
Research Article
Anodic Growth Behavior of TiO2 Nanotube Arrays with Process
Parameter Control

Wan-Tae Kim1 and Won-Youl Choi 1,2

1Department of Advanced Materials Engineering, Gangneung-Wonju National University, Gangneung,
Gangwon 25457, Republic of Korea
2Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea

Correspondence should be addressed to Won-Youl Choi; cwy@gwnu.ac.kr

Received 23 May 2018; Accepted 3 October 2018; Published 18 February 2019

Academic Editor: Nageh K. Allam

Copyright © 2019 Wan-Tae Kim and Won-Youl Choi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

TiO2 nanotube arrays are very attractive materials by their vertically aligned porous nanostructures. They are easy to make using an
anodic oxidation process in organic and inorganic electrolytes containing halogen ions, like fluorine and chlorine. Their growth
tendency, various microstructures of TiO2 nanotube arrays, was fabricated and analysed with controlling of anodic oxidation
process parameter like applied voltage, process time, electrolyte temperature, concentration of ammonium fluoride and DI water
in ethylene glycol electrolyte, voltage applying and dropping rate, grain orientation, and size of titanium foil. Pore diameter and
length were controlled in the range of 16 nm to 178 nm and 0.2 μm to 14.6μm, respectively. Some tendencies of their growth
were observed with different anodic oxidation variables. This growth tendency of TiO2 nanotube arrays is should be considered
before they used in many applications, and if optimal structure for each application was fabricated and used, they will show
better performance.

1. Introduction

Titanium dioxide has excellent chemical, electrical, and
optical properties and chemical stability. For that reason,
it is used in many different fields of study and industry, such
as dye-sensitized solar cells [1–3], perovskite sensitized solar
cells [4–6], photocatalysts [7], metal oxide semiconductor gas
sensors [8, 9], dental implants [10, 11], interferometric sen-
sors [12, 13], photonic crystals [14], and other applications.
Typically, it is very useful materials for electron transport
materials of organic solar cells due to their electronic band
gap, nontoxic properties, and low product cost. Many nano-
structures of TiO2 reported to improve their specific area and
electron-hole recombination, like nanoparticles [1, 3, 15],
nanofibers [16, 17], and nanotubes [7, 8, 10, 12, 13, 18–20].
One of them, TiO2 nanotube arrays are very attractive mate-
rials for higher electron transport materials by their vertically

aligned porous nanostructures. Also, they have large specific
surface area, open window, and excellent chemical and
mechanical properties, and it have extended the application
fields to photoanode of organic solar cells and others. TiO2
nanotube arrays are easy to make using an anodic oxidation
process in organic and inorganic electrolytes containing hal-
ogen ions, like fluorine and chlorine. The fabrication of TiO2
nanotube arrays via anodic oxidation of titanium foil in
fluoride-based solution was first reported in 2003 by Beranek
et al. [21]. In anodic oxidation, dissolution and oxidation are
very important as formation mechanism, and they are
affected by process parameter such as chemical composition
of electrolyte, applied voltage, processing time, and tempera-
ture. Organics or aqueous solutions have been used as an
electrolyte, and they contain fluorine-based materials, such
as hydrogen fluoride, potassium fluoride, and ammonium
fluoride [18–20, 22]. The voltage of 10 to 60V is usually
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applied, and variable voltage steps are also conducted. Pro-
cessing time is very diverse according to other conditions.
To apply for various application fields, a suitable microstruc-
ture for the nanotube diameter, the nanotube length, and the
surface state is needed and fabricated.

In this study, to understand their growth tendency,
various microstructures of TiO2 nanotube arrays were fabri-
cated and analysed with controlling of anodic oxidation pro-
cess parameter like applied voltage, process time, electrolyte
temperature, concentration of ammonium fluoride and DI
water in ethylene glycol electrolyte, voltage applying and
dropping rate, grain orientation, and size of titanium foil.
And their pore diameter and pore length are measured and
observed by field emission scanning electron microscope
(FE-SEM, FEI Co., Inspect F/Hitachi Ltd., SU-70). Some ten-
dencies of their growth were observed with different anodic
oxidation variables.
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Figure 1: Schematic diagram of potentiostatic electrochemical system.

Table 1: Anodic oxidation conditions of different process time, electrolyte temperature, and concentration of NH4F and DI water in ethylene
glycol electrolyte.

Control parameter Voltage (V) Time (minute) NH4F (wt%) DI water (vol%) Temperature (°C)

Process time

60 10 0.5 2.2 30

60 20 0.5 2.2 30

60 30 0.5 2.2 30

60 40 0.5 2.2 30

60 50 0.5 2.2 30

60 60 0.5 2.2 30

Temperature

60 360 0.5 10.9 0

60 360 0.5 10.9 15

60 360 0.5 10.9 30

Concentration of NH4F

60 360 0.3 10.9 30

60 360 0.5 10.9 30

60 360 1.0 10.9 30

Concentration of DI water

60 30 0.5 2.2 30

60 30 0.5 5.3 30

60 30 0.5 10.9 30

Table 2: Anodic oxidation conditions of different voltage applying
rate and dropping rate.

