A Short Review on Verwey Transition in Nanostructured \(\text{Fe}_3\text{O}_4 \) Materials

Murtaza Bohra, Nishit Agarwal, and Vidyadhar Singh

1Mahindra École Centrale, College of Engineering, Hyderabad, 500043 Telangana, India
2Department of Physics, Jai Prakash University, Chapra, 841301 Bihar, India

Correspondence should be addressed to Murtaza Bohra; murtazaphy@gmail.com and Vidyadhar Singh; vsraj47@gmail.com

Received 5 August 2018; Revised 22 November 2018; Accepted 17 December 2018; Published 25 March 2019

Academic Editor: P. Davide Cozzoli

Copyright © 2019 Murtaza Bohra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Verwey transition (VT) of \(\text{Fe}_3\text{O}_4 \) has been extensively investigated as this results in sharp changes in its physical properties. Exploitation of VT for potential applications in spin/charge transport, multiferroicity, exchange bias, and spin Seebeck effect-based devices has attracted researchers recently. Although hundreds of reports have been published, the origin of VT is still debatable. Besides, not only the size effects have a significant impact on VT in \(\text{Fe}_3\text{O}_4 \), even the conditions of synthesis of \(\text{Fe}_3\text{O}_4 \) nanostructures mostly affect the changes in VT. Here, we review not only the effects of scaling but also the growth conditions of the \(\text{Fe}_3\text{O}_4 \) nanostructures on the VT and their novel applications in spintronics and nanotechnology.

1. Introduction

The metal-insulator transition also known as Verwey transition (VT) in strongly correlated magnetite (\(\text{Fe}_3\text{O}_4 \)) system is vital for its potential applications in nanoelectronics, spintronics, and mottoronix [1]. From a scientific point of view, the VT provides information to understand the extraordinary crystal lattice (regarding the freezing-in fluctuating lattice) and electronic structure (charge, spin, and orbital) order of \(\text{Fe}_3\text{O}_4 \) [2, 3]. However, owing to the many competing degrees of freedom, the close energetic proximity of the different phases (presence of twining) often obscures the exact nature of the VT as they are probed in thermal equilibrium. Technologically, the resistive switching behaviour in \(\text{Fe}_3\text{O}_4 \) thin films at VT shows high potential for alternative memory applications, such as gate voltage-driven resistive switching in field-effect transistors [4]. On the other hand, the large change observed in magnetoresistance and spin Seebeck coefficient around VT makes it useful for sensors and solid-state energy conversion devices [5–7]. Thus, ever since then \(\text{Fe}_3\text{O}_4 \) and in particular the VT has been an object of extensive research and great debate. Although experimental and theoretical progress has recently been made on \(\text{Fe}_3\text{O}_4 \), the origin of the VT is still under discussion.

\(\text{Fe}_3\text{O}_4 \) is a cubic ferrimagnetic oxide with the highest magnetization \(M = 4.2 \mu_B \) below Curie temperature, \(T_C = 858 \text{ K} \). Band structure calculations predict half-metallic (-100% spin polarization) character of \(\text{Fe}_3\text{O}_4 \) with room temperature conductivity, \(\sigma = 200 \left(\Omega \cdot \text{cm} \right)^{-1} \) [8, 9]. Stoichiometric \(\text{Fe}_3\text{O}_4 \) shows VT wherein first-order structural phase transformation occurs around 124 K (\(T_V \)) [10]. In the low-temperature phase, \(\text{Fe}_3\text{O}_4 \) is an insulator, has a monoclinic structure connected to the charge ordering, and exhibits an orbital order on the \(\text{Fe}^{2+} \) sites [11]. Also, it was found that localized electrons are shared between three Fe ions on octahedral \(B \)-lattice sites which can be termed as trimerons [8]. This transition also has manifestations in resistivity, heat capacity, magnetization, and many other properties [3]. Therefore, VT, which has a potential in cutting-edge technologies, provides an external tuning competency of the properties by changing the temperature. Despite the tremendous progress in nanostructured \(\text{Fe}_3\text{O}_4 \), it is still an open question how the VT changes in the nanoregime. The most critical difficulty in the size-dependent characterization of VT is the synthesis of uniform and stoichiometric nanostructured \(\text{Fe}_3\text{O}_4 \) because VT is reported to be extremely sensitive to the oxygen stoichiometry [12]. The size of nanostructure having the VT varies in different reports, as stoichiometry
commonly depends on growth conditions. Furthermore, at the nanoscale, the VT is difficult to technically observe because diffraction methods suffer from severe peak broadening due to the small crystallite size [9]. The occurrence of superparamagnetism hampers the observation in magnetometry, and measurements of the conductivity are difficult to interpret in the case of ensembles of nanoparticles, since the path of the electric current may simply change [9].

Thus, the understanding of VT in nanostructured Fe₃O₄ is the main focus of this review. Here, we shall discuss the best growth methods and characterization techniques which are being currently employed to investigate nanostructured Fe₃O₄ material and their potential applications. Before presenting the results on nanostructured Fe₃O₄, some basic properties of Fe₃O₄ shall be summarized.

