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The densification behaviour, mechanical properties, and microstructure of high-purity Al
2
O
3
and CeO

2
-doped Y-TZP with

different weight percentage varied from 0.3 to 1 wt% were investigated. The samples were pressed uniaxially at 200MPa into
rectangular bars and discs and pressureless-sintered at temperature ranging between 1250∘C and 1450∘C for 2 h while the
microstructure was characterized with a scanning electron microscope (SEM). Two-step sintering process works well for
temperature higher than 1400∘C and it createdmost tetragonal phase arrangement for stable structure to delay ageing through phase
transformation. The mechanical properties in terms of bulk density, Young’s modulus, Vickers hardness, and fracture toughness
were also measured. The results indicate that the addition of dopants accelerated the densification parameters and reinforced and
toughened the obtained bodies.Themaximum values for the mechanical properties of the Al

2
O
3
and CeO

2
-doped Y-TZP ceramics

were 6.01, 220GPa, 13.8 GPa, and 7MPa for density, Young’s modulus, Vickers hardness, and fracture toughness, respectively, which
are higher than those of the doped samples.

1. Introduction

Yttria-stabilised tetragonal zirconia polycrystalline ceramics
(Y-TZP) are becoming popular engineering materials due to
their excellent mechanical properties, studied and used in
many engineering applications, such as engine parts, valves,
cutting tools, and moulds, due to their good fracture tough-
ness, high strength, elastic modulus, and wear resistance
[1–3].

In recent years, yttria-tetragonal zirconia polycrystals
(Y-TZP), with their superior combination of mechanical
properties and chemical inertness, have been employed in
the biomedical field as an implant material [4–9]. In general,
when a restricted number of ZrO

2
particles undergo the

transformation during cooling from the sintering temper-
ature, the accompanying volume expansion would cause
the development of a fine distribution of microcracks in
the ceramic matrix. These microcracks would increase the
toughness by interacting with a propagating crack, causing
deflection and blunting of the crack. Due to this nature,

the engineering application of pure ZrO
2
proves to be

nonviable as the sintered body would crumble to pieces upon
cooling from the sintering temperature [10, 11].

To overcome this undesirable phase transformation, sta-
bilisers such as magnesia (MgO), calcia (CaO), ceria (CeO

2
),

and yttria (Y
2
O
3
) have been added in various quantities

in zirconia. In general, alloying zirconia with these oxides
reduces the change of chemical free energy, which in turn
lowers the tetragonal to monoclinic transformation temper-
ature to below ambient temperature [12–16]. Garvie et al.
[17] highlighted the potential of increasing both the strength
and toughness of zirconia through a mechanism involving
the phase transformation of metastable tetragonal particles
induced by the presence of the stress field ahead of a crack.

Kobayashi et al. [18] first discovered a serious limitation
of Y-TZP ceramics for applications near 250∘C in moist
environment. Results revealed that the ceramic can suffer
a slow, tetragonal to monoclinic phase transformation at
the samples surface in a humid atmosphere, followed by
microcracking and a serious loss in strength, a phenomenon
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subsequently known as ageing or low temperature degrada-
tion (LTD). Ever since then, many researchers have experi-
mented with Y-TZP with an attempt to understand the basic
micro mechanisms of the ageing-induced (𝑡) to (𝑚) phase
transformation and to suppress this LTD phenomenon [19–
24]. Although the experimental observations of the ageing
phenomenon are well understood, the actual mechanism
responsible for the degradation has not been unequivocally
explained. The effect of copper oxide (CuO) doping Y-TZP
has been studied by Kanellopoulos and Gill [25–27]. It was
found that mechanism involving liquid phase enhanced due
to the lowmelting point of CuO in ZrO

2
matrix densification

of the ceramics. The effect of TSS on the densification
and grain growth of nanocrystalline 3Y-TZP ceramic was
investigated by Mazaheri et al. [28]. From the results it was
found that the grain growth rate of nanocrystalline 3Y-TZP
in conventional sintering route is significantly lower than that
of other ceramics such as ZnO and Al

2
O
3
; also full stabilized

tetragonal zirconia (3Y-TZP) ceramic can be obtained at grain
size <275 nm.