Control parameter
Applying
speed (V/s)

Dropping speed (V/s)

Applying speed control

0.1 Immediately dropped

0.5 Immediately dropped

5.0 Immediately dropped

10.0 Immediately dropped

30.0 Immediately dropped

60.0 Immediately dropped

1.0 Immediately dropped

Dropping speed control
1.0 1.0

1.0 0.1
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2. Materials and Methods

Figure 1 shows potentiostatic electrochemical system. The
system consisted of a power supply (Xantrex Co., XKW
600), multimeter (Agilent Co., 34401A), constant temperature
water bath, and PC. The power supply and multimeter were
computer-controlled by the LabVIEW (National Instruments
Co.) program for electropolishing and anodic oxidation.

To compare the microstructure with different process
time, electrolyte temperature, and concentration of ammo-
nium fluoride (NH4F, JUNSEI Co.) and DI water in ethylene
glycol (JUNSEI Co.) electrolyte, titanium foils (Alfa Aesar
Co., 0.89mm thickness, 99.7% purity) were rinsed in an
ultrasonic bath of DI water, ethyl alcohol, and acetone
for 10min in turn and dried at room temperature in a con-
vection oven to remove the surface pollutant. And Ti foil
was anodic oxidized in each condition, which is shown
in Table 1. For the comparison of microstructure after
anodic oxidation, process time, temperature, and concentra-
tion of NH4F and DI water were controlled in a range of
10~ 60min, 0~ 30°C, 0.3~ 1.0wt%, and 2.2~ 10.9 vol%,
respectively. Other conditions of anodic oxidation were the
same for each comparison.

Secondly, some titanium foil was conducted in anodic
oxidation process for different applied voltage, voltage apply-
ing rate, and dropping rate. Applied voltage was controlled in
a range of 3~ 60V at 30°C for 4 hr in ethylene glycol electro-
lyte with 0.5wt% NH4F and 10.9 vol% DI water; Table 2
shows voltage applying rate and dropping rate conditions,
and they are controlled in a range of 0.1~ 60.0V/s, immedi-
ately drop ~0.1V/s anodic oxidized at 60V and 30°C for
10min in ethylene glycol electrolyte with 0.5wt% NH4F
and 2.2 vol% DI water.

To compare the microstructure with different grain size
and orientation, Ti foil was annealed in an electric furnace

for 1 hr at 500, 800, 950, and 1100°C. After annealing, to
observe the grain size and orientation, Ti foils were mechan-
ically polished by sand paper and were electropolished for
20V and 5min in methyl alcohol (J.T.Baker. Co.) with
38wt% ethylene glycol and 10wt% perchloric acid (JUNSEI
Co., 70%) at 0°C and stirred at 800 rpm. Then, polished tita-
nium foils were etched for 20 sec in DI water with 10 vol%
nitric acid and 10 vol% hydrofluoric acid. Grain structure
and orientation of etched titanium foils were observed by
FE-SEM and X-ray diffractometer (Rigaku D/MAX-RC, Cu
Kα radiation). After electropolishing, titanium foils were
anodized at 60V and 30°C for 40min in ethylene glycol elec-
trolyte with 0.5wt% NH4F and 8.2 vol% DI water. Also, after
anodic oxidation process, all anodic oxidized samples were
immersed in ethyl alcohol and dried in a dry oven. Then,
their microstructures were observed by FE-SEM.

3. Results and Discussion

The various microstructures of TiO2 nanotube arrays were
obtained with anodic oxidation process time from 10min
to 60min at 60V and 30°C in ethylene glycol electrolyte
with 0.5wt% NH4F and 2.2 vol% DI water. Figures 2 and 3
show FE-SEM image and their microstructure change of
anodic-oxidized TiO2 nanotube arrays with different process
time. With the increase of process time, higher pore diameter
and pore length were observed. The pore diameter and pore
length of 10min anodic-oxidized TiO2 nanotube arrays were
46 nm and 3.4μm, and the pore diameter and pore length
of 60min anodic-oxidized TiO2 nanotube arrays were 90nm
and 14.6μm, respectively.

Figure 4 shows FE-SEM image and their microstructure
change of anodic-oxidized TiO2 nanotube arrays with differ-
ent electrolyte temperature. Titanium foils were conducted
for different electrolyte temperature from 0°C to 30°C at

(a) (b) (c)

(d) (e) (f)

Figure 2: FE-SEM image of TiO2 nanotube arrays with different process time ((a) 10min, (b) 20min, (c) 30min, (d) 40min, (e) 50min, and
(f) 60min).