2. Material Properties of Fe₃O₄

2.1. Crystalline Properties. Fe₃O₄ possesses an inverse spinel structure ABO₄ (space group Fd3m; a = 8.39 Å) (Figure 1(a)), wherein oxygen anions form a cubic face-centred (fcc) lattice, and the large interstices between O²⁻ are partially occupied by iron cations. Tetrahedral A positions are occupied by Fe³⁺ cations, while octahedral B positions are equally occupied by Fe³⁺ and Fe²⁺ cations ([FeTd ⁴⁺]₈[FeOh ³⁺FeOh ²⁺]₁O₄) [8, 9]. In Fe₃O₄, ferrimagnetism exists through two main mechanisms, as shown in Figure 1(c). The first is the antiferromagnetic superexchange interactions between the FeOh ³⁺ and FeTd ³⁺ cations through the O²⁻ anions [13, 14]. The spin-up ⁵d electrons in the FeOh ³⁺ couple with the overlapping ⁵p orbitals in the O²⁻ making them spin down. The other ²p electron is thus spin-up which makes the FeOh ³⁺ ⁵d electrons spin down. Thus, FeOh ³⁺ and FeOh ³⁺ are antiparallel and cancel out each other’s unpaired spin magnetic moments. The second factor is related to the double-exchange interaction [15] in which the spin-down electron can only hop from FeOh ²⁺ to FeOh ³⁺ if the majority spins are the same. Hence, they are coupled and aligned parallel. Therefore, all the Fe²⁺ cations contribute to the magnetic moment while all Fe³⁺ cations cancel each other out, resulting net magnetic moment (9 – 5 = 4) µₘ (see Figure 1(d)). Because of the strong antiferromagnetic A-B superexchange interaction, A-A and B-B superexchange interactions become ferromagnetic resulting in the ferrimagnetic structure of Fe₃O₄. The extra electron of FeOh ²⁺ ions is transferred to the empty orbitals of FeOh ³⁺ by displacing electrons from the intervening O²⁻ ions in a double-exchange process: FeOh ²⁺ to O²⁻ and O²⁻ to FeOh ³⁺. The room temperature conductivity of Fe₃O₄ is thus, attributed to this hopping of electrons (Fe²⁺⇌Fe³⁺ + e⁻) at octahedral B-sites. The extra electron of the Fe²⁺ ion occupies the minority t₂g band, which is the only band located at Fermi level E_f, giving rise to half-metallicity as predicted by band structure calculation, shown in a simplistic form in Figure 1(e) [8, 9].
2.2. Verwey Transition. Upon cooling of Fe$_3$O$_4$ below the T_V, the electron hopping between Fe$^{2+}$ and Fe$^{3+}$ ions freezes, and the combination of 2+ and 3+ species then arranges themselves in a regular pattern without moving (charge ordering). In this nonconducting state, the stagnant Fe$^{2+}$ ions are Jahn-Teller (J-T) active [8]; this means that the extra electron in Fe$^{2+}$ has a choice between occupying any one of the three available half-filled orbitals d_{xy} or the two d_{xz}/d_{yz}, as they all have the same energy (see the top of Figure 2(a)). Electrons prefer to occupy the orbit with the least energy. To break this choice, an effective energy separation between d_{xy} and d_{xz}/d_{yz} is created in the four Fe–O bonds (depicted by red arrows in the bottom of Figure 2(a)) in the xy plane that are elongated or contracted. The negative value of Δt_{2g} signifies that the energy of d_{xy} is lower than that of d_{xz}/d_{yz}, that is, tetragonal distorted Fe$^{2+}$O$_6$ octahedra with elongated Fe–O bonds in the xy plane. On top of this, an additional structural distortion in which B-site Fe-Fe distances within linear Fe$^{3+}$-Fe$^{2+}$-Fe$^{3+}$ units (depicted by the grey ellipsoid in the bottom of Figure 2(a)) is anomalously shortened showing that electrons are not fully localized as Fe$^{2+}$ states but are instead spread over the three sites resulting in highly structured three-site polarons defined as a single trimeron [8]. The J-T distortion in Fe$^{2+}$O$_6$ octahedra mentioned earlier directly couples to the neighbouring Fe$^{3+}$O$_6$ octahedra constituting the trimerons, although they are J-T inactive in the first approximation. Due to trimeron formation, distances from Fe$^{2+}$ states to their two B-site neighbours in the local orbital ordering plane are anomalously shortened. The cumulative effect of this trimeron shortening penetrates throughout the crystal in the various trimeron locations to significantly perturb the cubic Fe$_3$O$_4$ structure to the complex overall distortion. The cubic spinel- $(a=b=c)$ type structure of Fe$_3$O$_4$ distorts to a monoclinic superstructure with Cc space group symmetry $(a=b \neq c)$ $(\sqrt{2}, \sqrt{2}, 2)$, as

![Figure 2: Energy separation due to Jahn-Teller distortion (up) and depiction of trimeron concept in single Fe$^{2+}$O$_6$ octahedra (down) (a) [8]. Changes in magnetic susceptibility, resistance, and specific heat at T_V (b) [10, 17]. For clarity, the temperature scale for R and χ' was shifted concerning the true temperature scale. With an increasing number of vacancies or doped atoms, the VT shifts to low temperatures (c) [18].](https://example.com/figure2)
shown in Figure 1(b). This structural transformation was first found by Verwey in 1939 and was named after him [16, 17]. The charge, orbital, and trimeron orders of Fe$_3$O$_4$ stand out perhaps as the most complex electron-ordered ground state known.

Because of this structural transformation in Fe$_3$O$_4$, many physical properties (specific heat, magnetic susceptibility, and resistance) show abrupt change around T_V [3] (see Figure 2(b)). It has been reported that several factors can affect VT of bulk Fe$_3$O$_4$ negatively, such as oxygen off-stoichiometry and cation substitution. The T_V gradually decreases from 124 to 80 K and finally vanishes completely with increasing oxygen off-stoichiometry or cation substitution ($T_{V}^{Ti^{2+}}$, Zn^{2+}, etc.) (see Figure 2(c)) [18].

Even after an intense research, there still exist two major schools of interpretation: the first one interprets the VT as a transition driven by charge/orbital ordering and the second one exploits the mechanism of a lattice distortion-driven charge ordering leading to metal-insulator behaviour.

3. Observation of Verwey Transition in Various Fe$_3$O$_4$ Nanostructures

Recently, a lot of work has been carried out to study the effect of various nanostructured Fe$_3$O$_4$ morphologies on VT, which include single crystals, epitaxial and polycrystalline thin films, particles, arrays of colloidal nanocrystals, heterostructures, and also in the form of nanocontacts. The eventual utilization of these morphologies is to develop novel VT-based devices, and this is a critical issue for further investigations.