It has been reported that improved Y-TZPs with opti-
mized mechanical properties and ageing resistant could be
obtained by the addition of more than one stabiliser to
zirconia. For instance, Xu et al. [29]. It was found that the
addition of CeO

2
to Y-TZP could prevent ageing, while

retaining relatively high fracture toughness of 7–9MPam1/2.
Similar observationwasmade by Sato et al. [30, 31] who found
that the ageing kinetics of 2, 3, and 4mol% Y-TZP sintered
at 1400∘C to 1650∘C decreased with increasing yttria content.
Results also showed that increasing yttria content resulted in
a reduction in the onset critical ageing temperature for phase
transformation.

2. Materials and Method

The experiment was conducted from a starting Y-TZP pow-
der containing 3mol% yttria and cerium oxide-aluminium
oxide powders of 99.9% purity as dopants manufactured by
Kyoritsu Ltd., Japan. Three different compositions of CeO

2
-

Al
2
O
3
-doped Y-TZP powder mixtures (0.3, 0.5, and 1 wt%)

and undoped Y-TZP sample were prepared.The ratio dopant
to Y-TZP was 1 : 99, whereby, regardless of the percentage of
dopant in each composition, the addition of both dopants will
always be equal to 1 wt%. Each powder was weighed carefully
and then underwent an ultrasonification process, whereby
the base powder (Y-TZP) is first addedwith 150mL of ethanol
and left for 6 minutes, followed by the addition of the two
dopants (Al

2
O
3
and CeO

2
), and further ultrasonification of

22 minutes follows. The powder was composed of primary
particles with an average size of ∼30 nm (Figure 1(a)) and
spherical granules (Figure 1(b)). The powder was uniaxially
compact in a standard procedure [32] at about 1 KN using
hardened steel mold and die assembly. The powder was
processed by cold isostatic pressing at 200MPa, followed by
pressureless sintering at temperature ranging from 1250∘C
to 1450∘C in air. Unlike regular pressureless sintering, two-
step sintering involves increasing the temperature to about
1000∘C and is maintained for a period of one hour, before

further heating to 1250∘C.The sintered samples were ground
on one face by Silicon Carbide, SiC papers of 120, 240, 600,
800, and 1200 grades successively, followed by polishing with
6 𝜇mand 1 𝜇mdiamond paste to produce an optical reflective
surface. The Vickers indentation test performed using a load
of 10 kn on polished surfaces in order tomeasure the hardness
and indentation toughness. Bulk density of the specimens
was determined by the Archimedes method using distilled
water. The Young’s modulus of the sample can be calculated
using the standard test method (ASTM E1876-97) [33–35].
Themicrostructure of the sampleswas examined by JSM-6310
scanning electron microscopy (SEM).

3. Experimental Results and Discussion

3.1. Bulk Density. The variation of bulk density for Y-TZPs
with different amounts of Al

2
O
3
and CeO

2
sintered at

temperatures 1250∘C–1450∘C is shown in Figure 2. All Y-
TZP compositions including the undoped shared a common
trend. Addition of Al

2
O
3
and CeO

2
were found to be most

beneficial at sintering temperatures of 1250∘C to 1400∘C.
The results for undoped Y-TZP at low sintering temperature
1300∘C shows that the relative density achieved was below
95%. In the case of the 0.5 wt% Al

2
O
3
and CeO

2
-doped

ceramics, the two-step sintering at 1400∘C was found to be
beneficial in enhancing the densification of the ceramics.
From the sintering regime employed, 1400∘C was found
to be the optimum sintering temperature as all Y-TZPs
sintered at this temperature recorded densities that were
close to 98%. In addition, for the 0.5 wt% Al

2
O
3
and CeO

2
-

doped Y-TZP, maximum density of 6.01Mgm−3 (i.e., 8%
T.D.) was recorded at this temperature and further increase
in the sintering temperature resulted in the decline of its
bulk density. This phenomenon is probably attributed to a
phase transformation from tetragonal to monoclinic zirconia
that starts after 1400∘C. During the phase transformation, a
volume expansion of zirconia grains (i.e., expansion of the
zirconia lattice) occurs and therefore a significant decrease
in density is reported. Similar results have been reported by
other researchers working on Al

2
O
3
or CeO

2
as a sintering

additive in Y-TZP [36, 37].

3.2. Young’s Modulus. The effect of aluminium oxide and
cerium oxide doped Y-TZP on the Young’s modulus is shown
in Figure 3. The addition of Al

2
O
3
and CeO

2
was beneficial

in enhancing the elastic modulus of Y-TZP, especially at low
sintering temperatures of 1250∘C and 1300∘Cwhen compared
to the undoped Y-TZP.

