Research Article

Fabrication of Ni-Doped PbTiO$_3$-Coated TiO$_2$ Nanorod Arrays for Improved Photoelectrochemical Performance

Yu Fu, Zhi-Peng Mao, Di Zhou, Zheng-Long Hu, Ya-Fang Tu, Yu Tian, and Guang Zheng

1School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
2Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
3Laboratory of Low-Dimension Functional Nanostructures and Devices, Hubei University of Science and Technology, Xiangning 437100, China

Correspondence should be addressed to Di Zhou; dizhou@jhun.edu.cn and Zheng-Long Hu; huzhenglong@hbust.edu.cn

Received 16 April 2019; Accepted 27 September 2019; Published 11 November 2019

The performance of bare TiO$_2$ photoanodes in photoelectrochemical devices and other applications is suboptimal due to the narrow light absorption range and poor electron-hole separation. Here, heterostructured films of Ni-doped lead titanate (PbTi$_{1-x}$Ni$_x$O$_3$, PTN)-coated titania (TiO$_2$) nanorod arrays were fabricated via a two-step process comprising hydrothermal and sol-gel methods. In the PTN/TiO$_2$ composite films, the PTN component served as a visible light-responsive photosensitizer and the TiO$_2$ nanorod was the electron transport layer. When applied as photoanodes, the PTN/TiO$_2$ films achieved the maximum photoconversion efficiency of ~2.6% and a photocurrent intensity of about 4 times higher than that of the PbTiO$_3$/TiO$_2$ film. These results demonstrate that the ferroelectric material-coated TiO$_2$ heterostructured films have high potential for application in photoelectric and optical devices.

1. Introduction

The applications of photosynthetic and photocatalytic reactions based on semiconductor materials using photoelectrochemical (PEC) cells have been recognized as ideal renewable systems leveraged on green energy technology [1, 2]. Since the PEC system was first developed with TiO$_2$ thin film by Fujishima and Honda in 1972 [3], TiO$_2$ has become the most widely studied photochemical material due to its advantages of high electron mobility, high photocorrosion resistance, low cost, and nontoxicity. However, low utilization efficiency of solar energy resulting from the wide bandgap of TiO$_2$ (~3.0 eV for rutile and ~3.2 eV for anatase) and relatively high recombination rate of photogenerated charge carriers significantly disincentive its application in PEC systems. To overcome these shortfalls, TiO$_2$ is commonly dye sensitized, ion doped, or combined with other semiconductors to form heterojunctions. As a consequence, the doping process introduces absorption states in the energy gap, enabling absorption of lower-energy photons [4–6]. Semiconductor junctions can promote separation of charge carriers through favorable energy band alignments; this potentially reduces the occurrence of recombination losses [7]. For example, many strategies have been developed to control the synthesis of heterostructured composites, such as Bi$_2$S$_3$/TiO$_2$ [8], Cu$_2$O/TiO$_2$ [9], and ZnO/TiO$_2$ [10]. In particular, TiO$_2$ modified by CdS quantum dots is much more exploited for PEC application and reached a maximum IPCE value of nearly 80% [11, 12]. This is aimed at improving their PEC activity by reducing the recombination rate of the photogenerated electron-hole pairs.

Since the discovery that ferroelectric oxides possess photovoltaic effect unlike the conventional semiconductors (such as CdS, Cu$_2$O, and Bi$_2$S$_3$) [13], ferroelectric oxides are now increasingly applied in conjunction with TiO$_2$. Previous studies have suggested that, in the heterostructured TiO$_2$
and ferroelectric oxide composites, visible light is absorbed by the ferroelectric component, in which charge carriers are generated and possibly separated by its inherent electric field, which arises from spontaneous polarization and is subsequently transferred from the ferroelectric component to TiO₂ [14–16]. In a prior work, the composite films of BiFeO₃ coating TiO₂ nanorod arrays were prepared to study the enhanced photocatalytic performance in visible light [17]. Lead titanate (PbTiO₃, PTO), a well-known solid ferroelectric oxide, exhibits excellent ferroelectric and piezoelectric properties and, thus, has been extensively investigated over the past several decades [18–20]. Since light absorption and carrier concentration both depend on bandgap, polar materials with narrow bandgap are highly desirable. Furthermore, first-principles calculations revealed that the bandgap can be reduced by doping the TiO₆ octahedron in PbTiO₃ with oxygen vacancy- (O vacancy-) stabilized d⁶M²⁺ ions (where M = Ni, Pd, and Pt) and, concurrently, a large polarization value is retained [21, 22].

