
O according to Figures 3(c)–

3(h), indicating that the microwave-assisted reduction pro-
cess is a good method to deposit Au NPs. However, Au
NPs with a relatively bigger size is observed when a higher
concentration of HAuCl

4
⋅4H
2
O employed (Figure 3(h)).

The components and chemical status of the film were
investigated by XPS. As shown in Figure 4, the signals of Ti
2p, O 1s, Au 4f and C 1S (date not shown) are detected. XPS
spectrumof Ti 2p displays two peaks at 458.7 eV and 464.4 eV
in Figure 4(a), they are assigned to Ti 2p

3/2
and Ti 2p

5/2

spin-orbit components of Ti4+ [45]. The signal at 530.0 eV
is attributed to the lattice oxygen of TiO

2
in Figure 4(b)

[46]. Figure 4(c) shows the Au 4f XPS spectrum with two
peaks at 83.4 eV and 87.0 eV for Au 4f

7/2
and Au 4f

5/2
, respec-

tively, suggesting Au species are in metallic Au0 state in the
composites. The relative negative shift (0.6 eV) of Au 4f

7/2

peak with respect to bulk Au (4f
7/2

peak at 84.0 eV) may be
caused by the electron redistribution (from TiO

2
to Au) at

the contact interface when their Fermi levels are aligned [47].
Further investigations reveal that the chemical state of Au
NPs is maintained after the reaction (Figure 4(c)).

Figure 5 shows a comparison of UV-Vis diffuse reflection
absorption spectra of P25 (a kind of widely used commercial
TiO
2
photocatalyst), pure TiO

2
film and Au/TiO

2
films.

Aside from an enhanced UV light absorption compared with
P25, the as-prepared TiO

2
film also exhibits excellent visible

light trapping property due to its unique nanostructures.
It is usually attributed to the scattering of light caused by
pores or cracks in the film [46, 48–50]. Those pores or
cracks may function as “black hole” to trap the incident light
(Figure 3(f)). The absorption of pure TiO

2
film in UV light

region shows a clear absorption edge shorter than 390 nm
due to the intrinsic band gap absorption of anatase TiO

2

(Eg = 3.2 eV). It is worth mentioning that the TiO
2
films

loaded with Au NPs show a broad absorption in the visible
region, this originates from the outstanding light trapping
property of Au NPs for their LSPR effect. The absorption
intensity ofAu/TiO

2
films increaseswith increasing the initial

concentration of HAuCl
4
⋅4H
2
O, which can lead to more

Au NPs deposited on the TiO
2
surface (Figures 3(c)–3(h)).

In addition, the photographs of the samples under natural
sunlight exhibits a distinct color change from gray to dark red
after the loading of Au NPs (not shown here). This is in line
with theUV-Vis absorption spectra of the samples in Figure 5.

3.2. Photocatalytic Activities of MB Degradation. The degra-
dation ofMBwas firstly conducted underUV light and visible
light irradiations without filters, the elections and holes play
very important roles during the degradation. The adsorbed
dye molecules can be oxidized directly due to the strong
oxidizing property of active holes on the surface of catalyst.
The excited electrons trapped by oxygen molecule can form
⋅O
2

− and ⋅OH active radicals and they can also oxidize
dyes. As shown in Figure 6(a), all the Au/TiO

2
films exhibit

higher activity for MB degradation than for pure TiO
2
film
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Figure 3: SEM images of (a) pure TiO
2
film, (b) Au modified TiO

2
film, and the magnification of (c) 0.1 Au/TiO

2
, (d) 0.2 Au/TiO

2
, (e) 0.3

Au/TiO
2
, (f) 0.4 Au/TiO

2
, (g) 0.5 Au/TiO

2
and (h) 0.6 Au/TiO

2
films.



Journal of Nanomaterials 5

454 456 458 460 462 464 466 468 470

464.4 eV Ti 2p5/2

458.7 eV Ti 2p3/2

XPS: Ti 2p

Banding energy (eV)

(a)

526 528 530 532 534 536

530.0 eV
XPS: O 1S

Banding energy (eV)

(b)

80 82 84 86 88 90 92 94

After reaction

Before reaction

87.0 eV Au 4f7/2

83.4 eV Au 4f7/2

XPS: Au 4f

Banding energy (eV)

(c)

Figure 4: XPS spectra of Au/TiO
2
film: (a) Ti 2p, (b) O 1s, and (c) Au 4f.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Visible light trapped by
TiO2 nanosheet 

P25 NPs

TiO 2
films

Au/TiO2 film

In
te

ns
ity

 (a
.u

.)