Figure 3 shows that an 𝐸 value of above 200GPa could
be achieved with the additions of ≥0.5 wt% Al

2
O
3
and CeO

2

when sintered at 1350∘C as compared to 197GPa for the
undoped Y-TZP. In comparison, the Young’s modulus of the
undoped Y-TZP started low, at 178GPa when sintered at
1250∘C; however, it soon increases with increasing sintering
to reach a maximum of 202GPa when sintered at 1400–
1450∘C. Both the additions of 0.5 and 0.1 wt% Al

2
O
3
and

CeO
2
exhibited the highest modulus (209–220GPa) when
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Figure 1: SEM micrographs show the particle morphology of Y-TZP: (a) primary particles; (b) spray-dried granules.
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Figure 2: Effect of sintering temperature and sintering additives on
the bulk density of Y-TZP.
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Figure 3: Effect of sintering temperature and sintering additives on
the Young’s modulus of Y-TZP.
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Figure 4: Vickers hardness variation of undoped and doped Al
2
O
3

and CeO
2
-doped Y-TZP.

sintered at 1400∘C. Thereafter, the 𝐸 values of these ceramics
fluctuated slightly with increasing temperature.

3.3. Vickers Hardness. The effect of sintering temperature
and Al

2
O
3
and CeO

2
on the Vickers hardness of Y-TZP is

shown in Figure 4. The results obtained in the present work
confirmed that the Al

2
O
3
and CeO

2
additions were beneficial

in improving the hardness of zirconia when sintered at low
sintering temperatures.

However, in the present work, bulk density is unlikely to
be the governing factor for the decline of hardness observed
from 1400∘C to 1450∘C because all Y-TZPs except for the
0.5 wt% Al

2
O
3
and CeO

2
-doped Y-TZP were more than 97%

dense at these temperatures as shown in Figure 2.The decline
of hardness could possibly be due to grain growth resulting
from sintering at higher temperatures. The 1wt% Al

2
O
3
and

CeO
2
-doped Y-TZP display the lowest hardness for sintering

above 1400∘Cas shown in Figure 4. Twopossible explanations
can be made for the decline in hardness of this sample
when sintered above 1400∘C; firstly, hardness was strongly
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Figure 5: Variation of sintering temperature and Al
2
O
3
and CeO

2

addition on the fracture toughness of sintered Y-TZP.

dependent on bulk density, which decreased considerably
during the temperature range as shown in Figure 2 and,
secondly, it can be associated with the reduction of tetragonal
phase content and a concomitant increased in the cubic phase
formation in the zirconiamatrixwith increasing temperature.
The reduction of tetragonal phase content had been cited by
Lawson et al. [38] and Liu and Chen [39] to be the reason for
the lower hardness of Y-TZP doped with CuO and Sr

2
Nb
2
O
7
,

respectively.

3.4. Fracture Toughness. Theeffect of Al
2
O
3
andCeO

2
-doped

Y-TZP and sintering temperature on the fracture toughness
(𝐾Ic) is shown in Figure 5. In general, additions of up to
0.3 wt%Al

2
O
3
andCeO

2
have negligible effect on the fracture

toughness of Y-TZP for the entire sintering temperature
investigated. The fracture toughness of these samples was
found to fluctuate between 4.5MPam1/2 and 5.18MPam1/2.
The fact that the𝐾Ic did not change significantly indicates that
the additions of Al

2
O
3
and CeO

2
below 0.3 wt% did not affect

the tetragonal phase stability of Y-TZP. Higher Al
2
O
3
and

CeO
2
additions of 0.5 and 1 wt% also showed similar trend

at sintering temperatures below 1300∘C. However, sintering
above 1300∘C, the𝐾Ic of both Al2O3 and CeO2-doped Y-TZP
increased by increasing the temperature. This observation
was more pronounced for the 0.5 wt% Al

2
O
3
and CeO

2
-

doped Y-TZP, which exhibited a significant increase in 𝐾Ic
from 4.6MPam1/2 at 1300∘C to 7.0MPam1/2 at 1450∘C.