On the other hand, for solar energy conversion based on narrow bandgap semiconductors, the controlled synthesis of vertically aligned one-dimensional (1D) nanostructures is an effective way to develop highly efficient energy conversion materials. Aligned 1D nanostructures, such as nanowires, nanotubes, and nanorods, offer a short diffusion length for holes along the radial direction, while the long axial direction of the nanostructures becomes the preferred electron channel and provides optimal length for light absorption [23, 24]. Numerous studies have reported that the aligned 1D nanostructures provide superior photocatalytic, photovoltaic, and PEC properties relative to their bulky counterparts and randomly shaped particles [25–27]. For instance, pioneer work by Lindgren et al. [28] showed the use of hematite nanorod arrays as photoanodes in a PEC cell and revealed that 1D nanostructures could potentially address some of the fundamental issues in PEC systems and improve device performance.

On the basis of the introduction above, composite heterostructured films of PbTi₁₋ₓNiₓO₃ (PTN, x = 0, 0.06, and 0.15, abbreviated as PTO, PTN6, and PTN15, respectively)-coated TiO₂ nanorod arrays were fabricated via a two-step process: First, the TiO₂ nanorod arrays were grown hydrothermally on F:SnO₂ (FTO) conducting substrate. This was followed by the formation of a PTO ferroelectric layer around the TiO₂ nanorods. The phase structures and morphologies of the composite films, as well as optical adsorption properties, were systematically investigated. Finally, the PEC performance was characterized under visible light irradiation.

2. Methods

2.1. Materials. All chemicals were of analytical grade and were used without further purification. Hydrochloric acid (37% mass fraction), acetic acid (CH₃COOH, 99.5%), acetylacetone (CH₃COCH₂COCH₃, 99.0%), tetrabutyl titanate (Ti(OCH₂CH₃)₄, 98.0%), and lead acetate (Pb(CH₃COO)₂·3H₂O, 99.5%) were purchased from Sinopharm Chemical Reagent Co., Ltd., China. Nickel nitrate (Ni(NO₃)₂·6H₂O, 99.99%) was purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd., China. FTO substrates were purchased from Kejing (Hefei) Materials Technology Co., Ltd., China. Deionized water was homemade at the laboratory.

2.2. Growth of TiO₂ Nanorod Arrays. TiO₂ nanorod arrays were grown on FTO conductive glass via a hydrothermal method, as previously reported [17]. Briefly, the FTO substrates were cut into rectangle pieces and ultrasonically cleaned with deionized water, acetone, and ethanol, in that order. A mixture of hydrochloric acid and deionized water (mixed at volume ratio of 1:1), containing a suitable amount of Ti(OCH₂CH₃)₄, was used for the hydrothermal reaction. Subsequently, the FTO was put into the autoclave containing the mixture solution and kept in an oven at 180°C for 6 h. Finally, the TiO₂ nanorod arrays were grown on the surface of the FTO substrates.

2.3. Fabrication of Pb(Ti₁₋ₓNiₓ)O₃/TiO₂ Thin Films. Precursor solutions of PTO, PTN6, and PTN15 were prepared via a sol-gel technique. Pb(CH₃COO)₂·3H₂O, Ni(NO₃)₂·6H₂O, and Ti(OCH₂CH₃)₄ were used as the starting materials. Acetic acid and acetylacetone served as the solvent and chemical stabilizer, respectively. The concentration of the final solutions was adjusted to 0.3 mol/L, while the pH value was set at 3–4 with acetic acid. Subsequently, the precursor solutions were spin coated three times onto the as-prepared TiO₂ nanorod arrays to create uniform wet films. After each spin coating step, the wet films were initially dried at 180°C for 5 min to evaporate the solvent and then rapidly heated to 400°C for 10 min to remove the residual organic materials. Finally, the films were annealed at 600°C for 30 min to allow the titanate to crystallize, forming the PTN/TiO₂ composite films.