3.1. Nanoparticles (1 nm < Particle Size < 100 nm)

The recent advancement in the synthesis of uniform and size-controllable Fe$_3$O$_4$ nanocrystals has enabled the size-dependent physical property characterization and their applications [21]. Recently, Lee et al. [20] have successfully synthesized stoichiometric and uniform-sized Fe$_3$O$_4$ nanocrystals with sizes ranging from 5 to 100 nm. These nanocrystals show the VT in the conductance, magnetization, and heat capacity measurements (see Figures 3(a)–3(c)). The VT is generally masked in magnetization data of superparamagnetic nanocrystals below the blocking temperature; therefore, it was reassured that the heat capacity of nanocrystals shows a lambda-like anomaly similar to the single crystal Fe$_3$O$_4$, confirming a truly thermodynamic transition. 57Fe nuclear magnetic resonance (NMR) of Fe$_3$O$_4$ nanocrystals (7 nm-7 μm) was also measured [19]. The line width of NMR spectra changes drastically around 120 K (see Figure 3(d)), showing microscopic evidence of the Verwey transition. The inset shows the NMR spectral intensity for one of the representative samples (25 nm) obtained at temperatures around the T_V. In the region above the transition temperature, the line width of the spectrum increases and the spin-spin relaxation time decreases as the nanocrystal size decreases. The line width broadening indicates the significant deformation of magnetic structure and reduction of charge order compared to bulk crystals, even when the structural distortion is unobservable. The VT is weakly size-dependent (see Figure 3(e)) and gets suppressed in nanocrystals smaller than 20 nm before completely disappearing for a size less than 6 nm, which is a clear yet highly interesting indication of a size effect of this well-known phenomenon.

3.2. Nanocrystalline Thin Films (1 nm < Grain Size < 100 nm)

Considering the spintronic applications concerning magnetoresistance (MR) that depends on the spin polarization of the materials being used, an in-depth study of the growth of nanocrystalline Fe$_3$O$_4$ thin films is of interest. A relatively large low-field MR (-6% at 300 K to -10.0% at 200 K at the field of 5 kOe) was indeed found in nanocrystalline films [22]; however, in most cases, large MR could only be obtained at a high field and especially at low temperatures. The MR response in Fe$_3$O$_4$ seems to be very sensitive to the preparation conditions, and the reason for low or inconsistent MR response could be because of the non-stoichiometry grain boundaries and surface spin arrangement. In literature, nanocrystalline Fe$_3$O$_4$ thin films have been grown by a range of deposition techniques, such as evaporation, sputtering, molecular beam epitaxy, and pulsed laser deposition (PLD) [23–25].

Previously, the author has worked extensively on oxide films, and we consider that the PLD [26–28] is the most suitable technique for stoichiometric growth of complex oxides. The deposition of Fe$_3$O$_4$ has been performed in a reducing atmosphere (under the vacuum of 1 × 10$^{-3}$ mbar and substrate temperature, T_S: RT-850°C) from the α-Fe$_2$O$_3$ target on an amorphous quartz substrate [26]. This regime can produce Fe$_3$O$_4$ in a limited T_S window of 350-500°C (see Figure 4(a): Fe/O phase diagram). These films were followed by two different annealing processes, namely, (1) vacuum annealing and (2) wet H$_2$ annealing, in that the wet H$_2$ annealing only produces single-phase Fe$_3$O$_4$ films with grain sizes ranging 30-60 nm. The normalized M vs. T curve shows noticeable VT (see Figure 4(b)) which is a useful indicator for the stoichiometry of the samples, except for a higher T_S film showing a broad transition due to slight Fe/O off-stoichiometry.

The electric transport properties of the nanocrystalline Fe$_3$O$_4$ thin films are not well defined as compared to the magnetic properties, particularly the absence of VT (see Figure 4(b)). To understand this contradictory behaviour, we plotted M/M_s (300 K) vs. T curves at different fields for one of the representative samples (T_S = 500°C), as shown in Figure 5(a). We see that the magnitude of the drop in magnetizations at VT has severely reduced from 40% to 0.4% with the increasing field from 0.5 to 20 kOe [27]. This raises a question if this drop in magnetization is due to a change of the magnetic moment of Fe$_3$O$_4$ or is it just a manifestation of the increased anisotropy. The M-H loops (inset) support our arguments that the nonsaturation of magnetization at high fields and coercivity have increased significantly below VT. We fitted the high-field part of M-H loops to the approach to saturation formula, $4\pi M = Q [1 - (H/H_s)^{1/2}]$, where Q is the magnetization at the infinite field and H_s is related to the magnetocrystalline anisotropy [27]. The Q vs. T curve (Figure 5(b)) does not show any drop in magnetizations around VT as was seen in Figure 5(a) for low fields. We
can conclude that the intrinsic saturation magnetic moment does not show any drop while cooling across VT, and whatever drop in magnetization we observed in Figure 5(a), it is just because of inadequate saturation field and there is nothing to do with any magnetic interaction change. This transition can also happen even if there is no structural transition but if there is a change in anisotropy. We now argue that charge order is triggered by the structural transition and it has nothing to do with magnetic ordering, as discussed by us elsewhere [28]. So the absence of VT in electronic transport may have a different origin like grain boundary volume, and defects/vacancies induced intergranular strain in nanocrystalline Fe$_3$O$_4$ films that suppress the resistivity change caused during VT [28].

Another interesting feature comes from large magnetocaloric effect observed in these nanocrystalline Fe$_3$O$_4$ films around VT, as shown in Figure 5(c). The fitting of M-H loops in Maxwell equations [29], $\delta S_M = \int_H^H (\partial M/\partial T)dH$,
yield large positive entropy change $\delta S = 2.12$ J/kg K at VT under the field of 10 kOe. The magnitude of δS depends upon the detail microstructures of nanocrystalline films produced by different thermal treatments. This result is significant for cooler on-chip devices for next-generation nano-/microelectromechanical systems (NEMS/MEMS).
3.3. Epitaxial Films (1 nm < Nanothick < 200 nm). Despite the remarkable amount of work devoted in preparing Fe$_3$O$_4$ thin films in the last two decades, the VT even in epitaxial thin films is extremely broad and occurs at substantially lower temperatures as compared to the high-quality bulk single crystals. A systematic study on the influence of oxygen stoichiometry on epitaxial Fe$_3$O$_4$ films found that even for the optimal oxygen composition, the transition remains broad [22]. The study also discovered that the microstructure of the films has an important role; particularly, a larger domain size distribution results in a broader transition and a small domain size gives lower transition temperatures. The transition itself is still first order as it shows hysteresis, and there are indications that each domain has its transition temperature. Various substrates have been used in the literature to grow epitaxial Fe$_3$O$_4$ thin films, e.g., MgO, MgAl$_2$O$_4$, Al$_2$O$_3$, SrTiO$_3$, and BaTiO$_3$ [30]. These studies suggest that the larger the lattice mismatch, the broader the transition and the lower the average transition temperature.