3.5. Microstructural and Phase Development. Scanning elec-
tron microscopic images of 0.5 wt% Al

2
O
3
and CeO

2
-doped

Y-TZP sintered at 1450∘C are presented in Figure 6(a). The
analyses revealed that samples sintered at 1450∘C showed par-
ticles that are nonspherical in shape and with little agglom-
eration and porosity. The surface topographies confirmed
the presence of little agglomeration and porosity. For all of
them, the zirconia appears agglomerated in light contrast

and the aluminium oxide and cerium oxide appear as dark
background particles.The average particle size obtained from
the particle size distribution analysis using the grain intercept
method was 1.13 𝜇m.

The SEM results are in good agreement with the density
of the 0.5 wt% Al

2
O
3
and CeO

2
-doped Y-TZP sintered at

1450∘C.
On the other hand, relatively rough surfaces were

observed on surface sintered at 1250∘C but no grains struc-
tures were clearly observed as depicted in Figure 6(b). The
likely reason that 0.5 wt% Al

2
O
3
and CeO

2
-doped Y-TZP

sintered at 1250∘C did not have grain structure could be due
to the presence of a glassy phase that suppressed the crystal
growth and sealed the grain boundary.

It was also found that 1 wt% Al
2
O
3
and CeO

2
-doped Y-

TZP sintered at 1450∘C resulted in severe phase transforma-
tion which was also accompanied by networks of micro- and
macrocracks on the surface as typically shown in Figure 7.

High angle XRD analysis performed on the 1450∘C
sintered sample revealed that very high percentage of cubic
phase (up to 48%) was calculated in the zirconia matrix.
This result indicated that sintering of 1 wt% Al

2
O
3
and

CeO
2
-doped Y-TZP at 1450∘C resulted in the formation

of monoclinic and cubic phases in the zirconia matrix.
The spontaneous phase transformation upon cooling from
sintering and the development of the cubic phase was not
observed for the 0.5 wt% Al

2
O
3
and CeO

2
-doped when

sintered at 1450∘C.

4. Conclusion

Sinterability and mechanical properties of Al
2
O
3
and CeO

2
-

doped Y-TZP ceramics were studied in the present work.
The beneficial effect of Al

2
O
3
and CeO

2
in enhancing the

densification of Y-TZP has been revealed. The Al
2
O
3
and

CeO
2
-doped Y-TZPs achieved almost full density (>97% of

theoretical density) at 1300∘C.The study revealed that 1350∘C
was the optimum sintering temperature for all Y-TZPs to
achieve >98% of theoretical density.

The variation of Young’s modulus with sintering temper-
ature of all composition studied was in good agreement with
the variation in bulk density. In general, it was found that Y-
TZPs containing above 0.5 wt% Al

2
O
3
and CeO

2
attained 𝐸

values above 200GPa when sintered at temperature 1350∘C.
In general, the hardness of all Al

2
O
3
and CeO

2
-doped Y-

TZPs was higher than the undoped material when sintered at
1250∘C and 1300∘C. In particular, the addition of 0.3–1 wt%
Al
2
O
3
and CeO

2
was most effective in enhancing the hard-

ness of Y-TZP. These doped samples exhibited hardness of
>13 GPa as compared to ∼9.7GPa for the undoped ceramics
sintered at 1250∘C.

The additions of up to 0.3 wt% Al
2
O
3
and CeO

2
were

found to have negligible effect on the fracture toughness of
Y-TZP throughout the sintering regime employed.The KIc of
these samples was found to fluctuate between 4.67MPam1/2

and 5.18MPam1/2, which implied that the tetragonal phase
stability of Y-TZP was not disrupted. However, as the tem-
perature increased above 1400∘C, an increasing KIc trend
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(a) (b)

Figure 6: (a) SEM image showing lines intercepting on grain boundaries of sample at 1450∘C. (b) SEM image showing lines intercepting on
grain boundaries of sample at 1250∘C.

Figure 7: Effect of micro- and macrocracks on the surface of the 1 wt% Al
2
O
3
and CeO

2
-doped Y-TZP accompanying the (𝑡) to (𝑚) phase

transformation upon cooling from sintering at 1450∘C (mag. = ×50).

was noted for both ceramics. In particular, the 1 wt% Al
2
O
3

and CeO
2
-doped Y-TZP exhibited a significant increase

in the fracture toughness, from 4.8MPam1/2 at 1400∘C to
7.1MPam1/2 at 1450∘C.
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