2.4. Physical Characterization. The phase structures and morphologies of the as-prepared TiO₂ nanorod arrays and PTN/TiO₂ films were characterized by X-ray diffraction (XRD, D8 Advance, with Cu Kα radiation, Bruker Corp., Germany) and scanning electron microscopy (SEM, JSM-7100F, Hitachi Corp., Japan), respectively. The ultraviolet-visible absorption spectra were recorded with an ultraviolet-visible light (UV-Vis) spectrophotometer (UV2600, Shimadzu Corp. Japan).

2.5. PEC Measurements. The PEC performance of the TiO₂ nanorod arrays and PTN/TiO₂ composite films was measured in a three-electrode configuration on an electrochemical workstation (CHI660E, CH Instruments, Inc., Shanghai, China). The samples, a Pt foil, and Hg/HgO in aqueous KOH, served as the working, counter, and reference electrodes, respectively. A solution of 0.1 M KOH was used as the electrolyte for all of the electrochemical measurements. The effective area of the photoelectrodes was calculated to be ~0.7 × 0.7 cm² after encapsulation. The photocurrent-potential and photocurrent response curves were recorded under visible light irradiation using an AM 1.5 solar simulator with a 300 W Xe lamp (100 mW/cm²). Electrical impedance spectroscopy (EIS) experiments were performed in the absence of light by applying an initial potential of
1.0 V, and the amplitude of the ac potential was kept at 5 mV over the frequency range of 0.1 Hz to 1 MHz.

3. Results and Discussion

Figure 1 shows the XRD patterns of TiO$_2$ nanorod arrays, PTO/TiO$_2$, and PTN/TiO$_2$ composite films. In Figure 1(a), all of the diffraction peaks, in addition to those representing the FTO substrate, can be indexed to the standard patterns of tetragonal perovskite PTO (JCPDS Card No. 70-0746) and rutile TiO$_2$ (JCPDS Card No. 21-1276). The XRD spectra of the composites were found to be consistent with the superposition of the two component phases, and no diffraction peaks from the impurity and lead-deficient pyrochlore phases were recorded. This indicated that there was no chemical reaction between PTO and TiO$_2$. In Figure 1(b), it is evident that by increasing the Ni content, the (101) and (110) peaks of the PTN components become partially overlapped in the case of PTN6 and completely overlapped in the case of PTN15. The analysis reveals that the PTN6 film exhibits a multiphase coexistence of pseudotetragonal and cubic symmetries, whereas the PTN15 film contains a single phase of cubic perovskite [29, 30]. The origin of the phase transition in PTN can be attributed to the inner stress field caused by the substitution of Ti$^{4+}$ by the larger Ni$^{2+}$, leading to the disruption of the Ti-O orbital hybridization balance [31].

Figure 2 displays the surface and cross-section morphologies of TiO$_2$ nanorod arrays and the PTO/TiO$_2$ and PTN/TiO$_2$ composite films characterized by SEM. In Figures 2(a) and 2(b), the nanorods were grown independently on the surface of FTO and were quasi-aligned along the plane vertical to the substrate. TiO$_2$ nanorods display a tetragonal cross-section with smooth side facets and rough square top facets. After being synthesized at 180°C for 6 h, the average diameter and length were estimated to be ~100 and 850 nm, respectively. Figures 2(c)−2(h) depict the surface and cross-section morphologies of the PTO/TiO$_2$ and PTN/TiO$_2$ films. Although the nanorods cannot be identified on the surface images, PTN crystalline particles were observed. Indeed, the cross-section image shows that the voids between the nanorods were filled by the PTN components, and the thickness of the films was equivalent to the length of the nanorods. The image reveals that the pores on the surface of the films decreased gradually, indicating that the average grain size of PTN decreases with increasing Ni content. The decrease in grain size can be ascribed to the lower grain growth rate in PTN. This can be explained by Pauling’s theory of electronegativity; that is, the bond energy of Ni-O is weaker than that of Ti-O because of the smaller difference in electronegativity between Ni-O (1.53) and Ti-O (1.90). This results in less heat being released during the formation of the Ni-doped PTO, leading to a slower grain growth rate and smaller grain size [32].