Recently, Liu et al. [30] succeeded in making a particular class of spinel substrates that allows the growth of Fe$_3$O$_4$ thin films with the VT as sharp as in bulk. The key principle was to obtain sufficiently large domain sizes of Fe$_3$O$_4$ thin films with small domain size distribution. Figure 6(a) shows ρ vs. T curves of 40 nm thick Fe$_3$O$_4$ (001) films grown on MgO and spinel substrates (Co$_2$TiO$_4$, Co$_{1.75}$Mn$_{0.25}$TiO$_4$, and Co$_{1.25}$Fe$_{0.5}$Mn$_{0.25}$TiO$_4$), along with bulk Fe$_3$O$_4$ single crystal. We can see that the bulk sample has a sharp VT at 124 K, whereas the film on MgO shows the typical broad transition at lower temperatures. In contrast, the thin films grown on the spinel substrates all show a very sharp transition, almost as sharp as the bulk with a hysteresis value of 0.7 K. The most exciting feature is that now the transition temperatures of thin films grown on spinel substrates (127 K on Co$_2$TiO$_4$ (lattice mismatch +0.66%), 133 K on Co$_{1.75}$Mn$_{0.25}$TiO$_4$ (+0.98%), and 136 K on Co$_{1.25}$Fe$_{0.5}$Mn$_{0.25}$TiO$_4$ (+1.11%)) are even higher than those of the bulk [31–35]. Figure 6(b) shows that T_V gradually increases with the film thickness and, again, that it is larger for the spinel substrates with the larger lattice constant mismatch between the film and the substrate. Although films with the thicknesses of 5 nm and less do not show a VT, we can see a well-defined transition for films when they are 10 nm or thicker. Thus, using tensile strain, one can increase the transition temperature into considerably higher values than bulk. The occurrence of the VT in the highly anisotropic strained films raises a new question on the intricacies of the interplay between the charge and orbital degrees of freedom of the Fe ions in Fe$_3$O$_4$, adding another aspect to the elusiveness of this quantum material.

The anisotropic magnetoresistance (AMR) of high-quality epitaxial Fe$_3$O$_4$ films on MgO (100) and Al$_2$O$_3$ (0001) substrates [36] was investigated in charge-ordering state, as shown in Figure 7(a). It was found that the Verwey transition contains two processes, a fast charge-ordering process and a continuous formation of trimeron process. In the Fe$_3$O$_4$ (001) film, the twofold AMR at 104 K < 116 K comes from the uniaxial magnetic anisotropy, whereas the fourfold AMR at $T = 104$ K can be ascribed to the in-plane trimers (Figure 7(b)). However, AMR in the Fe$_3$O$_4$ (111) film maintains twofold symmetry (Figure 7(c)). By comparing the AMR below T_V between two oriented films, it shows the maxima when the trimers are parallel to the magnetic...
particles (6–14 nm). The VT of Fe$_3$O$_4$ near 120 K is seen in the VT in shape-controlled small amine-coated Fe$_3$O$_4$ magnetic nanocrystals. Recently, Mitra et al. [1] investigated a crucial role in deciding the magnetic characteristics of the is to tailor the shape of the particles, since anisotropy plays a scale; an alternate approach to optimize the stoichiometry and it is hardly observed in superparamagnetic length scale; an alternate approach to optimize the stoichiometry is to tailor the shape of the particles, since anisotropy plays a crucial role in deciding the magnetic characteristics of the magnetic nanocrystals. Recently, Mitra et al. [1] investigated the VT in shape-controlled small amine-coated Fe$_3$O$_4$ nanoparticles (6–14 nm). The VT of Fe$_3$O$_4$ near 120 K is seen in octahedral particles (Figure 8(a)), but it is not observed in their spherical particles (Figure 8(b)) in the FC- (field cooled-) ZFC (zero field cooled) measurements. The facets of octahedral particles consist of energetically most stable {111} planes which are protected against surface oxidation. The surface anisotropy is substantially reduced since the flat surface of octahedron has fewer broken bonds and oxygen vacancies. A lower concentration of defects and almost no oxidized layer at the surface provide a better stoichiometry to octahedral particles, which is the cause of the VT in octahedral nanoparticles.

Unfortunately, the crystal quality of spherical nanoparticles suffers from surface spin disorder and uncompensated bonds; epitaxial Fe$_3$O$_4$ nanorods with well-defined magnetic anisotropy are very promising as building blocks in spintronic devices. Chandra et al. [37] demonstrated the epitaxial growth of highly oriented Fe$_3$O$_4$ nanorods on SrTiO$_3$ substrates by hydrothermal synthesis, as depicted in Figure 8(c). The epitaxial nanorods show biaxial magnetic anisotropy with an order of magnitude difference between the anisotropy field values of the easy and hard axes along with sharp VT. The interplay of epitaxy and enhanced magnetic anisotropy at room temperature, concerning randomly oriented Fe$_3$O$_4$ powder, and the nanorods are useful materials for magnetic data storage. Differently, Fe$_3$O$_4$ nanocubes [38] synthesized by the oxidation of Fe$_{1-x}$O/Fe$_3$O$_4$ core-shell nanocubes (see in Figure 8(d)) show a kink at 110 K in the ZFC curve which can be attributed to the VT; however, it is not that much sharp as observed in nanorods and octahedral particles of Fe$_3$O$_4$.

3.4. Other Nanostructured Fe$_3$O$_4$ Geometries

While a lot of work has been done in thin film form, little is known about the potential use of Fe$_3$O$_4$ for device applications in nanoparticle morphology. Also, the VT is very sensitive to stoichiometry and is hardly observed in superparamagnetic length scale; an alternate approach to optimize the stoichiometry is to tailor the shape of the particles, since anisotropy plays a crucial role in deciding the magnetic characteristics of the magnetic nanocrystals. Recently, Mitra et al. [1] investigated the VT in shape-controlled small amine-coated Fe$_3$O$_4$ nanoparticles (6–14 nm). The VT of Fe$_3$O$_4$ near 120 K is seen in octahedral particles (Figure 8(a)), but it is not observed in their spherical particles (Figure 8(b)) in the FC- (field cooled-) ZFC (zero field cooled) measurements. The facets of octahedral particles consist of energetically most stable {111} planes which are protected against surface oxidation. The surface anisotropy is substantially reduced since the flat surface of octahedron has fewer broken bonds and oxygen vacancies. A lower concentration of defects and almost no oxidized layer at the surface provide a better stoichiometry to octahedral particles, which is the cause of the VT in octahedral nanoparticles.