3Journal of Nanomaterials



(a) (b)

(c)

Po
re

 d
ia

m
et

er
 (n

m
)

Po
re

 le
ng

th
 (𝜇

m
)

Pore diameter

Temperature (°C)

Pore length

210
200
190
180
170
160
150
140
130
120

8

7

6

5

4

3

2

−5 0 5 10 15 20 25 30 35

(d)

Figure 4: FE-SEM image of TiO2 nanotube arrays with different electrolyte temperature ((a) 0°C, (b) 15°C, and (c) 30°C) and their
microstructure change (d).
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Figure 3: Pore diameter and pore length of TiO2 nanotube arrays with different process time.
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60V for 4 hr in ethylene glycol electrolyte with 0.5wt% NH4F
and 10.9 vol% DI water. With the increase of electrolyte tem-
perature, both pore diameter and pore length were increased.
The pore diameter and pore length of TiO2 nanotube arrays
which were formed at 0°C were 143nm and 2.3μm, respec-
tively, and the pore diameter and pore length of TiO2 nano-
tube arrays which were formed at 30°C were 178nm and
4.1μm, respectively. It resulted from higher ion diffusivity
in higher temperature of electrolyte.

Figure 5 shows FE-SEM image and their microstructure
change of anodic-oxidized TiO2 nanotube arrays with differ-
ent concentration of NH4F in electrolyte. For the comparison
with different concentration of NH4F, titanium foils were
conducted at 60V and 30°C for 4 hr in ethylene glycol elec-
trolyte with 0.3~ 1.0wt% NH4F and 10.9 vol% DI water.
With the increase of concentration of NH4F in electrolyte,
pore diameter was increased but pore length was decreased.
The pore diameter and pore length of TiO2 nanotube arrays
which were formed in 0.3wt% NH4F-contained electrolyte
were 140nm and 5.8μm, respectively, and the pore diameter

and pore length of TiO2 nanotube arrays which were formed
in 1.0wt% NH4F-contained electrolyte were 174nm and
3.7μm, respectively. NH4F in electrolyte acted as an etchant
for TiO2 nanotubes during anodic oxidation, and the pores
were widened and shortened.

Figure 6 shows FE-SEM image and their microstructure
change of anodic-oxidized TiO2 nanotube arrays with differ-
ent concentration of DI water in electrolyte. For the compar-
ison with different concentration of DI water, titanium foils
were conducted at 60V and 30°C for 30min in ethylene
glycol electrolyte with 0.5wt% NH4F and 2.2~ 10.9 vol%
DI water. With the increase of concentration of DI water
in electrolyte, pore diameter was increased but pore length
was decreased. The pore diameter and pore length of TiO2
nanotube arrays which were formed in 2.2 vol% DI water-
contained electrolyte were 72 nm and 7.6μm, respectively,
and the pore diameter and pore length of TiO2 nanotube
arrays which were formed in 10.9wt% NH4F-contained elec-
trolyte were 104nm and 1.0μm, respectively. Pore length
formed in aqueous electrolyte is shorter than that in organic

(a) (b)

(c)

Po
re

 d
ia

m
et

er
 (n

m
)

Po
re

 le
ng

th
 (𝜇

m
)

Pore diameter
Pore length

Concentration of NH4F (wt.%)

8

7

6

5

4

3

2
0.2

200
190
180
170
160
150
140
130

0.4 0.6 0.8 1.0

(d)

Figure 5: FE-SEM image of TiO2 nanotube arrays with different concentration of NH4F in electrolyte ((a) 0.3 wt%, (b) 0.5 wt%, and (c)
1.0 wt%) and their microstructure change (d).
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electrolytes such as ethylene glycol and glycerol [23–25]. The
DI water increased the effect of aqueous electrolyte, and the
pore length was decreased with DI water.

With 3V to 60V range of applied voltage, various micro-
structures of TiO2 nanotube arrays were obtained for 4 hr
and 30°C in ethylene glycol electrolyte with 0.5wt% NH4F
and 10.9 vol% DI water. Figures 7 and 8 show FE-SEM image
and their microstructure change of anodic-oxidized TiO2
nanotube arrays with different applied voltage. With the
increase of applied voltage, higher pore diameter and pore
length were observed. The pore diameter and pore length of
TiO2 nanotube arrays which were fabricated at 60V were
178nm and 4.07μm, respectively, and the pore diameter
and pore length of TiO2 nanotube arrays which were fabri-
cated at 3V were 16 nm and 0.2μm, respectively.

