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Abstract. 
This paper is devoted to formulation and analysis of fundamental aspects of mechanics of nanocomposite materials and structural members. These aspects most likely do not exhaust all of the possible fundamental characteristics of mechanics of nanocomposite materials and structural members, but, nevertheless, they permit to form the skeleton of direction of mechanics in hand. The proposed nine aspects are described and commented briefly.


1. Introduction
The specificity of mechanics as science consists in that it is one of the most important sciences of fundamental character and at the same time its urgency is defined by significance for engineering of many problems of mechanics. At all of the stages of human progress, starting with the ancient world, the importance of mechanics for engineering cannot be overemphasized: in many cases, mechanics, and engineering were considered as a single whole. This specificity of mechanics is shown up, when the mechanics of materials was formed as the scientific direction, in which uniting of mechanics and engineering is very significant.
Mechanics of materials as the direction has been clearly formed in the last century within the framework of solid mechanics along with mechanics of structural members, when the investigations related to the development of new materials were essentially extended. Actually, the sufficiently ponderable part of investigations, which are carried out on solid mechanics, is represented in mechanics of materials. This situation  resulted in that in some universities solid mechanics is included in different courses on material science. 
On the whole, investigations on mechanics of materials are defined or characterized by the fact that the information on internal structure of material is always taken into account, although in different extent. In the most part of investigations on mechanics of materials, this information is used for characterization or identification of materials. In this case, the internal structure is considered in analysis of photo of internal structure and its change under force and technological actions only. In the slightly less part of investigations on mechanics of materials, information on internal structure is included in the models of materials and is utilized in the statement and solution of corresponding problems of mechanics of materials. This allows to separate the structural mechanics of materials as the independent scientific direction within the framework of mechanics of materials [1, 2].
Thus, the structural mechanics of materials is meant to be the part of investigations on mechanics of materials, in which the internal structure of materials is taken into account in quantitative and qualitative sense, when the models of materials are being constructed and  the corresponding problems are being studied. 
When structural mechanics of materials is defined in such a way, then the object of its study is the large class of modern materials, including reinforced concrete, internal structures of which is defined by presence of armature; metals, alloys, and ceramics, internal structure of which are defined by presence of grains and other structural components; composite materials, internal structures of which are defined by presence of granules, fibers, and layers; and  nanocomposites, internal structures of which are defined by presence of nanogranules, nanofibers, and nanolayers.
In this paper, “macromechanics, mesomechanics, micromechanics, and nanomechanics of materials are the component parts of structural mechanics of materials [1–3].”
The corresponding notions and definitions to the four component parts mentioned  above are comparatively established and widely used. The one only and necessary common requirement for all four scientific directions is to take into account the internal structure of material in mechanical models and in solving the corresponding problems.
Below, the proposed fundamental aspects of mechanics of nanocomposite materials and structural members permit to form the skeleton of this direction of mechanics. Introducing the term structural members has the goal of considering the following nanocomposite materials object of mechanics, because this object is prevailing in engineering. But relating the structural composite elements to the ones of nanolevels imports the additional restrictions on analysis within the framework of nanomechanics. Furthermore, the above-mentioned aspects are considered sequentially.
2. Aspect 1: Analysis of Internal Structure and Structural Levels
An analysis of internal structure in materials and usage of the notion of structural levels give the straight track to differing the nanomechanics from macro-, meso-, and micromechanics. This notion arose in micromechanics, but it became very productive and maybe the most important for description of nanomechanics, too.
To characterize quantitatively the internal structure of materials as objects of study in structural mechanics of materials, it is expedient to introduce the geometrical parameter 
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 characterizes the mean value of minimal diameters of cross-section of metallic armature.(ii) In the case of metals, alloys, and ceramics, the parameter 
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 characterizes the mean value of minimal sizes of cells, grains, and other structural inhomogeneities.(iii) In the case of composite materials with polymeric and metallic matrices, the parameter 
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 characterizes the mean value of minimal diameters of grains for materials of granular structure, the mean value of minimal diameters of cross-sections of fibers for fibrous materials, and the mean value of minimal thickness of layers of components for layered materials.(iv) In the case of nanomaterials (nanocomposites), the parameter 
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 characterizes the mean value of minimal diameters of nanoparticles or nanolayers.It seemed to be appropriate to propose the limits of changing the parameter  
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, which determine relating the corresponding materials to macromechanics, mesomechanics, micromechanics, or nanomechanics. It is necessary to note that some scientists proposed variants of changing the parameter 
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. As a consequence of analysis of proposals of different authors, the next four levels for parameter 
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					Let us note that the atom level (distance between atom planes in crystal lattice) has the order of one or more angstroms (
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m); therefore, the nanolevel in (1) is conditionally bounded by 
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For the convenience of readers, the relationships between used length units are shown as follows: 
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					Attention on that proposed in (1) four levels for parameter 
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 do not overlap one another. In development of some scientific directions related to macro-, meso-, micro- and nanomechanics, the investigations are carryied out in the framework of scale levels, which overlap one another that is, the four level are considered in the extended interpretation.
Based on analysis of proposals of different authors, within the above mentioned extended interpretation the four levels for parameter 
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 were proposed in publications [4, 5] 
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					Schematically, four levels (3) are shown in Figure 1 [1, 2, 4, 5].
















