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Hepatocellular carcinoma (HCC) is among the primary drivers of cancer-related death globally, owing to the ineffectiveness of
treatments in intermediate and terminal stages—an issue that drug delivery therapy techniques are expected to address. Drug
delivery that works therapeutic techniques necessitates the use of efficient and safe drug carriers, and recent improvements in
drug delivery nanocarriers have had a significant impact on HCC targeted delivery. These nanocarriers, including liposomes,
micelles, nanocapsules, polymers, exosomes, and inorganic nanoparticles, are accompanied by favorable unique properties such
as small particle size, good biocompatibility and biodegradability, low immunogenicity, sustained and controlled release
capacity, unique optical, magnetic and heat properties, high drug loading efficiency, and easy surface modification with
targeting ligands. Moreover, studies have shown that these nanocarriers can achieve passive targeting or active targeting effect,
which improves the therapeutic efficacy of drugs and decreases their side effects. In this paper, we provide a brief overview of
some latest studies about nanocarriers for targeting HCC.

1. Introduction

One of the most common types of the primary tumor, hepato-
cellular carcinoma (HCC), has risen to become the world’s
fourth-biggest cause of cancer mortality [1, 2]. Patients with
HCC have a 5-year overall survival rate of just 10-18% [3].
Up to now, surgical resection, liver transplantation, radiofre-
quency ablation, transarterial chemoembolization, and sys-
temic drug therapy have been considered to be main
treatment strategies for HCC. Among all of these treatment
strategies, surgical approaches are the curative measures at
the early stage [4]. Unfortunately, the majority of HCC
patients are diagnosed in the intermediate or terminal phases
when systemic drug treatment is typically a viable therapeutic
choice. However, a major disadvantage of these drugs (includ-
ing doxorubicin, oxaliplatin, gemcitabine, irinotecan, doce-
taxel, and gene drugs) is their lack of selectivity to HCC cells
or tissues, which may result in insufficient drug accumulation
within tumor and substantial intrinsic toxicity to normal tis-
sues [5]. Furthermore, HCC cells’multidrug resistance to che-
motherapy drugs can also result in tumor recurrence and

dismal efficacy of recent chemotherapies. Therefore, the devel-
opment of novel strategies that may overcome the abovemen-
tioned challenges has become a crucial topic in HCC therapy
researches.

In recent years, the rapid development of nanocarrier-
based drug delivery therapeutic approaches has become a way
to improve therapeutic efficacy while lowering the toxicity of
systemic medication treatment. These nanocarrier-based drug
delivery systems utilize various forms of nanomaterials as car-
riers for loading chemotherapy drugs or gene drugs and deliv-
ering these drugs to a specific binding site of HCC cells, in
which drugs can be triggered release. Superior to conventional
therapy, these drug delivery systems are highly versatile: (1)
Their small size makes them easier to penetrate tissues and pas-
sively target HCC cells [6]. (2) Their multifunctional modifica-
tion, especially for binding the specific molecule on the surface
of HCC cells, allows high drug concentration in the tumor site
[7]. (3) Their higher specific surface area and extraordinary
biodegradable, optical, heat, andmagnetic properties also make
them ideal candidates in HCC treatment and diagnosis [8–10].
(4) Some nanocarriers have great capacity to improve the
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bioavailability of hydrophobic drugs [11]. (5) Some of them
bring excellent characteristic of drug controlled release [12].
(6) Certain novel nanocarriers are useful in reversal of tumor
multidrug resistance [13]. (7) They can avoid being cleared
by the immune system [14]. (8) Some of smart nanocarriers
can load two or more substances, such as chemotherapy drugs,
imaging agents, and gene drugs [15]. All of these advantages
highlight the promising nanocarrier-based drug delivery sys-
tems in improving HCC treatment. In these systems, the struc-
ture of the nanocarrier plays an incredible role, which
determines the form of drug loading, such as physical adsorp-
tion or chemical conjugation. Hence, a wide array of drug
delivery nanocarriers, including liposomes, micelles, nanocap-
sules, polymers, exosomes, and inorganic nanoparticles, which
are usually modified with HCC-specific ligands or antibodies
for targeting tumor site, have continued to spring up.

In spite of many merits and applications in HCC treat-
ment and diagnosis, there are few review articles focusing
on the role of various forms of nanocarriers in improving
HCC treatment outcomes. In this paper, we hope to offer a
basic overview of various nanocarriers and their applications
in delivering drugs to HCC. Specifically, this review has
summarized the characteristics of various nanocarriers and
presented representative examples of the nanocarriers for
targeting HCC to supplement previous studies. By such an
article, our main objective is to deepen our knowledge for
exploiting HCC drug delivery systems and serve as a para-
digm for further HCC treatment.