Wavelength (nm)
0.6 Au/TiO2 film
0.5 Au/TiO2 film
0.4 Au/TiO2 film

0.3 Au/TiO2 film
0.2 Au/TiO2 film
0.1 Au/TiO2 film

200 300 400 500 600 700 800 900 1000

structures

Figure 5: UV-Vis diffuse reflection absorption spectra of the sam-
ples, including commercial P25 TiO

2
nanoparticles, pure TiO

2
film,

and Au/TiO
2
films.

(about 50% of MB is degraded), and the degradation effi-
ciency increases with increasing the content of Au NPs,
indicating that Au NPs has a great effect on the performance
of TiO

2
film. However, the increase is no longer apparent

when Au NPs are over deposited. The degradation percent-
age of MB is almost the same over 0.5 Au/TiO

2
and 0.6

Au/TiO
2
after long-term irradiation, and about 97% of MB

can be degraded after 2 h irradiation. Although 0.6 Au/TiO
2

exhibits good visible light harvesting property (Figure 5), the
adsorption-desorption of MB may be the rate controlling
process at the end of the degradation. A pseudo-first-order
kinetic model was employed to fit the degradation data by
using the following equation:− ln(𝐶/𝐶

0
) = 𝑘𝑡 (𝑘 is the kinetic

constant) [13, 16, 51]. Figure 6(b) shows the degradation rate
constant 𝑘 ofMBover different samples, and 0.6Au/TiO

2
film

shows the highest catalytic activity with a 𝑘 of 0.0287min−1,
about 5.7 times higher than that of pure TiO

2
film (𝑘 =

0.0050min−1).
To further reveal the roles of Au NPs, the experiment

was conducted over pure TiO
2
and 0.6 Au/TiO

2
films under

UV light and visible light irradiations, respectively. The
experimental results are presented in Figure 7. Under UV
light irradiation, 0.6 Au/TiO

2
film exhibits higher activity

than that of pure TiO
2
film, the corresponding degradation

percentage is 66% and 38% after 2 h of irradiation, and
𝑘 of 0.6 Au/TiO

2
film is 0.0086min−1, about 3.0 times

higher than that of pure TiO
2
film (𝑘 = 0.0029min−1).

This is because the Schottky junction between Au and TiO
2

can facilitate charge separation. The work function of Au
(Φ = 5.1 eV) is higher than anatase TiO

2
(Φ = 4.2 eV).

Hence the generation probability of electrons from anatase
TiO
2
under UV irradiation and their transfer to the Au

NPs is high [52], and it is similar to Ag/TiO
2
systems [53–

55]. The electrons transfer from the conduction band of
TiO
2
to Au NPs can reduce the recombination chance of

electrons and holes, facilitating the photoreaction process.
It is verified by the PL spectra in Figure 8. The emission
peaks around 467 nm and 397 nm are due to the radioactive
recombination of photogenerated electron-hole pairs [56,
57]. Fluorescence quenching is observed after Au deposition
under the excitation of 220 nm. This can be attributed to
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the effective capture of photoexcited electrons by Au NP,
leading to lower emission intensity.

Under visible light irradiation, the unique nanostructures
of TiO

2
film can enhance the MB photosensitization by

trapping the visible light and accelerate the degradation proc-
ess, and 23% of MB is degraded over pure TiO

2
film after 2 h

irradiation. Compared with the pure TiO
2
film, 0.6 Au/TiO

2

film exhibits a relatively higher photocatalytic performance
and49%ofMB is degraded after 2 h irradiation.This is benefit
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Figure 8: PL spectra of pure TiO
2
and 0.6 Au/TiO
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films under the

excitation of 220 nm (PMT voltage: 650V).

from the overlapped visible light absorption between Au NPs
and TiO

2
film. On the one hand, the MB photosensitization

over pure TiO
2
film may be improved by Au NPs under

visible light irradiation due to LSPR-absorption, by which
the light energy can be effectively coupled into MB molecule
and promote photosensitization. On the other hand, the
activity of Au/TiO

2
composites under visible light may result

from the LSPR effect of Au NPs. It has been proven that
LSPR-absorption of Au NPs can generate plasmon induced
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samples), and the inset image is the photograph of the Au
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photoexcited electrons with a more negative potential at the
Au NPs, they can inject into the conduction band of TiO

2

and trigger photoreaction [39, 58, 59]. Besides, the LSPR-
absorption of Au NPs may activate TiO

2
to generate pho-

toexcited electrons and holes directly under visible light irra-
diation [39, 60].

