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Schnakenberg model is known as one of the influential model used in several biological processes. The proposed model is an
autocatalytic reaction in nature that arises in various biological models. In such kind of reactions, the rate of reaction speeds
up as the reaction proceeds. It is because when a product itself acts as a catalyst. In fact, model endows fractional derivatives
that got great advancement in the investigation of mathematical modeling with memory effect. Therefore, in the present paper,
the authors develop a scheme for the solution of fractional order Schnakenberg model. The proposed model describes an auto
chemical reaction with possible oscillatory behavior which may have several applications in biological and biochemical
processes. In this work, the authors generalized the concept of integer order Schnakenberg model to fractional order
Schnakenberg model. We provided the approximate solution for the underlying generalized nonlinear Schnakenberg model in
the sense of Caputo differential operator via Laplace Adomian decomposition method (LADM). Furthermore, we established
the general scheme for the considered model in the form of infinite series by the aforementioned technique. The consequent
results obtained by the proposed technique ensure that LADM is an effective and accurate techniques to handle nonlinear
partial differential equations as compared to the other available numerical techniques. Finally, the obtained numerical solution
is visualized graphically by MATLAB to describe the dynamics of desired solution.

1. Introduction

Since the biological processes are not linear systems by
nature, which happen at various time scales, therefore, sev-
eral complex problems arise as a result of fast or slow
responds with following interventions or treatment. Thus,
to capture an appropriate individual trajectories, the study
underconsideration depends on a sequential sample over in
appropriate time course. Although various classical methods
give a significant insight for the better understanding of a
variety of biological processes, but due to some properties
like localizing, quantifying and pressibility of measuring rev-
olutionized our thoughts and motivated the researchers and

scientists to construct some dynamical methods to tackle
various biological phenomena. Most of dynamical and bio-
logical phenomena that are involved in the study of chemical
theory, fluid dynamics, and mathematical biology have more
importance due to explaining the processes related to real
life. Such phenomena are usually modulated by linear or
nonlinear partial differential equations (PDEs). DEs have
ability to predict about the dynamical phenomena around
the globe and also used to describe the exponential growth
and decay over the time. DEs are having a diverse range of
applications in several field, such as physics, engineering,
and biology. The researchers use the tool of differential
equation, to modulate aforesaid phenomena. Furthermore,

Hindawi
Journal of Nanomaterials
Volume 2021, Article ID 9152972, 8 pages
https://doi.org/10.1155/2021/9152972

https://orcid.org/0000-0002-2170-2074
https://orcid.org/0000-0001-6815-678X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9152972


some useful applications of DEs to modulate the engineering
and chemical phenomena can be found in some recent arti-
cles (see [1–5]). PDEs often model multidimensional
dynamical system, i.e., it can be used to formulate natural
phenomena, such as sound, heat, electrostatics, electrody-
namics, quantum mechanics, and flow of fluid (see [6, 7]).

It is important to note that reaction-diffusion systems
have been used over decades to study the deep insights of
biological systems. More precisely, these models have been
used in several biological, physical, environmental, and
chemical processes of real life. In reaction-diffusion systems,
Brusselator, Lengyel-Epstein, and Schnakenberg models are
the most famous due to its applicability and reliable results.
These models are used for generating patterns for both bio-
logical and chemical systems and so called turning type
models. The Schnakenberg model is one of the well-known
chemical reaction-diffusion model which was introduced
by Schnakenberg in 1979. It is important to note that an auto
chemical reaction having oscillatory behavior is precisely
described by Schnakenberg model with a verity of the bio-
logical and biochemical processes like pattern formations
in skin analysis and embryogenesis. Further in biology, it
also models the spatial distribution of a morphogen. Science
in several biological systems, these types of models involve
auto catalytic reactions which natural arises. Therefore, in
such reactions, the rate of reaction boost with the reaction
proceeds, due to the role of a product acts as catalysts. In
tri-molecular reaction, the reaction under consideration
plays a role of two species models. Such types of reaction
between chemical sources A and B and products Φ and Ψ
are described as:

A⇌Φ, B⟶Ψ, 2Φ +Ψ⟶ 3Φ, ð1Þ

where A and B are two chemical sources and Φ and Ψ are
products. A system of reaction-diffusion equations is
obtained by using law of mass of action, for the concentra-
tions ϕðx, tÞ and ψðx, tÞ of the products Φ and Ψ described
in (1). The derived nondimensional form of the system [8, 9]
is given by

∂ϕ x, tð Þ
∂t

= α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1
∂2ϕ x, tð Þ

∂x2
,

∂ψ x, tð Þ
∂t

= β − ϕ2 x, tð Þψ x, tð Þ +D2
∂2ψ x, tð Þ

∂x2
,

8>>><
>>>:

ð2Þ

where ϕ = ϕðx, tÞ and ψ = ψðx, tÞ represent the concentration
and α and β are positive arbitrary constants and represent the
concentration of A and B. D1 and D2 are the diffusion coeffi-
cients of the chemicals Φ and Ψ, for detail study (see [8–11]).

In modern era, the researchers paid keen interest to
investigate nonlinear PDEs due to its wide range of applica-
tions in physics, engineering, and modern sciences. In last
two decades, a considerable number of efforts have been
made to investigate field of the fractional order partial differ-
ential equations (FOPDEs) in all aspects, such as theoretical,
numerical, and applications. These equations provide the

hereditary properties and description of memory effect of
different phenomena. Fractional order differential operator
has the advantage of being a nonlocal operator and possesses
greater degree of freedom as compared to conventional dif-
ferential operator. Fractional calculus has got the consider-
ation of researchers, due to its extensive applications in the
aforesaid fields. The mathematical models involving frac-
tional order derivatives are more reliable and great degree
of freedom and accuracy as compared to traditional deriva-
tives. In some situation, a mathematical model involving
integer order derivative does not describe the real situation.
In such circumstances, fractional order derivatives are more
reliable to describe these real word problems, (see [12–19]).
In this regard, the proposed model has been studied by var-
ious researchers from both analytical and numerical points
of view (see [11, 20, 21]).

After the comprehensive literature review, it was found
that mathematical models consist of Caputo fractional order
operators that are more accurate and reliable instead of inte-
ger order model. Keeping the aforementioned applications
of FDEs, the researchers investigated different aspects of
various mathematical models. In this continuation, the
researchers well explored different aspects of mathematical
modeling and published variety of articles (see [2, 22, 23]).
Therefore, the researchers investigated different features of
aforementioned model. An important class of biochemical
model known as Schnakenberg model represents a chemical
process, where sudden fluctuation occurs during the reaction.
The considered model can be well described by Caputo frac-
tional differential operator instead of integer order derivatives.
Therefore, the author used the idea of Caputo fractional order
derivatives to generalize the concept of model (2) into
Caputo fractional order Schnakenberg model given by

∂σϕ x, tð Þ
∂tσ

= α − βϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1
∂2ηϕ x, tð Þ

∂x2η
,

∂σψ x, tð Þ
∂tσ

= γ − ϕ2 x, tð Þψ x, tð Þ +D2
∂2ηψ x, tð Þ

∂x2η
,

0 < σ, η ≤ 1,

8>>>>><
>>>>>:

ð3Þ

subjected to the initial conditions (ICs)

ϕ x, 0ð Þ = h xð Þ,
ψ x, 0ð Þ = g xð Þ:

ð4Þ

We have established the numerical scheme for aforemen-
tioned model with the help of well-known numerical tech-
nique called LADM. The proposed technique consists of
special polynomial known as Adomian polynomial. The spe-
cific class of this polynomial decomposes the nonlinear term
involving in the model in the form of series. With the help of
Adomian polynomial, the nonlinear term is decomposes as

H w x, tð Þð Þ = 〠
∞

m=0
Am, ð5Þ
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where Am’s are called Adomian polynomials introduced by
Adomian and defined as