2. HCC-Targeted Drug Delivery Nanocarriers

2.1. Liposomes. Consisting of hydrophobic bilayer membrane
and an internal aqueous cavity, liposomes are considered
bilayer vesicles [16]. Along with the unique amphiphilic struc-
tural components, various hydrophobic or hydrophilic drugs
could be encapsulated in bilayer membrane or entrapped
inside the internal core of the liposome, respectively. These
liposomes have been proven to possess good biocompatibility
and biodegradability, low toxicity, and low immunogenicity
[17]. These properties have made liposomes catch intensive
attention as ideal carriers for delivering drugs. To enhance
the delivery of therapeutic medicines to tumors, the surface
of liposomes could be modified with a variety of functional
groups as targeting ligands, including folate, transferrin, DT7
peptide, RGD peptide, and antibodies [18–22].

Recently, Tang and coworkers developed a DT7 peptide-
modified liposome to encapsulate docetaxel with the aim of
local delivery to HCC [20]. Herein, DT7 peptide was first
attached to the surface of the liposome, and then the docetaxel
was encapsulated into the already prepared DT7 peptide-
modified liposome by the same procedure. On the membrane
of HCC cells, the transferrin receptor is abundantly expressed,
which could mediate DT7 peptide-modified liposomes to
accumulate in the tumor site, thereby boosting the drug’s
absorption by tumor cells. In vitro and in vivo experiments
stated that the docetaxel-loadedDT7 peptide-modified lipo-
some showed significant antitumor activity in HCC cells and
subcutaneous HCC xenograft models. Apart from chemother-
apy drugs against HCC, some liposomes were also applied to

deliver gene drugs. Liu et al. synthesized a GP73 antibody-
modified liposome which could deliver HSVtk/GCV suicide
gene and target the transfection of the carrier selectively to
the tumor cells by recognition of the GP73 protein, which
was overexpressed on the HCC cell membrane [22]. Results
demonstrated that the HSVtk/GCV suicide gene was expressed
selectively in HCC cell lines and it has greatly slowed the
growth of HCC xenograft tumors with the use of targeted lipo-
somes (Figure 1). To the best of our knowledge, the FDA has
authorized a few drug-loaded liposomes that have been used
in HCC clinical studies. (https://www.clinicaltrials.gov/ct2/
home). For example, in order to increase intratumoral doxoru-
bicin concentration for the same systemic dosage, a phase I
clinical study employed a specifically developed lyso-thermo-
sensitive liposomal to deliver doxorubicin to HCC. These pre-
clinical and clinical studies have revealed the feasibility of lipo-
some as an HCC-targeted drug delivery nanocarrier.

2.2. Polymeric Micelles. Polymeric micelles are fabricated using
self-assemblage of amphiphilic polymers dispersed in a suitable
solvent, thus retaining a unique set of properties such as low
toxicity, high stability, biomembrane permeability, excellent
biocompatibility, and longer circulation time [23]. Compared
with conventional surfactant micelles, polymeric micelles are
more stable, attributed to their low critical micelle concentra-
tion. As reported, the core-shell structure is the characteristic
of the polymeric micelles, with an outer hydrophilic layer and
an interior hydrophobic core, which is able to accommodate
both hydrophilic and hydrophobic drugs, thereby possessing
high drug loading potential [24, 25]. Furthermore, polymeric
micelles have a particle size of roughly 10-100nm, which can
promote the enhanced permeation and retention (EPR) effect
as well as the permeability of endothelial cells [24]. Because of
the merits of polymeric micelles mentioned above, several
pieces of researches have been conducted to evaluate the poten-
tial of polymeric micelles for encapsulation and delivery of
therapeutic medicines that target HCC.

In a study by Anwar and colleagues, amphiphilic
maltodextrin-based micelles with lactobionic acid (LA) and
folate as dual-targeted ligands were constructed for HCC treat-
ment [26]. In this research, sulfasalazine was conjugated with
maltodextrin backbone via tumor-cleavable ester. And resvera-
trol, another chemotherapeutic agent within the hydrophobic
core, was physically entrapped. Assisted by LA and folate, the
polymeric micelle could target HCC cells through asialoglyco-
protein receptors (ASGPR) and folate receptorsmediated cellu-
lar internalization. The authors demonstrated dual-targeted
micelles were preferentially internalized by HCC cells in com-
parison to nontargeted micelles. Moreover, the in vivo evalua-
tion on HCC bearing mice demonstrated dual-targeted
micelles could efficiently inhibit tumor growth, indicating their
promising application in HCC treatment. Taken together, as a
feasible and effective nanocarrier, polymeric micelles may hold
the ability to deliver therapeutic medicines to HCC.