3.4. Other Nanostructured Fe$_3$O$_4$ Geometries. While a lot of work has been done in thin film form, little is known about the potential use of Fe$_3$O$_4$ for device applications in nanoparticle morphology. Also, the VT is very sensitive to stoichiometry, and it is hardly observed in superparamagnetic length scale; an alternate approach to optimize the stoichiometry is to tailor the shape of the particles, since anisotropy plays a crucial role in deciding the magnetic characteristics of the magnetic nanocrystals. Recently, Mitra et al. [1] investigated the VT in shape-controlled small amine-coated Fe$_3$O$_4$ nanoparticles (6–14 nm). The VT of Fe$_3$O$_4$ near 120 K is seen in octahedral particles (Figure 8(a)), but it is not observed in their spherical particles (Figure 8(b)) in the FC- (field cooled-) ZFC (zero field cooled) measurements. The facets of octahedral particles consist of energetically most stable {111} planes which are protected against surface oxidation. The surface anisotropy is substantially reduced since the flat surface of octahedron has fewer broken bonds and oxygen vacancies. A lower concentration of defects and almost no oxidized layer at the surface provide a better stoichiometry to octahedral particles, which is the cause of the VT in octahedral nanoparticles.

Unfortunately, the crystal quality of spherical nanoparticles suffers from surface spin disorder and uncompensated bonds; epitaxial Fe$_3$O$_4$ nanorods with well-defined magnetic anisotropy are very promising as building blocks in spintronic devices. Chandra et al. [37] demonstrated the epitaxial growth of highly oriented Fe$_3$O$_4$ nanorods on SrTiO$_3$ substrates by hydrothermal synthesis, as depicted in Figure 8(c). The epitaxial nanorods show biaxial magnetic anisotropy with an order of magnitude difference between the anisotropy field values of the easy and hard axes along with sharp VT. The interplay of epitaxy and enhanced magnetic anisotropy at room temperature, concerning randomly oriented Fe$_3$O$_4$ powder, and the nanorods are useful materials for magnetic data storage. Differently, Fe$_3$O$_4$ nanocubes [38] synthesized by the oxidation of Fe$_{1-x}$O/Fe$_3$O$_4$ core-shell nanocubes (see in Figure 8(d)) show a kink at 110 K in the ZFC curve which can be attributed to the VT; however, it is not that much sharp as observed in nanorods and octahedral particles of Fe$_3$O$_4$.

3.4. Other Nanostructured Fe$_3$O$_4$ Geometries. While a lot of work has been done in thin film form, little is known about the potential use of Fe$_3$O$_4$ for device applications in nanoparticle morphology. Also, the VT is very sensitive to stoichiometry, and it is hardly observed in superparamagnetic length scale; an alternate approach to optimize the stoichiometry is to tailor the shape of the particles, since anisotropy plays a crucial role in deciding the magnetic characteristics of the magnetic nanocrystals. Recently, Mitra et al. [1] investigated the VT in shape-controlled small amine-coated Fe$_3$O$_4$ nanoparticles (6–14 nm). The VT of Fe$_3$O$_4$ near 120 K is seen in octahedral particles (Figure 8(a)), but it is not observed in their spherical particles (Figure 8(b)) in the FC- (field cooled-) ZFC (zero field cooled) measurements. The facets of octahedral particles consist of energetically most stable {111} planes which are protected against surface oxidation. The surface anisotropy is substantially reduced since the flat surface of octahedron has fewer broken bonds and oxygen vacancies. A lower concentration of defects and almost no oxidized layer at the surface provide a better stoichiometry to octahedral particles, which is the cause of the VT in octahedral nanoparticles.

Unfortunately, the crystal quality of spherical nanoparticles suffers from surface spin disorder and uncompensated bonds; epitaxial Fe$_3$O$_4$ nanorods with well-defined magnetic anisotropy are very promising as building blocks in spintronic devices. Chandra et al. [37] demonstrated the epitaxial growth of highly oriented Fe$_3$O$_4$ nanorods on SrTiO$_3$ substrates by hydrothermal synthesis, as depicted in Figure 8(c). The epitaxial nanorods show biaxial magnetic anisotropy with an order of magnitude difference between the anisotropy field values of the easy and hard axes along with sharp VT. The interplay of epitaxy and enhanced magnetic anisotropy at room temperature, concerning randomly oriented Fe$_3$O$_4$ powder, and the nanorods are useful materials for magnetic data storage. Differently, Fe$_3$O$_4$ nanocubes [38] synthesized by the oxidation of Fe$_{1-x}$O/Fe$_3$O$_4$ core-shell nanocubes (see in Figure 8(d)) show a kink at 110 K in the ZFC curve which can be attributed to the VT; however, it is not that much sharp as observed in nanorods and octahedral particles of Fe$_3$O$_4$.

4. Applications

4.1. Multiferroic Properties

In addition to all its acclaimed fame, Fe$_3$O$_4$ is also probably one of the first multiferroics, which shows the ferroelectric effect (FE) in its insulating state below VT [39–48]. However, the microscopic nature of the FE in Fe$_3$O$_4$ is still a matter of debate. Probably, it is related to the coexistence of bond-centred and charge-centred charge ordering. In the proposed structural and charge pattern, besides the site-centred charge ordering, one also notices the alternation of the formal Fe$^{2+}$ and Fe$^{3+}$ valence states and strong modulation of the Fe-Fe distances (the bond lengths). In the structure shown in Figure 9(a) [49], one sees that, e.g., along the Fe chains running in the (110) direction (in cubic setting), i.e., in the xy chains, there is an alternation of Fe$^{2+}$ and Fe$^{3+}$ (open and filled circles), but simultaneously there is an alternation of short and long Fe-Fe bonds. This direction corresponds to the monoclinic b-direction, in which the polarization is observed. In this framework, each of such (110) mixed bond- and site-centred charge-ordering chains gives a nonzero contribution to the electrical polarization.