	
	
	
	


	
	
	
	
	


	
	
	


	
	
	
	
	


	
	
	
	


	
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
		
	
	
		
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
		
	


	
		
		
		
	
	
		
		
	


	
		
	
	
		
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	


	
		
		
	
	
		
	
	
		
	













Figure 1: Structural levels.


Thus, within the framework of this aspect, the tool of identification of the material as the nanomaterial is generated.
3. Aspect 2: Modeling in Mechanics of Nanocomposite Materials and Structural Members
Constructing the mechanical models can be thought as the main goal of mechanics. Let us remember the well-known sentence of Truesdell’s [6]: in fact, mechanics is an infinite class of models to represent certain aspects of nature. Mechanics of materials, of course, is understood as part of mechanics and can be meant as exploring the infinite set of mechanical models of materials. Usually, the mechanical models are related to the theoretical part of mechanics and are formulated in terms of mathematics and physics. Nowadays, the theoretical models consist of the structural and mathematical parts, but, traditionally, they are meant as the mathematical models. Each theoretical model in mechanics underlies, as a rule, the corresponding mechanical theory.
The models of materials are by their sense some idealizations of the real materials, and applicability of every model should be tested. Thus, the experimental mechanics presents the special part of mechanics and forms the fundamental knowledge, which arises owing to direct contact with real nature (in solid mechanics, with real materials). For fundamental sciences, the necessity of attention to experiments and practice had been formulated far back by Leibniz in his statement “theoria cum practica.” Today, it is understood as the necessity for any theory to amplify with experimentations. 200 years later, Boltzmann stated “nothing is so practical as the theory.” In 1926, in a talk between Werner von Heisenberg and Albert Einstein, Heisenberg stated that each theory, in its building, must correspond to only those observed by this time facts. Einstein answered that it could be wrong to try to build the theory only on observed facts. Really, it happens the vice versa. Theory determines, what we can observe. 
So, when the process of deformation of materials is being described (modeled), then different models are applied taking into account the discrete structure of material at the atom level and  not taking into account this structure within the framework of continuum representation. 
Note that the continuum representation of material consists in that real piece of material (material body) is replaced by continuum of the same geometrical shape. In each point of continuum, the values of physical-mechanical parameters of material (physical-mechanical properties) and physical-mechanical fields (stresses, strains, temperature, and so on) are considered.
The following three types of media are studied:(i)homogeneous media (continua), when values of physical-mechanical parameters (constants) do not depend on the point (they are one and the same for all of the medium); (ii)piecewise homogeneous media (continua), consisting of separate parts of homogeneous media, which are continuously jointed and form one continuum;(iii)inhomogeneous media (continua) with continuously changing inhomogeneity.
The main advantage of continuum description consists in that it permits to apply the methods of continuous mathematics and, in particular, the differential and integral calculi. At present, owing to active development of the finite element method and discrete mathematics, the significance of continuum representation will be possibly refined.
   Among the above mentioned models, the following principally distinguished models should be marked out as such, which are the most widespread ones. Model 1: the model of discretely arranged rigid particles (which model the atoms), interacting  with themselves.  Model 2: the model of piece-wise continuous body, each component of which is described within the framework of continuum representation. Model 3: the model of homogeneous body, which is analyzed within the framework of continuum representation.
In solid physics, the investigations are carried out within the framework of crystal lattice concept, that is, within the framework of model 1, in which interaction among atoms is put into effect by interatomic interaction forces caused by potentials of different structure. Such approach is represented in a number of monographs, among which it seems that the quite actively cited monograph [7] should be pointed, and in plentiful publications in scientific journals. 
In particular, the model exists for discretely arranged rigid particles (balls), placed at nodes of crystal lattice and jointed by springs. In this case, the interaction among neighbouring balls is realized by the link of their springs. This model is used in mechanics, too. As an example, the monograph [8] can be pointed out, in which this model is applied to study dynamical processes occurring in the fracture wave.
In micromechanics of composite materials, the investigations are carried out within the framework of model 2—the model of piece-wise homogeneous body, consisting of separate particles of the filler (reinforcing elements) and the binder (matrix). Description of deformation of each particle of the filler and the matrix is done within the framework of continuum representation. In this model, the interaction among separate particles of the filler is realized through the continuous body (matrix) by means of condition of continuity of stress and displacement vectors at the filler-binder interface. On the interface, the different variants of joining the filler and the binder can occur in some materials, which is reflected in changing the concrete form of conditions of continuity. Such an approach is represented in a row of monograph editions ([9–20] and others) and in the large number of journal publications (e.g., [21, 22]).