Am = 1
Γ m + 1ð Þ

dm

dλm
H〠

m

i=0
λiwi x, tð Þ

" #
λ=0

: ð6Þ

The technique of Laplace Adomian decomposition is the
tool to obtain the approximate solution of nonlinear PDEs.
LADM is the combination of two powerful techniques, i.e.,
Adomian decomposition method and Laplace transform.
The main advantage of LADM is that it can provide both
analytic and numerical solution to a class of nonlinear differ-
ential equations (DEs). The considered technique is more
superior as compared to the other available techniques,
because it gives us particular solutions without finding gen-
eral solution for DEs. Furthermore, it does not require prede-
fined size declaration like Runge-Kutta method, possess less
parameters, and requires no discretization and linearization.
In comparison with other analytical techniques, the proposed
technique is an efficient and simple tool to investigate
numerical solution of nonlinear fractional partial differential
equations. The results obtained by this method, ensure the
capability and reliability of the proposed method for nonlin-
ear fractional partial differential equations (for detail, see [16,
24, 25]).

In present paper, the authors have generalized the idea of
integral order Schnakenberg model to fractional order
model in the terms of singular kernal operator. Moreover,
we have developed the scheme for the considered fractional
model via LADM in the form of infinite series. We have
obtained the semianalytical solution for the considered non-
linear model with the help of proposed techniques. The
results obtained by the proposed technique ensure that the
consider technique is very effective and easy to implement.
The numerical simulation is visualized graphically via
MATLAB to explain the dynamical behavior of aforemen-
tioned model.

2. Preliminaries

The concerned section is devoted to the well-known defini-
tions related to fractional calculus and semianalytic tech-
niques, which are helpful in further corresponding in this
work.

Definition 1 (see [25]). The LT of a function gðx, tÞ, defined
∀t≥0, is denoted by Gðx, sÞ =Lfgðx, tÞg and is given as

G x, sð Þ =L g x, tð Þf g =
ð∞
0
e−stg x, tð Þdt, ð7Þ

where “L” is called LT operator or Laplace transforma-
tion and “s” is the transformed variable.

Definition 2 (see [25]). The noninteger order derivative for
the function ψ on the interval ð0,∞Þ × ð0,∞Þ in Caputo

sense is defined such as

cDαψ x, tð Þ = 1
Γ m − αð Þ

ðt
0
t − sð Þm−α−1ψm x, sð Þds,

α ∈ m − 1,mð Þ,m ∈ℕ,
ð8Þ

where m = ½α� + 1, ½α� is the integeral part of α, and α
denotes real number. Now, for α⟶m, the Caputo frac-
tional derivative becomes conventional nth order derivative
of the function.

Particularly for α ∈ ð0, 1Þ,

cDαψ x, tð Þ = 1
Γ m − 1ð Þ

ðt
0

1
t − sð Þα

∂
∂s

ψ x, sð Þds: ð9Þ

Definition 3 (see [25]). The LT of Caputo derivatives is given
by

L cDαψ x, tð Þf g = sαψ x, sð Þ − 〠
m−1

k=0
sα−k−1ψk x, 0ð Þ,

α ∈ m − 1,mð Þ,m ∈N ,
ð10Þ

where m = ½α� + 1 and ½α� denote the nonfractional part
of α.

3. General Scheme for the Solution
Schnakenberg Model

This section is committed to the general scheme for the solu-
tion of fractional order Schnakenberg model via LADM. The
fractional order nondimensional Schnakenberg model is
given by

∂σϕ x, tð Þ
∂tσ

= α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1
∂2ηϕ x, tð Þ

∂x2η ,

∂σψ x, tð Þ
∂tσ

= β − ϕ2 x, tð Þψ x, tð Þ +D2
∂2ηψ x, tð Þ

∂x2η
,

0 < σ, η ≤ 1,

8>>>>><
>>>>>:

ð11Þ

subjected to ICs:

ϕ x, 0ð Þ = h xð Þ,
ψ x, 0ð Þ = g xð Þ,

ð12Þ

where ϕ = ϕðx, tÞ and ψ = ψðx, tÞ represent the con-
centrations,α and β that are positive arbitrary constants
and D1 and D2 are the diffusion coefficients of the
substances.
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Applying Laplace transform on (11), we have