The optical absorption spectrum of the semiconductor is localized around Ni and resembles the 3d2 state. The tailing of the conduction band edge into the bandgap increases because the energy of the Ni-3d state is lower than that of the Ti-3d state [34]. The decrease in the bandgap improves the light absorption by the Ni-modified PTO in ultraviolet and visible regions, implying that the Ni-modified PTO can potentially increase the solar absorption efficiency of perovskite-type ferroelectrics in solar photovoltaic devices.

To assess the performance of this type of composite film in photoelectric conversion, current-voltage characteristics were investigated. The photocurrent (I) versus applied voltage (V) curves (linear voltage sweep) shown in Figure 4(a) revealed that the PTN15/TiO$_2$ nanorod electrode had a significantly enhanced unsaturated PEC photocurrent in the high-voltage region (above 1.5 V_{RHE}, RHE represents reversible hydrogen electrode) when compared to the other electrode materials. In the low-bias region (inset of Figure 4(a)), the PTN/TiO$_2$ nanorod electrodes exhibited a higher photocurrent intensity compared to the values measured under dark conditions. This indicates a higher visible light-driven PEC activity of the TiO$_2$ nanorod electrodes modified by the PTN photosensitizer. However, no significant difference was observed between the intensities of photocurrent and dark current of the bare TiO$_2$ nanorod photoanode.

To further evaluate the performance of the PTN/TiO$_2$ photoelectrodes, the photoconversion efficiency (η) was...
calculated from the photocurrent curves using the following equation [35]:

\[\eta = \frac{J \times 1.23 - V}{P_{\text{light}}} \times 100\% \]

where \(V \) is the applied bias versus RHE, \(J \) is the photocurrent density at the measured bias, and \(P_{\text{light}} \) is the irradiance intensity of 100 mW·cm\(^{-2}\). Figure 4(b) shows the photocurrent efficiency versus bias potential for the PTN/TiO\(_2\) and PTO/TiO\(_2\) electrodes. The plot reveals that the PTN15/TiO\(_2\) electrode exhibits significantly higher photoconversion efficiency compared with the PTN6/TiO\(_2\) and PTO/TiO\(_2\) electrodes, and a maximum efficiency of \(\sim 2.6\% \) was obtained at a bias potential of 2 V, which is \(\sim 10 \) times higher than the efficiency value of the pristine PTO/TiO\(_2\) electrode. For the PTO/TiO\(_2\) photoelectrode, the photoconversion efficiency is consistent with that reported by Chandrasekaran et al. [35] and Tabari et al. [36].

EIS is an important tool used to characterize the migration of charge carriers. The charge transport performance of the PTN-modified TiO\(_2\) nanorod arrays is depicted in Figure 5(a), which represents Nyquist plots of PTN15/TiO\(_2\) electrodes and the reference bare TiO\(_2\) nanorod arrays. Generally, the arc at lower frequency of the Nyquist plot reflects

\[\eta = \frac{J \times 1.23 - V}{P_{\text{light}}} \times 100\% \]

Figure 1: (a) XRD patterns of TiO\(_2\), PTO/TiO\(_2\), and PTN/TiO\(_2\) films. (b) Enlarged XRD patterns at \(\sim 2\theta = 32^\circ \).