Model 3—the model of homogeneous body with averaged properties—is successfully used in mechanics of composite materials. At that, the body is assumed frequently to be anisotropic. Then, in the most part of cases, composites are assumed to be orthotropic ones. The same model is used in mechanics of structural elements (shells, plates, rods, and so on) made of composite materials. It is described in many monographs and original papers [23–49]. Usually, in macro-and mesomechanics, only models 2 and 3 are used, since on this scale level the components of composite material are the sufficient big pieces of real material. The problem of discrete structure of the piece is already not actual. It is worthy to note that for model 2 the homogenization can be required.
Undoubtedly, the essential part of investigations in mechanics of structural members is referring to the case when through the thickness the member consists of several homogeneous anisotropic layers. In these investigations, the two-dimensional (for shells and plates) and one-dimensional (for rods) applied theories are mainly considered, which are constructed by introduction of hypotheses on distribution of stresses and displacements through the thickness. 
Above, three models are considered comparatively briefly. These models along with other models are everywhere applied in structural mechanics of materials. Each of the models has its possibilities, advantages,  disadvantages, when in mechanics of materials the concrete phenomena are being described, and  specific difficulties in the realization.
Probably, the most complex model from the point of view of obtaining the concrete results is the second one—the model of piecewise homogeneous body. Let us show in support two reasons.
Reason 1 consists in that within the framework of this model each reinforcing element is studied within the framework of continuum mechanics-solid mechanics, which is developed very well.
Reason 2 consists in that interaction of different reinforcing elements occurs through the matrix, which is also studied within the framework of continuum mechanics-solid mechanics and permits therefore to use plenty of analytical approaches.
In mechanics of composite materials, three models discussed above as well as many other models are applied to composite materials in the form of the sequence (chain) of models, which provide at the final stage the study within the structural members made of these composite materials. This reflects the specificity of mechanics as science. 
Obviously, the sequences (chains) of used models for different composite materials, and studied within them, phenomena are different too, because the level scales (1) and (3) and Figure 1 should be taken into account. So, for nanocomposites, models 1, 2, and 3 are included into the sequence, whereas for macro-, meso-  and microcomposites, only models 2 and 3 are inculded.
When mechanics of composite materials are being constructed in the sense noted above, then different approaches and methods are utilized, which correspond to different scientific directions and scientific positions of single scientists. Nevertheless, despite  such diversity of scientific directions, in construction of mechanics of composite materials, two basic principles (two basic concepts) are applied on principle of continualization and principle of homogenization, which are formulated below.
The principle of continualization consists in  “that the discrete system is changed (modeled) by the continuous system (medium) and for  the continuous system (medium) the corresponding averaged properties are determined.”
This principle is used widely, for example, within the framework of model 1 in transition to the continuum theory of dislocations in crystal lattices. 
The principle of homogenization consists in “changing (modeling) the piece-wise homogeneous system, deforming the elements (pieces) of which is described by the relationships of continuum mechanics of solids, by the homogeneous continuous system (medium), and by the determination of necessary averaged properties within the framework of the homogeneous continuous system (medium).” 
The principle of homogenization is widely used within the framework of  model 2 in micromechanics of composite materials, when different problems of statics, dynamics, stability, and fracture are being studied. 
Usually, the area which a continuously inhomogeneous body (e.g., a composite material with the continuous changing in some direction number of micro- or nanospheres) or piece-wise homogeneous body (e.g., a composite material with uniformly distributed micro- or nanospheres by all of the directions) occupies is chosen, dimensions of which are essentially of less body sizes. This area should contain the sufficiently large number of inhomogeneities (e.g., granules) to provide the averaging correctness. Such an area is called the representative volume. 
The averaged properties of the volume are usually attributed to the point at the volume center. As a result, the averaged properties are evaluated at every point of the body, and these properties should be constant—the body becomes the homogeneous one. 
Very often, authors of different publications on materials are showing the color pictures of representative volumes in the form of cubes filled of discrete particles, which are looking very nice but do not image as a rule the real discrete structure. 
The representative volume side length is compared with the characteristic length of body internal structure or with the characteristic length of inhomogeneities in the body (e.g., with micro- or nanosphere diameter). Exceeding the first length over the second one one order or more gives grounds to apply the averaging procedure.
Let us note that, from the abovestated continualization and homogenization principles, their principled distinction and methodological commonality follow (especially, in relation to the initial systems, to which they are applied). 
Let us note finally that the procedures of continualization and homogenization are realized by means of different methods of averaging. At that, as a rule, the notion of representative volume is used. 
Furthermore, three basic moments in realization of modeling with using the notion of representative volume and methods of averaging will be pointed.
Moment  1. When the notion of representative volume, which will be later denoted as 
	