Figures 9 and 10 show FE-SEM image and microstruc-
ture of anodic-oxidized TiO2 nanotube arrays with different
voltage applying rate and dropping rate. For the compari-
son with different concentration of DI water, titanium foils
were conducted at 60V and 30°C for 10min in ethylene
glycol electrolyte with 0.5wt% NH4F and 2.2 vol% DI water.
At 0.5V/s~ 30.0V/s applying rate, there was no obvious

difference or slightly changed in pore diameter and pore
length, but lower pore diameter and higher pore length were
observed at V/s applying rate, and higher pore diameter and
lower pore length were observed at 60V/s applying rate.
With the increase of dropping speed, lower pore diameter
and pore length were observed. The pore diameter and pore
length of TiO2 nanotube arrays fabricated at 0.5V/s applying
rate were 59 nm and 1.1μm, respectively. And the pore diam-
eter and pore length of TiO2 nanotube arrays fabricated at
30.0V/s applying rate were 83nm and 1.1μm, respectively.
Also, 73 nm, 1.1μm and 82nm, 1.7μm of pore diameter
and pore length were observed, respectively, at 1.0V/s apply-
ing rate, immediately dropped and 1.0V/s applying rate,
0.1V/s dropping rate.

Figures 11 and 12 show grain structure, their size, and
crystal orientation. To compare with different grain size, ori-
entation, and their anodic oxidation behavior, titanium foil
was annealed in an electric furnace for 1 hr at 500, 800, 950,
and 1100°C. With the increase of annealing temperature,
grain size was increased and their orientation aligned for
(110), (012), and (013) plane of α-Ti. Also, each titanium foils
were anodic oxidized at 60V and 30°C for 40min in ethylene
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Figure 6: FE-SEM image of TiO2 nanotube arrays with different concentration of DI water in electrolyte ((a) 2.2 vol%, (b) 5.3 vol%, and (c)
10.9 vol%) and their microstructure change (d).
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Figure 7: FE-SEM image of TiO2 nanotube arrays with different applied voltage ((a) 60V, (b) 50V, (c) 40V, (d) 30V, (e) 20V, (f) 10V,
(g) 7 V, (h) 5V, and (i) 3 V).
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Figure 8: Pore diameter and pore length of TiO2 nanotube arrays with different applied voltage.
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Figure 9: FE-SEM image of TiO2 nanotube arrays with different voltage applying rate and dropping rate ((a) 0.1 V/s, immediately dropped,
(b) 0.5 V/s, immediately dropped, (c) 1.0 V/s, immediately dropped, (d) 5.0 V/s, immediately dropped, (e) 10.0V/s, immediately dropped, (f)
30.0 V/s, immediately dropped, (g) 60.0V/s, immediately dropped, (h) 1.0 V/s, 1.0 V/s, and (i) 1.0 V/s, 0.1 V/s).
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Figure 10: Pore diameter and pore length of TiO2 nanotube arrays with different voltage applying rate and dropping rate.
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glycol electrolyte with 0.5wt% NH4F and 8.2 vol% DI water.
Figure 13 shows their FE-SEM image and microstructure
changes. With the change of grain structure and orientation,
there was no obvious change. They have about 110nm of
pore diameter and 3.3μm of pore length.

4. Conclusions

To fabricate the various microstructured TiO2 nanotube
arrays by anodic oxidation, some process parameters such
as applied voltage, process time, electrolyte temperature,

(a) (b) (c)

(d) (e)

Figure 11: FE-SEM image of titanium grain with different annealing temperature ((a) not annealed, (b) 500°C, (c) 800°C, (d) 950°C, and (e)
1100°C).

0

70

60

50

40
20

10

100

G
ra

in
 si

ze
 (𝜇

 m
)

200 300 400 500 600 700 800 900 10001100
Annealing temperature (°C)

Before transition temperature
After transition temperature

(a)

30 40 50 60 7080

(010) (011)
(002)

(012) (110) (013) (112) (004)
(021)

In
te

ns
ity

 (a
.u

.)

1100 °C

950 °C

800°C

500°C

Not annealed

2 theta (°)

(b)

Figure 12: Grain size and crystal orientation of titanium foil with different annealing temperature.
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concentration of ammonium fluoride and DI water in ethyl-
ene glycol electrolyte, voltage applying and dropping rate,
grain orientation, and size of titanium foil were controlled.
With the increase of applied voltage, process time, tempera-
ture, and voltage dropping time, higher pore diameter and
pore length were observed, and with the increase of ammo-
nium fluoride and DI water concentration, higher pore diam-
eter and lower pore length were observed. But with the
increase of grain size and the change of crystal orientation
of titanium, pore diameter and pore length were almost not
changed. Typically, larger specific area with smaller pore diam-
eter and longer pore length of TiO2 nanotube arrays leads to a
better performance of many devices, like photovoltaics, sen-
sors, and photocatalysts. This growth tendency of TiO2 nano-
tube arrays is should be considered before they used in many
applications, and if optimal structure for each application was
fabricated and used, they will show better performance.
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