L
∂σϕ x, tð Þ

∂tσ

� �
=L α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1

∂2ηϕ x, tð Þ
∂x2η

( )
,

L
∂σψ x, tð Þ

∂tσ

� �
=L β − ϕ2 x, tð Þψ x, tð Þ +D2

∂2ηψ x, tð Þ
∂x2η

( )
:

8>>>>><
>>>>>:

ð13Þ

By using properties of Laplace transform, (13) becomes

Φ x, sð Þ − 1
s
ϕ x, 0ð Þ = 1

sσ
L α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1

∂2ηϕ x, tð Þ
∂x2η

( )
,

Ψ x, sð Þ − 1
s
ψ x, 0ð Þ = 1

sσ
L β − ϕ2 x, tð Þψ x, tð Þ +D2

∂2ηψ x, tð Þ
∂x2η

( )
:

8>>>>><
>>>>>:

ð14Þ

Now applying inverse Laplace transform on (14) and
using ICs, we get

ϕ x, tð Þ = h xð Þ +L−1 1
sσ
L α − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ +D1

∂2ηϕ x, tð Þ
∂x2η

( )" #
,

ψ x, tð Þ = g xð Þ +L−1 1
sσ
L β − ϕ2 x, tð Þψ x, tð Þ +D2

∂2ηψ x, tð Þ
∂x2η

( )" #
:

8>>>>><
>>>>>:

ð15Þ

The nonlinear term ϕ2ðx, tÞψðx, tÞ presenting in (15) is
decomposed as

ϕ2 x, tð Þψ x, tð Þ = 〠
∞

n=0
Am, ð16Þ

where Am is called Adomian polynomial and defined as

Am = 1
Γ m + 1ð Þ

dm

dλm
〠
m

i=0
λiϕi x, tð Þ

 !2

〠
m

i=0
λiψi x, tð Þ

 !" #
λ=0

:

ð17Þ

For m = 0

A0 = ϕ20 x, tð Þψ0 x, tð Þ: ð18Þ

For m = 1

A1 = ϕ20 x, tð Þψ1 x, tð Þ + 2ϕ0 x, tð Þψ0 x, tð Þϕ1 x, tð Þ: ð19Þ

The assumed solutions ϕðx, tÞ and ψiðx, tÞ are in the
form of

ϕ x, tð Þ = 〠
∞

i=0
ϕi x, tð Þ,

ψ x, tð Þ = 〠
∞

i=0
ψi x, tð Þ:

ð20Þ

Plugging these values in system (15), we have

〠
∞

i=0
ϕi x, tð Þ = h xð Þ +L−1 1

sσ
L α − 〠

∞

i=0
ϕi x, tð Þ + 〠

∞

n=0
An +D1

∂2η

∂x2η
〠
∞

i=0
ϕi x, tð Þ

( )" #
,

〠
∞

i=0
ψi x, tð Þ = g xð Þ +L−1 1

sσ
L β − 〠

∞

n=0
An +D2

∂2η

∂x2η
〠
∞

i=0
ψi x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð21Þ

Comparing both sides of system (21), we have

ϕ0 x, tð Þ = h xð Þ,
ψ0 x, tð Þ = g xð Þ,

(

ϕ1 x, tð Þ =L−1 1
sσ
L α − ϕ0 x, tð Þ + A0 +D1

∂2η

∂x2η
ϕ0 x, tð Þ

( )" #
,

ψ1 x, tð Þ =L−1 1
sσ
L β − A0 +D2

∂2η

∂x2η
ψ0 x, tð Þ

( )" #
,

8>>>>><
>>>>>:
ϕn x, tð Þ =L−1 1

sσ
L α − ϕn−1 x, tð Þ + An−1 +D1

∂2η

∂x2η
ϕn−1 x, tð Þ

( )" #
,

ψn x, tð Þ =L−1 1
sσ
L β − An−1 +D2

∂2η

∂x2η
ψn−1 x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð22Þ

In this manner, we obtain the desired solution given by

ϕ x, tð Þ = 〠
∞

i=0
ϕi x, tð Þ,

ψ x, tð Þ = 〠
∞

i=0
ψi x, tð Þ:

8>>>><
>>>>:

ð23Þ

By simple computational work, we get

ϕ0 x, tð Þ = h xð Þ,
ψ0 x, tð Þ = g xð Þ,

(

ϕ1 x, tð Þ = α − ϕ0 x, tð Þ + ϕ20 x, tð Þψ0 x, tð Þ +D1
∂2η

∂x2η
ϕ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ ,

ψ1 x, tð Þ = β − ϕ20 x, tð Þψ0 x, tð Þ +D2
∂2η

∂x2η
ψ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ ,

8>>>>><
>>>>>:

ϕ2 x, tð Þ = α
tσ

Γ σ + 1ð Þ − ξ − ϕ20 x, tð Þζ − 2ϕ0 x, tð Þψ0 x, tð Þξ −D1
∂2η

∂x2η
ξ

 !
t2σ

Γ 2σ + 1ð Þ ,

ψ2 x, tð Þ = β
tσ

Γ σ + 1ð Þ − ϕ20 x, tð Þζ + 2ϕ0 x, tð Þψ0 x, tð Þξ −D2
∂2η

∂x2η
ζ

 !
t2σ

Γ 2σ + 1ð Þ ,

8>>>>><
>>>>>:

ð24Þ

where

ξ = α − ϕ0 x, tð Þ + ϕ20 x, tð Þψ0 x, tð Þ +D1
∂2η

∂x2η
ϕ0 x, tð Þ,

ζ = β − ϕ20 x, tð Þψ0 x, tð Þ +D2
∂2η

∂x2η
ψ0 x, tð Þ:

ð25Þ
Thus, the three term solutions are given by
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4. Numerical Discussion

In this section of research work, we provide some numerical
example to illustrate the main work.

Example 1. Let α = β = η = 1 and D1 =D2 = 2, so the pro-
posed model becomes

∂σϕ x, tð Þ
∂tσ

= 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂2

∂x2
ϕ x, tð Þ,

∂σψ x, tð Þ
∂tσ

= 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂2

∂x2
ψ x, tð Þ,

0 < σ,≤1,

8>>>>><
>>>>>:

ð27Þ

subjected to ICs:

ϕ x, 0ð Þ = ex sin x,
ψ x, 0ð Þ = xex:

ð28Þ

Applying Laplace transform to system (27), we get

L
∂σϕ x, tð Þ

∂tσ

� �
=L 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ϕ x, tð Þ
∂x2

( )
,

L
∂σψ x, tð Þ

∂tσ

� �
=L 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ψ x, tð Þ
∂x2

( )
:

8>>>>><
>>>>>:

ð29Þ

By using properties of Laplace transform, system (29)
becomes

Φ x, sð Þ − 1
s
u x, 0ð Þ = 1

sσ
L 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ϕ x, tð Þ
∂x2

( )
,

Ψ x, sð Þ − 1
s
v x, 0ð Þ = 1

sσ
L 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ψ x, tð Þ
∂x2

( )
:

8>>>>><
>>>>>:

ð30Þ

Now applying inverse Laplace transform on (30) and
using ICs, we obtain

ϕ x, tð Þ = ex sin x +L−1 1
sσ
L 1 − ϕ x, tð Þ + ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ϕ x, tð Þ
∂x2

( )" #
,

ψ x, tð Þ = xex +L−1 1
sσ
L 1 − ϕ2 x, tð Þψ x, tð Þ + 2 ∂

2ψ x, tð Þ
∂x2

( )" #
:

8>>>>><
>>>>>:

ð31Þ

The nonlinear term ϕ2ðx, tÞψðx, tÞ involved in (31) is
decomposed by Adomian polynomial