Firmly, the proof for the existence of FE order (as shown in Figure 9(b)) in 150 nm thick Fe$_3$O$_4$ films synthesized by pulsed laser deposition and magnetron sputtering on Nb-doped SrTiO$_3$ substrates has been investigated recently [50]. The appearance of ferroelectric order below 38 K was...
explained by the existence of spontaneous electric polarization in the noncentrosymmetric monoclinic Cc structure, which arises from an alternation of charge states and bond lengths [51, 52]. However, it is surprising that the electric polarization does not already develop at the VT. This is because in between 40 K and T_V, the electric polarization is suppressed by relaxation processes due to electron tunnelling and electron hopping processes [53], glassy polar degrees of freedom [54], or thermally activated structural processes [55]. Since the easy-axis direction is generally stabilized by the film-substrate strain, it would be easier to observe a ferroelectric polarization in thin films than in bulk. Indeed, the polarization values measured in Fe$_3$O$_4$ films tend to be larger than in single crystals. This scenario explains the close relation between magnetoelectric effects and relaxation processes observed both in the electric and magnetic susceptibilities. In contrast to conventional relaxor ferroelectrics [56], the relaxor behaviour in Fe$_3$O$_4$ is not driven by chemical heterogeneity but by the dynamical structural disorder.

Conventionally, the multiferroics are single-phase materials with the coexistence of ferromagnetism, ferroelectricity, or ferroelasticity, which can result in novel functionalities. Because of advancement of the thin-film growth techniques and computational capabilities, the coupling in multiferroics that was predicted in 1894 has developed rapidly [57, 58]. In the class of single-phase multiferroic materials, magnetism occurs independently from ferroelectricity. Some multiferroic heterostructures have been produced by compound ferromagnetics (Fe$_3$O$_4$) with ferroelectrics BaTiO$_3$ [59], Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_7$-PbTiO$_3$ (PMN-PT) [60], PdZr$_x$Ti$_{1-x}$O$_3$ (PZT) [61], BiFeO$_3$ [62], HoMnO$_3$, and YMnO$_3$ [63]. These multiferroic heterostructures show the strong interfacial magnetoelectric effects [64–69], which can be used in
multifunctional spintronic, nanoelectronic, and optoelectronic devices.

Electric-field-controlled magnetism and VT in highly correlated \(\text{Fe}_3\text{O}_4 \) materials have generated great interest recently both scientifically and technologically [51]. Ferroelastic strain control of VT was observed in epitaxial \(\text{Fe}_3\text{O}_4 \) thin films grown on PMN-PT (011) substrate [4], as shown in four-point geometry (Figure 10(a)). Through ferroelastic control of lattice strain, the TV shot up by 8 K, evidenced by large changes in resistivity once the sample is poled with a DC field of 10 kV/cm (inset Figure 10(a)). Thus, electrical modulation of in-plane epitaxial strain is a far more effective way to manipulate VT than a pure volume change argument.

On the other hand, epitaxial \(\text{Fe}_3\text{O}_4 \) films incorporated into a gated device structure [51] (Figure 10(b)) demonstrate the ability to control the VT with static electric fields. The TV increases for both polarities of the electric field, indicating that the effect is not driven by changes in carrier concentration. The energetics of induced electric polarization and strain within the \(\text{Fe}_3\text{O}_4 \) film provides a possible explanation for this behaviour.

Another example of magnetoelectric coupling is the magnetic properties of \(\text{Fe}_3\text{O}_4/\text{BaTiO}_3 \) heterostructures which observe remarkable changes (as shown in Figure 11) at various structural phase transitions of \(\text{BaTiO}_3 \) substrate [70]. Upon tetragonal to orthorhombic transition (T to O), the lattice parameter of \(\text{BaTiO}_3 \) dramatically decreases, which induces compressive strain in the \(\text{Fe}_3\text{O}_4 \) thin film. This increased strain anisotropy leads to an abrupt increase of in-plane magnetization, coercivity, and remanent magnetization of \(\text{Fe}_3\text{O}_4 \) (Figures 11(b) and 11(c)) [70]. While in transition from orthorhombic to rhombohedral (O to R), the lattice parameter of \(\text{BaTiO}_3 \) now dramatically increases, resulting in a decrease of the compressive strain, which leads to an opposite effect on magnetic properties of \(\text{Fe}_3\text{O}_4 \) (Figures 11(b) and 11(c)). The \(\text{Fe}_3\text{O}_4 \) (001) film, which has a negative magnetostriction coefficient, is under compressive stress when it is in contact with \(\text{BaTiO}_3 \). With the decrease of temperature, the lattice mismatch between \(\text{Fe}_3\text{O}_4 \) and \(\text{BaTiO}_3 \) increases. These temperature-driven structural transformations of \(\text{BaTiO}_3 \) induce various anisotropies that cause magnetic properties to change, in a way similar to the VT, however at elevated temperatures.

The quantitative understanding of converse magnetoelectric effects, i.e., the variation of the magnetization as a function of an applied electric field in extrinsic multiferroic hybrids, is a key prerequisite for the development of future spintronic devices. The strain-mediated converse magnetoelectric effect in \(\text{Fe}_3\text{O}_4/\text{BaTiO}_3 \) heterostructures was also realized at room temperature [34]. This demonstrates that the electric-field-induced changes of the magnetic state in the \(\text{Fe}_3\text{O}_4 \) thin film can be well described by the presence of two different ferroelastic domains in the \(\text{BaTiO}_3 \) substrate, resulting in two differently strained regions in the \(\text{Fe}_3\text{O}_4 \) film with different magnetic properties. The two-region model allows predicting the converse magnetoelectric effects in multiferroic hybrid structures consisting of ferromagnetic thin films on ferroelastic substrates.
Digital memory comes with the ability to switch between distinct electronic and magnetic phases with a control voltage. Small changes in structure and charge density near a transition between competing phases can tip the balance among them, leading to large changes in electronic and magnetic properties. Devices based on this principle can be both fast and energy efficient [71], overcome some of the intrinsic limitations in conventional field-effect transistors [72], and also provide new functionalities [73–75]. While these properties point to a pathway for creating novel functionalities, reversible and nonvolatile switching between different phases using strain has been unexplored.