2.3. Nanocapsules.Nanocapsule is another novel drug delivery
nanocarrier with a hollow structure, comprising an oil core
circumvented by the membrane [27]. These hollow container
systems have beenmostly used to carry and store hydrophobic
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drugs. Aside from excellent drug encapsulation, nanocapsules
have other prerequisites for successful antitumor drug delivery
such as good biodegradability, sustained and controlled release
of the payloads, and sufficient blood circulation time [28].

Recently, cationic lipid nanocapsules have yielded encour-
aging results for drug delivery. A novel cationic lipid nanocap-
sule was developed by Yang and colleagues to increase the
therapeutic efficacy of Bmi1 siRNA in the removal of HCC
stem cells [13]. The nanocapsule was formed by blending
two reverse microemulsions with a cationic lipid layer and a
highly soluble cis- diamminedichloroplatinum (II). The
results of in vitro and in vivo experiments illustrated Bmi1
siRNA-loaded nanocapsules could induce a strong apoptotic
signal in the cisplatin-resistant tumor, implying these nano-
capsules could be used to address the multidrug-resistance
issue of tumors.

Except for lipid nanocapsules, some protein shell nanocap-
sules were also developed. In another study, the group of
Abdelmoneem proven in vitro and in vivo tumor cellular
uptake efficiency of a series of lactoferrin- (LF-) coated protein
shell-oil core nanocapsules [12]. These nanocapsules, using LA
or glycyrrhetinic acid (GA) as targeted ligands, were able to
deliver two hydrophobic anti-HCC medicines, sorafenib, and
quercetin (Figure 2). The dual drug-loaded nanocapsules were
physicochemically characterized and found to have a size dis-
tribution of below 300nm, a positive surface charge, and higher
drug encapsulation. Also, the targeted nanocapsules showed
sustained release for both anti-HCC drugs and excellent phys-
ical stability in particle size. Furthermore, the targeted nano-
capsules showed high hemocompatibility and serum stability.
These results further demonstrated that nanocapsules were
promising nanocarriers for drug delivery to HCC.

2.4. Polymers. Polymers are the fourth nanocarrier platform
that is ubiquitously used in delivery strategy for drugs in order
to ameliorate HCC therapy. They are classified as natural

existing polymers (chitosan, alginate, and gelatin) and syn-
thetic ones (dendrimer polyamide-amine (PAMAM), polyeth-
ylenimine (PEI), poly(lactic-co-glycolic acid) (PLGA), and
poly-lysine (PLL)) [29–35]. Polymers are typically prepared
through various techniques including solvent evaporation,
emulsion polymerization, precipitation, and interfacial poly-
merization [36]. One of noteworthy characteristics of the poly-
mers is that they can be easily modified with targeting ligands
due to the abundant external functional groups. Furthermore,
polymers are reported to possess high drug loading capability,
controllable structure, strong stability, and temporally con-
trolled drug release [37, 38]. These specific properties provide
polymer advantages in acting as nanocarriers. The group of Li
developed a cell-penetrating peptide-modified aptamer (ST21)
linked to histidine- (H3R5-) polyethylene glycol (PEG) to pro-
duce a ST21-H3T5-PEG-based nanosystem, in which two
types of anti-HCC drugs, miRNA-195 and fasudil, were
loaded via electrostatic interaction and transmembrane elec-
trochemical gradient, respectively, forming fasudilST21-H3T5-
PEGmiR195 [39]. Using HCC cells (SK-Hep-1), as well as nor-
mal hepatic cells (L02), a cellular internalization experiment
showed thatfasudilST21-H3T5-PEGmiR195 efficiently accumu-
lated in SK-Hep-1 cells in comparison to L02 cells, which ver-
ified the HCC targeting ability of the nanosystem. Moreover,
the authors found that fasudilST21-H3T5-PEGmiR195 triggered
rapid and remarkable cytotoxicity in SK-Hep-1 cells. This fur-
ther clarified the feasibility of polymers as effective drug deliv-
ery carriers. Some other polymers, especially cationic
polymers, such as PAMAM, PEI, PLGA, PLL, and their deriv-
atives, have been widely used to encapsulate gene drugs and
increase gene transfection efficiency. Cao et al. attempted to
deliver plasmid DNA to nuclei of HCC cells using some tar-
geting modified PEIs (glycyrrhizin acid- (GL-) PEI and GA-
PEI) to enhance the selectivity and gene expression of pDNA
[40]. These PEI-based systems showed excellent specificity to
HCC cells, low toxicity, and high transfection efficiency. The
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Figure 1: (a) HSVtk/GCV suicide gene transfection efficiency (%) of liposome group and GP73 liposome group in HCC cells (HepG2 cells
and Bel-7402 cells) and normal hepatic cells (HL-7702 cells), respectively. (b) Tumor volume of HepG2 xenograft tumor-bearing mice after
treatment of GP73-HSVtk transfection liposome (GP73+HSVtk+GCV) and other control groups. Copyright (2019) ELSEVIER.
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above results have suggested the polymer-based nanocarrier is
a new perspective for drug delivery.