On the basis of above results, we believe that the over-
lapped light harvesting nanostructures of Au/TiO

2
films play

an important role in the improved visible light photoactivity.
The LSPR-absorption of Au NPs on the surface of TiO

2
film

can give valid evidence, which exhibits a broad response
ranging from 350 nm to 750 nm with two peaks at 389 nm
and 540 nm in Figure 9(a). It is different to the narrow LSPR-
absorption of Au NPs in the solution (Figure 9(b)). This
is because Au NPs and TiO

2
film are responsive to visible

light simultaneously, and the incident light captured by TiO
2

film is overlapped with the LSPR-absorption of Au NPs
in the visible light range. This overlapped harvesting phe-
nomenon suggests a strong interaction between Au NPs and
TiO
2
film and implies that they can work as a visible-light-

driven photocatalyst. The absorption peak at 389 nm may
be related to the bang gap of anatase TiO

2
, which shows a

clear absorption edge shorter than 390 nm. The light (𝜆 <
390 nm) captured by TiO

2
film can be used to generate

charge carriers, and the rest of the captured light (𝜆 >
390 nm) can be reused by Au NPs due to the overlapped light
harvesting nanostructures, leading to an enhanced LSPR-
absorption (Figure 9(a)). Therefore, the improved optical
overlap between the absorptions of TiO

2
film and Au NPs is

themain cause for the enhanced LSPR-absorption of AuNPs.
The enhanced light absorption in the visible light region can
improve the activity of TiO

2
by increasing the quantities of
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Figure 10: Cycling runs for five times in the photocatalytic degra-
dation of MB over 0.6 Au/TiO

2
film.

photoexcited charge carriers or by enhancing the energy of
trapped electron.

The stability of the photocatalysts is essential to the prac-
tical applications. The photocatalytic stability of the 0.6 Au/
TiO
2
film was evaluated by cycling degradation experiments

and the corresponding results are shown in Figure 10. It can
be seen clearly that 0.6 Au/TiO

2
film maintains an efficient

and stable photocatalytic activity even after five cycles. The
XPS spectra shown in Figure 4 indicate that there is an
inappreciable change of the chemical state and the content of
Au nanoparticles in the composite before and after cycling
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photodegradation experiments. All these analyses indicate
that Au/TiO

2
film possesses high activity and stability.

3.3. The Enhancement Mechanism of Photocatalytic Degrada-
tion of MB. A tentative photocatalytic mechanism is pro-
posed and schematically illustrated in Figure 11. (i) UnderUV
light irritation, the Schottky junction between Au NPs and
TiO
2
can facilitate charge separation, leading to an enhanced

photocatalytic activity. (ii) Under visible light irritation, on
the one hand, LSPR-induced electrons in AuNPs can transfer
fromAuNPs to TiO

2
and trigger photoreaction. On the other

hand, the LSPR effect of Au NPs is induced by the visible
light, forming a strong local electronic field to enhance the
energy of trapped electrons, making them transfer and react
with electron acceptorsmore easily. In any case, the enhanced
LSPR-absorption is positive for the photocatalytic process.
(iii) Overlapped light harvesting nanostructures can provide
a strong interaction between Au NPs and TiO

2
film, and

visible light trapped byTiO
2
can be reused byAuNPs, leading

to an enhanced LSPR-absorption. Besides, the overlapped
absorption may be also beneficial for the MB photosensitiza-
tion. Based on what has been observed and discussed above,
it is reasonable to conclude that the enhanced photocatalytic
activity could be attributed to the charge transfer property
of Au NPs and the efficient light utilization based on the
overlapped light harvesting nanostructures of composite film.
As shown in Figure 6(b), the highest MB degradation rate
is obtained under UV and visible light irradiations, which
results from the synergetic effect between charge transfer and
overlapped light harvesting properties inAu/TiO

2
composite.

4. Conclusion

A novel visible light responsive plasmonic Au/TiO
2
films

with two dimensional nanosheet structures were successfully
fabricated by the combination of a hydrothermal process
and a microwave-assisted reduction route. The prepared
samples exhibit an obviously overlapped light absorption due
to the localized surface plasmon resonance of Au NPs and
unique nanostructures of TiO

2
film. The light trapped by

TiO
2
nanosheet film can be reused by the LSPR of Au NPs.

The MB degradation over 0.6 Au/TiO
2
film is much faster

than that of pure TiO
2
film by a factor of 5.7 under UV

light and visible light irradiations. The improved activity
of Au/TiO

2
composite is ascribed to the changer transfer

property of Au NPs and the overlapped light harvesting
nanostructures. A synergy between charge transfer and
overlapped absorption can greatly enhance the degradation
efficiency of MB. This study suggests a simple strategy to
develop LSPR-enhanced photocatalysis systems with film-
shaped nanostrucutres and high efficiency.
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