4.2. Spin Seebeck Effect. The spin Seebeck effect (SSE) refers to the generation of a spin voltage caused by a temperature gradient in a ferromagnet, which enables the thermal injection of spin currents from the ferromagnet into an attached nonmagnetic metal over a macroscopic scale of several millimetres. Despite decades of research into thermoelectric materials and properties, the efficiency of thermoelectric devices has remained low due to the interdependence of the Seebeck voltage, S; the resistivity, ρ; and the thermal conductivity [76, 77]. One promising approach to overcome this problem and increase the versatility of thermoelectric devices involves exploiting the spin of the electron in addition to its charge and heat transport properties. In contrast to conventional thermoelectrics, this effect offers the possibility for another approach in all-solid-state energy conversion devices, since it involves properties of at least two different materials that can be optimized independently. The SSE for the laser-ablated Fe$_3$O$_4$ (thickness = 50 nm)/PMN-PT structure and ferroelastic strain state dependence of resistivity as a function of temperature (a) [4]. Electrical gating of Fe$_3$O$_4$ where the dielectric layer consists of PMMA (900 nm)/Al$_2$O$_3$ (50 nm)/MgO (10 nm). Temperature dependence of resistance for applied electric fields of +1.8 MV/cm (blue), +0.9 MV/cm (orange), 0 MV/cm (black), −0.9 MV/cm (green), and −1.8 MV/cm (red). The arrows show T_V for each electric field, which is summarized in the inset (b) [51].

Figure 10: Schematics of four-point resistance measurement for Fe$_3$O$_4$/PMN-PT structure and ferroelastic strain state dependence of resistivity as a function of temperature (a) [4]. Electrical gating of Fe$_3$O$_4$ where the dielectric layer consists of PMMA (900 nm)/Al$_2$O$_3$ (50 nm)/MgO (10 nm). Temperature dependence of resistance for applied electric fields of +1.8 MV/cm (blue), +0.9 MV/cm (orange), 0 MV/cm (black), −0.9 MV/cm (green), and −1.8 MV/cm (red). The arrows show T_V for each electric field, which is summarized in the inset (b) [51].
The focus is to observe the SSE below the Verwey transition \((T < T_{\text{TV}}) \) (Figure 12(b)), and an SSE coefficient \((S_{\text{SP}}) \) at 105 K was estimated to be 52 nV/K. There is a clear reduction in SSE compared to the value observed at 300 K that could be related to the changes induced by the VT on the thermal and magnetic properties of the film, which can affect the thermal spin pumping at the \Fe\O_layer/Pt interface and therefore the observed SSE signal. Such thermoelectric effects result from the combination between charge and heat current in suitable materials having applications as electric cooling systems or thermal power generators.

4.3. Exchange Bias. An exchange bias (EB) phenomenon is a property of coupled antiferromagnetic- (AFM-) ferromagnetic (FM) systems that occur due to magnetic interface effects [78]. It manifests itself in a shifting \((H_{\text{EB}}) \) of \(M\)-\(H \) loop along the field axis and enhancement of coercivity \((H_{C}) \) when the system is cooled down in an external magnetic field through the magnetic ordering temperatures of the AFM \((T_{N}) \) and FM \((T_{C}) \) phases. It has been reported that the EB can be influenced by many factors in the FM/AFM system, such as the FM magnetization \(M_{\text{FM}} \), the thickness of FM layer \(t_{\text{FM}} \) or AFM layer \(t_{\text{AFM}} \), and the anisotropy of AFM \((K_{\text{AFM}}) \) or FM \((K_{\text{FM}}) \) [79]. A rapid change in \(K_{\text{FM}} \) is observed in the vicinity of \(T_{V} = 120 \text{ K} \) due to the structural transformation from cubic to a more anisotropic monoclinic phase. Therefore, this change in \(K_{\text{FM}} \) will result in variation in \(H_{E} \). Liu et al. [6] verify this transition tunability by preparing an interface with thicknesses of \Fe\O_4 and CoO as 40 nm and 5 nm, respectively, in the FM/AFM bilayer system.

The FC-ZFC magnetization curves of CoO (5 nm)/\Fe\O_4 (40 nm)/MgO (001) AF/FM system in Figure 13(a) show a rapid change in magnetization at the VT. At the same temperature, \(H_{C} \) observes a sharp enhancement in the AF/FM system compared to the bare \Fe\O_4 (40 nm)/MgO (001) layer (inset a), indicating exchange anisotropy that is coupled with magnetocrystalline anisotropy change due to structural transformation. Figure 13(b) shows notable \(H_{E} \) change below VT. For \Fe\O_4, the low-temperature monoclinic magnetocrystalline anisotropy constants are considerably greater (about 10 times) than those of the high-temperature cubic structure. The correlation between \(H_{E}^{2} \) and \(H_{C} \) (inset b) indicates further that \(K_{\text{FM}} \) has a sole responsibility for such enhancement at VT.

4.4. Spin Accumulation. Spin-dependent transports (particularly spin injection, manipulation, and detection) are the integral parts of semiconductor spintronic devices and have attracted tremendous attention. Recent studies have demonstrated that spin-polarized carriers injected from a ferromagnetic material to a semiconductor lead to nonequilibrium spin accumulation and spin current over spin diffusion length [80, 81]. The magnitude of spin accumulation in any system depends on factors like type of the injector, the spin polarization of the ferromagnet/insulator combination, junction resistance, and the uniformity of film at the interface. Half-metallic \Fe\O_4 can be a potential choice for spin injector material compared to the ferromagnetic metals. Recently, Bhat and Kumar [7] investigated spin injection from \Fe\O_4 as a spin source into GaAs and Si (both \(n \) and \(p \)-type) semiconductors using with and without a tunnel barrier (MgO) via three-terminal electrical Hanle (3TH) measurement, as shown in Figure 14(a). Application of a constant current \(I \) through the \Fe\O_4 layer makes sure that sufficient spin-polarized carriers are pumped into the semiconductor where the decay of spin-polarized carriers will be measured. Once, the spins are injected into the semiconductor, these accumulated spin-polarized carriers at the junction of semiconductor get scattered or processed depending on the type of semiconductor. Thus, there is a gradient in the measured voltage \(\Delta V \) between the device and the far end of semiconductor due to the spin-scattering process within these semiconductors which can be further controlled by applying a perpendicular magnetic field \(B \). The \(\Delta V \) can be expressed as \(\Delta V = \text{TSP} \times \Delta \mu /2 \), where TSP is the tunnel spin polarization of the ferromagnet/insulator combination and \(\Delta \mu = \mu_{\uparrow} - \mu_{\downarrow} \) the difference in chemical potential for up-spins and down-spins, which is nothing but the spin accumulation at the injected material. Strikingly, the normalized spin accumulation voltage \((\Delta V/\Delta V_{\text{max}}) \) (see Figure 14(b)) in the semiconductor is found to be associated with a drastic increment in \Fe\O_4-based devices below \(T_{V} \). Such an enhancement of \(\Delta V \) is absent in the devices with Fe as a spin.
source. Further, the overall device resistance measured by 2 probes has no drastic difference at the T_V (see Figure 14(c)). From this, it can be concluded that the T_V of the Fe$_3$O$_4$ film has a direct influence on the magnitude of spin accumulation, and the resistance enhancement of Fe$_3$O$_4$ film itself has no vital role in the observed enhancement of spin accumulation. This result is consistent with the investigation of Wang et al. [82] and Ziese et al. [83] showing the maximum spin polarization of Fe$_3$O$_4$ observed at T_V using MR measurements.