2.5. Exosomes. Exosomes, naturally occurring nanosized lipid
membrane vesicles (40-100nm), are generated from different
sorts of cells, including cancer cells [41]. They can carry lipids,
proteins, nucleic acids, or small molecules specifically target-
ing the receptor molecules of recipient cells, which exhibits
strong effects on recipient cells through intercellular commu-
nication [42]. Ever-increasing researches demonstrated that
exosomes had exhibited momentous functions in HCC cells’
proliferating, invading, and spreading [43, 44]. Surprisingly,
some modified exosomes are capable of being utilized against
HCC mainly due to their cargo capacity. They have been used

as prospective delivery vectors for a wide range of gene thera-
peutic agents and small molecular drugs. Recently, some
downregulated miRNAs in HCC, such as miR-26a, have been
proved to induce HCC cell apoptosis specifically [45–47]. An
Apo-A1-modified exosome was fabricated by inducing Apo-
A1 overexpression in HEK293 cells and then isolating intra-
cellular exosomes [48]. The prepared Apo-A1-modified exo-
somes were loaded with miR-26a via electroporation and
easily taken up into HCC cells through SR-B1 receptor-
mediated endocytosis, resulting in inhibition of tumor growth
and metastasis. In addition to above-mentioned, the miRNA
downregulation in HCC cell-derived exosomes could also lead
to enhanced tumor cell sensitivity to chemotherapy drugs
[49–51]. In general, so many attempts were exerted to prove
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Figure 2: Schematic description of the preparation of LF-coated nanocapsules (NCs). Copyright (2019) ACS publications.

Table 1: Representative drug delivery nanocarriers for targeting HCC.

Nanocarrier Surface modification Targeting site Payload Reference

Liposomes
DT7 peptide Transferrin receptor Docetaxel [20]

GP73 antibody GP73 protein HSVtk/GCV suicide gene [22]

Polymeric micelles LA and folate ASGPR and folate receptor Sulfasalazine and resveratrol [26]

Nanocapsules
N/A N/A Bmi1 siRNA [13]

LA or GA ASGPR or GA receptor Sorafenib and quercetin [12]

Polymers
ST21 N/A miRNA-195 and fasudil [39]

GL and GA GA Plasmid DNA [40]

Exosomes Apo-A1 SR-B1 receptor miR-26a [48]

Inorganic nanoparticles
PEI N/A HNF4α-encoding plasmid [52]

CS/PEG N/A Doxorubicin [55]
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that exosomes could be used to carry a number of drugs to
HCC cells and improve the sensitivity of chemotherapy drugs.
Based on these, exosomes seem to show a major promise as
HCC-targeted drug delivery nanocarriers.

2.6. Inorganic Nanoparticles. In addition to organic nano-
particles, inorganic nanoparticles, including silica, carbon,
gold, and magnetic nanoparticle, have also generated some
considerable interest for HCC therapy in recent years [10,
52–54]. When considered collectively, they present a num-
ber of common characteristics in physical and chemical
properties, including ideal biocompatibility, high stability
under physiological conditions, low immunogenicity,
unique optical, magnetic, and heat properties, easily tunable
size, and modified surface. More importantly, either by non-
covalent binding or by covalent interaction, drugs could be
encapsulated and delivered by these inorganic nanoparticles.