		
			

				𝑉
			

			

				Π
			

		
	
, is being introduced, it is assumed that the minimal linear sizes of volume 
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 are significantly more than the maximal sizes of discrete particles (in case of model 1) or maximal sizes of homogeneous parts of material (in case of model 2). Thus, the linear sizes of representative volume must be significantly more introduced before the geometrical parameter 
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Usually, the majority of authors are assuming that exceeding the first value over the second value on one or more orders gives grounds for the next modeling and averaging.
Parallel to selection of the representative volume 
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It is expedient to stress that only in the analysis situations, corresponding to conditions (5), the possibility exists to determine the averaged values of different parameters (constants), which are included within the constitutive equations for homogeneous material (the model 3). At that, the methods of averaging are used for different quantities. 
Consider as an example the procedure of determination of potential energy of deformation of elastic body in volumes 
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 the specific potential energy of deformation of elastic material with internal structure (model 1 or 2), which is referred to as the unit of volume 
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 (in which the stress and strain fields are already homogeneous), the energy can be evaluated too as following:
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In the case of linearly elastic body, the following expression for volume 
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From (4) and (8), for the material with volume 
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 in different modeling from the initial model (model 1 or 2 in  volume 
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It is necessary to note that, along with expression (8), in carrying out the operation of averaging and evaluation of values of averaged parameters (constants),  similar expressions are used, which follow from conditions of equilibrium for different structural components in 
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Moment  3. The results of modeling and averaging, within the framework of approaches discussed in moments 1 and 2, are applicable in description of stress, strain, and other fields, which change insignificantly on distances of the same order as sizes of the representative volume 
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If the stated, in description of moment 1, reasons on determination of the linear sizes of the representative volume 
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 are taken into account, then the following conclusion can be achieved.  “The results of modeling and averaging from above are applicable in description of stress, strain, and other fields which change insignificantly on distances exceeding one order or more the value of geometrical parameter  
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Note that, in the practical realization of averaging procedure, the majority of authors are assuming additionally that in the material structural components (within the framework of the representative volume 
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) the homogeneous fields of stresses, strains, and other quantities are realized (different for filler and binder). Such an approach simplifies essentially evaluation of integrals of the type of the right side of expression (8).
Thus, the shown description of aspect 2 can be related to arguments about similarity of all four parts of structural mechanics of materials, because all of the continuum mechanics models of these parts are identical.
4. Aspect 3: Only Two Basic Models
 The feature of composite materials is their forming from the binder (matrix) and fillers (reinforcing elements). When composites as materials with the clearly shown internal structure are modeled,  a row characterizing this structure geometrical parameters should be known.
Of course, when the approaches and methods of mechanics of composite materials of any level of internal structure are developed, one cannot orient  the geometrical parameter 
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 only, because it determines a place of the composite in the hierarchical structure of materials only. It is necessary to take into account the character of mechanical processes under consideration.
In this regard, the geometrical parameter 
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 is introduced, which characterizes the variability of mechanical fields by spatial coordinates. Also, it turned out to be expedient to introduce for nanoformations the geometrical parameter 
	
		
			

				ℎ
			

			

				∗
			

		
	
, which characterizes the mean value of distances between centers of particles in the internal structure of nanoformation.
The introduced parameters 
	
		
			

				𝐿
			

		
	
, 
	
		
			

				ℎ
			

		
	
, and 
	
		
			

				ℎ
			

			

				∗
			

		
	