Figure 2: SEM images for (a) surface and (b) cross-section morphologies of TiO\(_2\) nanorod arrays; (c) surface and (d) cross-section morphologies of PTO/TiO\(_2\) films; (e) surface and (f) cross-section morphologies of PTN6/TiO\(_2\) films; (g) surface and (h) cross-section morphologies of PTN15/TiO\(_2\) films.
the charge transfer impedance at the electrode/electrolyte interface, whereas a smaller arc radius stands for a faster charge transfer process with lower recombination [37]. Comparison of the EIS data revealed that PTN15/TiO2 electrodes were considerably superior to the film of TiO2 nanorod arrays with a smaller semicircle, demonstrating an effective charge separation and faster charge carrier transport [38, 39]. In addition, an equivalent circuit model was proposed by fitting the experimental data with analysis software (ZSimpWin, Princeton Applied Research, USA) [40], as shown in the inset of Figure 5(a). In the circuit model, R_s is the resistance of the solution, and R_1 and R_2 represent the resistance to charge transfer in the semiconductor/electrolyte and semiconductor/substrate interfaces, respectively. Q_1 and Q_2 represent the constant phase elements (CPEs) of the semiconductor/electrolyte and semiconductor/substrate interfaces, respectively [41]. The values of R_1, R_2, and R_s were calculated as 2.818×10^4, 47.15, and 0.01 Ω·cm2 for the bare TiO2 and 4.346×10^3, 39.9, and 0.01 Ω·cm2 for the PTN15/TiO2 films, respectively. These results further prove that the TiO2-PTN composite decreases the carrier transfer resistance, thereby improving the effective electron-hole separation and photoelectric conversion performance of PTN-modified TiO2 nanorods.

Furthermore, the time-dependent photocurrent generation process (amperometric $I−t$ curves) under intermittent light irradiation is presented in Figure 5(b). The three curves reveal the rapid change in photocurrent intensity with irradiation switching, along with excellent stability and reliability during the on-off irradiation cycles. Moreover, the photocurrent intensity significantly increases with the Ni content. The photocurrent intensity of PTN15/TiO2 films (~70 μA) is nearly 4 times higher than that of PTO/TiO2 films (~18 μA). It is worth noting that a significant decay

Figure 3: (a) UV-Vis absorption spectra of TiO2 nanorod arrays and PTO and PTN thin films. (b) Plot of $(ahv)^2$ versus hv for bandgap determination. Inset: schematic illustration of the mechanism of bandgap narrowing due to Ni doping.

Figure 4: (a) $I−V$ curves of TiO2 nanorod arrays and the PTO/TiO2 and PTN/TiO2 films. Inset: magnified region of $I−V$ curves from −0.25 to 1.5 V$_{RHE}$. (b) Calculated photoconversion efficiencies as a function of the applied bias for the PTO/TiO2 and PTN/TiO2 photoanodes.
with the light on and a burst with the light off were observed in the curve of PTO/TiO₂. The main reason of photocurrent decay can be attributed to the recombination of photogenerated electron-hole [42]. The surface polarization charges formed on PTO might be a key reason for the photocurrent explosion with light off. In contrary, the recombination of photogenerated electron-hole on the surface of PTN/TiO₂ is reduced with the doping of Ni. Meanwhile, ferroelectric polarization is also reduced in PTN with the introduction of Ni, which leads to the burst of photocurrent that was not observed.

4. Conclusions

In conclusion, Ni-doped PTO ferroelectric material-coated TiO₂ nanorod films were fabricated by growing TiO₂ nanorod arrays via a hydrothermal method and synthesizing ferroelectric PTN by a sol-gel method. After annealing, the PTO ferroelectric crystals partially substituted with Ni in B-sites were deposited on TiO₂ nanorods as optical absorbers. The integration of TiO₂ nanorods and PTN ferroelectric material dramatically extended the wavelength range for light absorption and reduced the charge transfer resistance. This, in turn, facilitated charge separation and electron transfer, resulting in an improved PEC activity under visible irradiation when compared to the individual component phases. Herein, the PTN/TiO₂ composite displayed high potential as a photoanode agent, with high sensitivity to visible light, presenting a new approach of developing effective ferroelectric material-modified TiO₂ assemblies for photoelectronic applications and solar photovoltaic device integration.

Abbreviations

PTN: Ni-doped lead titanate, PbTi₁₋ₓNiₓO₃
PTN6: PbTi₀·⁹⁴Ni₀·⁰⁶O₃
PTN15: PbTi₀·⁸⁸Ni₀·¹⁵O₃
PTN/TiO₂: PbTi₁₋ₓNiₓO₃/TiO₂
PTO/TiO₂: PbTiO₃/TiO₂
PEC: Photoelectrochemical
FTO: F-doped SnO₂
JCPDS: Joint Committee on Powder Diffraction Standards
XRD: X-ray diffraction
SEM: Scanning electron microscopy
UV-Vis: Ultraviolet-visible light
HOMO: Highest occupied molecular orbital
LUMO: Lowest unoccupied molecular orbital
EIS: Electrochemical impedance spectroscopy
O vacancy: Oxygen vacancy.