For instance, silica nanoparticles are adopted as one of the
most well-studied drug delivery nanocarriers, especially meso-
porous silica nanocarriers. In an attempt to make silica nano-
particles more stable as drug carriers, their surface could be
coated with polymer or other inorganic materials for loading
drugs. Recently, Tsai et al. reported a PEI-modified mesopo-
rous silica nanocarrier which denoted a well-ordered porous
structure, adjustable porosity and dimension, a high surface
area, and pore volume [55]. The nanocarriers loaded with gene
drugs (HNF4α-encoding plasmid) on the surface and chemo-
therapeutic drugs (cisplatin) inside the pore have exhibited
extraordinary ability in reducing the tumorigenic capacity of
HCC cells. In addition, a lot of other studies altogether cemen-
ted the fact that the silica-based nanocarrier had been identified
as a potential vector [53, 56, 57]. Recent years also witnessed a
rapid growth of the application of magnetic nanoparticles. Due
to the magnetic property, magnetic nanoparticles have success-
fully been employed as the MRI contrast agents, as well as the
magnetic force-guided drug vectors in cancer therapy. For
instance, Wu and coworkers constructed a magnetic, pH-
sensitive system using magnetic nanoparticle Fe3O4 for doxo-
rubicin delivery [58]. The Fe3O4 was coated with chloride chi-
tosan and subsequently coupled with amount of PEG
(Fe3O4@CS/PEG) to favor Fe3O4 with pH-sensitive, passive
target, and long circulation. The data of cytotoxicity study in
HCC cells clarified that the doxorubicin-loaded Fe3O4@CS/
PEG revealed high anticancer ability, which made the deco-
rated Fe3O4 a prominent drug carrier for HCC treatment. In
addition to silica and magnetic nanoparticles, some gold and
carbon nanoparticles such as gold nanorods, gold nanorices,
carbon nanotubes, and graphene oxide also get considerable
attention in delivering drugs to HCC cells because of their good
performance [52, 54, 59–61]. Therefore, we strongly believe
that the development of the inorganic nanoparticle-based sys-
tems is an effective way in HCC therapy.

Table 1 summarizes several exemplary drug delivery
nanocarriers for HCC treatment.

3. Challenges and Future Prospects

Various nanocarriers have been introduced with their char-
acteristics and applications in HCC targeting drug delivery

and demonstrated huge promise for enabling HCC therapy.
However, there are still a few challenges for researchers to
address:

(1) Owing to high physicochemical stability, surface
modification, and unsuitable particle size, some
nanocarriers have difficulties in eliminating from
the bloodstream, which may increase systemic toxic-
ity and organic impairment [62]

(2) The intracellular transduction of many nanocarriers
from endosomes to cytosol is tough, resulting in
insufficient drugs accumulating in targeted cells [63]

(3) Even though nanocarriers have shown a lot of
advantages for HCC treatment in preclinical studies,
especially reducing the systematic toxicity, long-term
biological security assessment to human health still
could be a bottleneck for clinical application [64]

(4) Experimental rodent models were often utilized to
assess the anticancer activities of nanocarrier-based
drug delivery systems. However, only a small per-
centage of positive results of animal models could
be replicated in clinical trials

Of course, with the development of novel nanocarriers
and the further study of tumor microenvironment, experi-
mental animal models, the mechanism of antitumor drug
action, and the behavior of nanocarriers in human body,
we believed that nanocarrier-based drug delivery systems
could push through all kinds of obstacles and have broad
prospects in the field of HCC therapy. In addition, the
potential impact on the world economy and the safety haz-
ard of these nanocarriers may prompt the establishment of
special regulations in the future.

4. Conclusions

HCC is among the most frequent types of cancer. A variety of
nanocarrier-based drug delivery methods for targeting drugs
to HCC cells have been developed in order to maximize drug
accumulation in the tumor site while reducing intrinsic toxic-
ity to normal tissues and tumor multidrug resistance. These
nanocarrier-based drug delivery strategies have clearly con-
centrated on nanocarrier selection and engineering. The facts
displayed in this article demonstrated the potential of various
nanomaterials as nanocarriers and revealed their advantages
over conventional therapeutic techniques. Some researchers
have proposed that nanocarriers, mainly including liposomes,
micelles, nanocapsules, polymers, exosomes, and inorganic
nanoparticles, can package and specifically deliver multiple
chemotherapy drugs or gene drugs, revealing excellent anti-
HCC efficiency in vitro and in vivo. Besides, someHCC target-
ing drug delivery nanocarriers attached with certain pH-,
heat-, or magnetic-sensitive function groups can also affect
the release site and release rate of therapeutic drugs. Unfortu-
nately, despite the fact that the unique and diverse features of
these nanocarrier-based drug carriers are opening up new ave-
nues for HCC therapy, most formulations have not been
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clinically tested and further approved by the FDA. This serves
as a reminder that the technique has a long way to go, and
some additional in-depth researches are needed before these
systems can be used in clinics.
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