 enable the determination of two essentially different models and corresponding methods of their analysis within the framework of mechanics of composite materials.
Model 1. This model is the  piecewise homogeneous medium or model of discrete particles. It is applied when parameter 
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If at least one of conditions (10) is fulfilled, then deformation of matrix and reinforcing elements is described by relationships of the continuum solid mechanics under some conditions at interfaces, which correspond to conditions of continuity of stress and displacement vectors.
When the 3D relationships of continuum solid mechanics are used, this approach is the most exact and rigorous within the framework of continuum solid mechanics. Using this model, the investigations of problems of statics, dynamics, stability, and fracture in mechanics of composite materials are carried out. If at least one of conditions (10) is fulfilled when applied to a nanoformation, then the motion of this nanoformation is described by relationships of the model of discrete particles.
Model 2. This model is the  piecewise homogeneous anisotropic body with averaged properties. It is utilized when the characterizing of a variability of mechanical fields by the spatial variables parameter 
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In this case, a composite material is modeled by the homogeneous anisotropic body with averaged properties. Some intermediate criteria between (10) and (11) can be formulated, but they will be of less importance when comparing with (10) and (11). For example, in the case of pure filling (very small volume fraction of fillers), the mean value of minimal diameters of fillers 
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 still must be saved.
At present, the theoretical and experimental methods of determination of averaged constants are elaborated for composite materials in the framework of this model. Especially, the progress in development of theoretical methods should be emphasized.
Model 2 is obtained as the result of utilization of the homogenization principle. Let us remember that it consists in changing the piece-wise homogeneous continuum by some homogeneous continuous continuum with the corresponding averaged properties within the framework of the model of anisotropic medium.
Finally, it seems to be expedient to note that model 2 is more approximate when comparing with  model 1. Therefore, the exactness of results obtained by  model 2 can be estimated  using the results obtained by model 1.
Let us stop on some perspectives of developing  based on model 2 approach. First of all, discreteness of structure of nanoformations as mechanical systems is of common knowledge. Also, when physical-mechanical properties of nanoformations are being determined, the concept of continualization is as a rule applied, and the discrete structure is approximately changed by a homogeneous continuous system (continuum). At that, the quantities are determined, which are peculiar for the continuum solid mechanics (Young modulus, Poisson ratio, proportional limit, yield strength, ultimate strength, corresponding to fracture strains, and so forth). Of course, in most cases of analysis of nanomaterials, the use of principle of continualization seems to be expedient, too. 
Taking into account the insufficient level of studying the properties of nanoformations and the existence of, at present, quite good base of mechanical characteristics of microcomposite materials, let us adduce first the necessary facts from micromechanics of materials for the following comparative discussion. Among many important achievements of micromechanics of composite materials, let us show only two.