Thus, an anomalous increase in ΔV can be attributed purely to the spin subband modification across T_V but not to the increase in resistance. Since the VT is associated with a structural modification, the configuration of subbands of Fe$_3$O$_4$ along with the tunnel barrier might influence the total spin accumulation, as ΔV depends directly on the tunnel spin polarization of Fe$_3$O$_4$/MgO. But the similar magnitude of enhancement in spin accumulation is even present in the Schottky junction of Fe$_3$O$_4$ on GaAs, ruling out the role of MgO electronic band structure. Hence, the spin
injection and detection into conventional semiconductors like GaAs and Si can be improved with the help of materials like Fe$_3$O$_4$ with higher spin polarization. This result also suggests that the theoretical prediction of room temperature half-metallicity of Fe$_3$O$_4$ above and below T_V has to be reinvestigated.

4.5. Organic Spintronics. \(\Pi\)-conjugated organic semiconductors (OS) are extremely attractive materials for the transport of spin-polarized electrons to long distances [84, 85]. The major difference between inorganic and organic solids is that electrical transport is via band conduction in the former and carrier hopping in the latter. The conduction (carrier/spin injection and extraction) takes place through an abstract spin valve (SV) (shown in the inset of Figure 15(c)) that filters spin-polarized electrons by alignment of the energetic position of the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of the OS relative to the Fermi level (E_F) of the ferromagnetic (FM) electrode (Figure 15(a)). This concept is applied to make memory and sensor devices working on giant magnetoresistance (GMR) and tunnel magnetoresistance (TMR). As discussed previously, Fe$_3$O$_4$ provides excellent spin injection at RT and supplementary spin accumulation at and below

Figure 14: Schematics of the electrical 3TH measurement and the spin relaxation in a semiconductor (a). The plot of normalized spin accumulation voltage ΔV vs. T of Fe$_3$O$_4$/MgO/GaAs, Fe$_3$O$_4$/GaAs, Fe$_3$O$_4$/MgO/Si, and Fe/MgO/GaAs devices showing the Verwey transition (shaded region) coinciding exactly the region of enhancement in ΔV (b) while the normalized value of local 2-probe voltages as a function of T for this sample is plotted for comparison (c) [7].
T_V [6]. Convincingly, tuning of charge gap (0.15 eV) at E_F across VT due to charge ordering on the octahedral iron sites of Fe$_3$O$_4$ is believed to result in a corresponding tuning of conduction mode and a unique crossover from GMR to TMR in Fe$_3$O$_4$/Alq$_3$/Co interface as proposed by Dey et al. [86] with the energy band diagram given in Figure 15(a).

Interestingly, the I-V curves (Figure 15(b)) at higher temperatures $T > T_V$ exhibit clear signs of tunnelling which further confirms from parabolic differential dI/dV curves (Figure 15(c)). But, at $T < T_V$, the curve is different and exhibits the beginning of the injection mode at a bias of 2 V (Figure 15(b)). The conduction observed at $T < T_V$ is described by “activated” carrier injection into the molecular orbitals of OSC at the electrode-OSC interface, followed by “activated” carrier hopping through the molecular orbitals towards the opposite electrode, where the extraction of carriers from OSC takes place. While the $T > T_V$ conduction is achieved through carrier tunnelling process, there is a drastic change in conductivity mode in SV from injection to tunnel mode as a function of “temperature,” signifies VT, as the origin of this effect. For $T < T_V$, there is a formation of charge gap at E_F; consequently, activated carrier transport with the device current governed by carrier injection and transport through molecular levels of Alq$_3$ could be assigned as GMR. For $T > T_V$, with the decrease or even closure of this energy gap, all the charge carriers take part in the conduction process. Activated carrier transport no more remains relevant in this scenario, and the device current should be governed by tunnelling conduction in this temperature regime. Both GMR and TMR have been observed in a single

T_V below/above the T_V, and a drastic tuning in SV properties is triggered by VT of Fe$_3$O$_4$ electrode.

5. Conclusions

The aim of current day research is to innovate electromagnetic devices with advanced materials that can operate at lower power with higher speed, yet without compromising the aim of shrinking their size. For this goal, a comprehensive review of the growth of various nanostructured Fe$_3$O$_4$ geometries and its hallmark Verwey transition is in a time of need. It is very exciting to observe the ensemble of anomalies VT brought forth at the nanoscale. It is not full-size dependent, but shape morphology also plays a crucial role in determining the energetically stable surface of stoichiometric Fe$_3$O$_4$. In nanocrystalline thin films, the electronic transport properties behave differently compared to the magnetic properties, particularly the absence of VT and the presence of antiphase boundaries caused by defects, off-stoichiometric Fe$^{2+}$/Fe$^{3+}$ ratio, and micro-/nanostrains emanating from different growth conditions. Interestingly, the Verwey transition temperature T_V can be tailored in epitaxial Fe$_3$O$_4$ thin films either by compressive strain using underneath special spinel substrates or integrated with a gated circuit using the electric field.

The following are the possible applications of nanostructured Fe$_3$O$_4$ wherein VT can be exploited in the future:

1. Different Fe$_3$O$_4$-based multiferroic heterostructures can be developed by interfacial engineering (epitaxial strain, charge, oxygen vacancy, exchange, and spin-
Conflicts of Interest

The authors declare that there is no conflict of interests.

References