Data Availability

All data supporting the conclusions of this article are included within this article.

Conflicts of Interest

DZ is a lecturer and a Ph.D. degree holder specializing in the investigation of photoelectric and nanometer materials. GZ is a professor and a Ph.D. degree holder specializing in the investigation of functional materials. ZLH is an associate professor and a Ph.D. degree holder specializing in the investigation of optical materials. YFT and YT are associate professors and Ph.D. degree holders specializing in the investigation and characterization of electrochemistry. YF and ZPM are graduate students major in the study of nanometer materials. The authors declare that they have no competing interests.

Authors’ Contributions

YF drafted the manuscript. YF and ZPM performed the experimental works. YFT, YT, and GZ carried out the series characterization of the samples and interpreted the data. DZ and ZLH conceived the idea of experiments and
amended the manuscript. All authors read and approved the final manuscript.

Acknowledgments
Authors thank LetPub (https://www.letpub.com) for its linguistic assistance during the preparation of this manuscript. This work was financially supported by the National Natural Science Foundation of China (Grant Numbers: 51502114 and 61575085).

References

[27] K. Rajeshwar, M. E. Osugi, W. Chanmanee et al., “Heteroge-
neous photocatalytic treatment of organic dyes in air and
aqueous media,” *Journal of Photochemistry and Photobiology

[28] T. Lindgren, H. L. Wang, N. Beermann, L. Vayssieres,
A. Hagfeldt, and S. E. Lindquist, “Aqueous photoelectrochem-
istry of hematite nanorod array,” *Solar Energy Materials and

[29] X. Xue, G. Tan, H. Ren, and A. Xia, “Structural, electric and
multiferroic properties of Sm-doped BiFeO 3 thin
films prepared by the sol–gel process,” *Ceramics International*, vol. 39,
no. 6, pp. 6223–6228, 2013.

annealing dependent piezoelectricity in lead-free (K,Na)NbO 3
nanorod arrays,” *Applied Physics Letters*, vol. 110, no. 21, arti-
cle 212904, 2017.

Zhao, “Thermal equations of state and phase relation of
PbTiO 3: A high P-T synchrotron x-ray diffraction study,” *Journal of
Applied Physics*, vol. 110, no. 8, article 084103, 2011.

“Magnetism switching and band-gap narrowing in Ni-doped
PbTiO 3 thin films,” *Journal of Applied Physics*, vol. 105, no. 11, article 111904,
2014.

[33] S. Chandrasekaran, E. J. Kim, J. S. Chung et al., “Structurally
tuned lead magnesium titanate perovskite as a photoelectrode
material for enhanced photoelectrochemical water splitting,”

[34] T. Tabari, M. Ebadi, D. Singh, B. Caglar, and M. B. Yagci,
“Efficient synthesis of perovskite-type oxide photocathode
by nonhydrolytic sol-gel method with an enhanced photo-
electrochemical activity,” *Journal of Alloys and Compounds*,

[35] Q. Liu, F. Wu, F. Cao et al., “A multijunction of ZnIn 2S 4
nanosheet/TiO 2 film/Si nanowire for significant performance
enhancement of water splitting,” *Nano Research*, vol. 8,

[36] X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang, and Z. Y.
Fan, “Comparing Graphene-TiO 2 Nanowire and Graphene-
TiO 2 Nanoparticle composite photocatalysts,” *ACS Applied

[37] N. Li, G. Liu, C. Zhen, F. Li, L. L. Zhang, and H. M. Cheng,
“Battery performance and photocatalytic activity of mesopo-
rous anatase TiO 2 Nanospheres/Graphene composites by
template-free self-assembly,” *Advanced Functional Materials*,
vol. 21, no. 9, pp. 1717–1722, 2011.

[38] Y. Z. Chen, A. X. Li, M. Jin, L. N. Wang, and Z. H. Huang,
“Inorganic nanotube/organic nanoparticle hybrids for
enhanced photoelectrochemical properties,” *Journal of Mate-