ϕ2 x, tð Þψ x, tð Þ = 〠
∞

n=0
Am: ð32Þ

Plugging these valves in system (31), we have

〠
∞

i=0
ϕi x, tð Þ = ex sin x +L−1 1

sσ
L 1 − 〠

∞

i=0
ϕi x, tð Þ + 〠

∞

m=0
Am + 2 ∂2

∂x2
〠
∞

i=0
ϕi x, tð Þ

( )" #
,

〠
∞

i=0
ψi x, tð Þ = xex +L−1 1

sσ
L 1 − 〠

∞

m=0
Am + 2 ∂2

∂x2
〠
∞

i=0
ψi x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð33Þ

Comparing both sides of system (33), we have

ϕ0 x, tð Þ = ex sin x,
ψ0 x, tð Þ = xex,

(

ϕ1 x, tð Þ =L−1 1
sσ
L 1 − ϕ0 x, tð Þ + A0 + 2 ∂2

∂x2
ϕ0 x, tð Þ

( )" #
,

ψ1 x, tð Þ =L−1 1
sσ
L 1 − A0 + 2 ∂2

∂x2
ψ0 x, tð Þ

( )" #
,

8>>>>><
>>>>>:
ϕn x, tð Þ =L−1 1

sσ
L 1 − un−1 x, tð Þ + Rn−1 + 2 ∂2

∂x2
ϕn−1 x, tð Þ

( )" #
,

ψn x, tð Þ =L−1 1
sσ
L 1 − Rn−1 + 2 ∂2

∂x2
ψn−1 x, tð Þ

( )" #
:

8>>>>><
>>>>>:

ð34Þ

Assume the solution in the form of

ϕ x, tð Þ = 〠
∞

i=0
ϕi x, tð Þ,

ψ x, tð Þ = 〠
∞

i=0
ψi x, tð Þ:

8>>>><
>>>>:

ð35Þ

By simple computational work, we obtain

ϕ x, tð Þ = h xð Þ + 2α − ϕ0 x, tð Þ + ϕ20 x, tð Þψ0 x, tð Þ +D1
∂2η

∂x2η
ϕ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ − ξ − ϕ20 x, tð Þζ − 2ϕ0 x, tð Þψ0 x, tð Þξ −D1
∂2η

∂x2η
ξ

 !
t2σ

Γ 2σ + 1ð Þ+⋯

ψ x, tð Þ = g xð Þ + 2β − ϕ20 x, tð Þψ0 x, tð Þ +D2
∂2η

∂x2η
ψ0 x, tð Þ

 !
tσ

Γ σ + 1ð Þ− ϕ20 x, tð Þζ + 2ϕ0 x, tð Þψ0 x, tð Þξ −D2
∂2η

∂x2η
ζ

 !
t2σ

Γ 2σ + 1ð Þ+⋯

8>>>>><
>>>>>:

ð26Þ
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Figure 2: (a, b) Spatial numerical solution of ϕðx, tÞ in 3D and 2D, respectively.

ϕ1 x, tð Þ = 1 − ex sin x + xe3xsin2x + 4ex cos x
� � tσ
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� � tσ
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8>>><
>>>:

ϕ2 x, tð Þ = tσ
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Continuing the similar fashion, the solution terminated
after three terms is given by

For classical order σ = 1, the solution become

The Schnakenberg mathematical model actually repre-
sents the three steps biochemical processes. In such process,
the final product is in the form of ϕðx, tÞ, whose details are
given in the introduction of this work. As evident form,
the graphical solution of Figures 1(a) and 1(b) shows that
the concentration of ψðx, tÞ increases and then decreases.
While from Figures 2(a) and 2(b), the graph shows that
the concentration of ϕðx, tÞ decreases and then increases.
This is a clear evidence that the final product will be
obtained in terms of ϕðx, tÞ with the passage of times which
justify the aforementioned three-step process.

5. Conclusion

The authors have successfully established the numerical
scheme for the generalized fractional order Schnakenberg
biochemical model. In order to obtain the desired results,
we utilized the tools of well-known numerical technique
called Laplace Adomian decomposition method. We have
obtained the semianalytic solution for the nonlinear Schna-
kenberg model in the sense of Caputo differential operator
with the help of proposed method. To elaborate our main
results, we have provided a numerical example to illustrate
our main work. The numerical simulation has been visual-
ized graphically via MATLAB to explain the model’s dynam-
ical behavior.

Data Availability

The data will be available for public after publication.
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