The first achievement is related to understanding the role of mechanical models: one and the same composite can be described by diverse microstructural models: from the complex multicontinuum models to the discrete models in the form of lattices [50–53]. Every model has some advantages, when either concrete problem is studied. The plenty of models testifies the achieved depth of understanding in micromechanics of materials.
The second achievement consists in that there is the big set of different mechanical characteristics for components of composite materials (matrixes, granules, fibers, and layers).
Below, as an example, the list for such set for aramid fibers (kevlars) is shown [54]: “(1) density; (2) diameter of single fiber; (3) equilibrium humidity; (4) ultimate strength under tension; (5) elongation under break; (6) initial elastic modulus; (7) maximal elastic modulus; (8) elastic modulus under bending; (9) calculation modulus under axial tension; (10) dynamical elastic modulus; (11) part of strength in the loop from the ultimate strength under tension; (12) fatigue properties (number of cycles up to failure); (13) creep under loading up to 90% of the ultimate strength; (14) constant of friction.”
   At present, the information on mechanical characteristics of nanoformations is still insufficient, and the listed above example with fourteen characteristics of certain fiber can be understood as the very distant goal in nanomechanics.
Thus, aspect 3 can be, like  aspect 2, related to arguments about similarity of all four parts of structural mechanics of materials, because two basic models of the continuum mechanics of these parts are identical.
5. Aspect 4: Allowance for the Edge and Near-the-Surface Effects
 The problem of allowance for the edge and near-the-surface effects is important for all of the parts of mechanics of materials. As a rule, analysis of this problem permits to estimate the validity of continuum models.
Remember that, in structural mechanics of composites (in the broad sense) and in mechanics of composite materials (in the more narrow sense), the principles of continualization and homogenization are utilized. According to the first one, the discrete structure is changed (modeling) by the continuous structure. According to the second one, the piecewise homogeneous structure is changed (modeling) by the homogeneous structure.
It is necessary to take into account that principles of continualization and homogenization are referring to modeling the properties of material as the infinite continuum.
When different problems of structural mechanics of materials (problems of statics, dynamics, stability, and fracture) are being studied, analysis is necessary to be carried out as a rule for the material occupying the finite volume, which is also characterized by the boundary surface. On the boundary surface, for all of the basic mechanical processes, some boundary conditions are formulated for the material. In this regard, the question on applicability of principles of continualization and homogenization near the boundary surface and on this surface arises. The answer to this question can be formulated as follows: “near the boundary surface,  the principles of continualization and homogenization do not work.”
The proof of this statement seems to be quite evident, because near the boundary surface (under loading of arbitrary type) the representative volume of material is inherent in this material basic property-property of homogeneity of fields of macrostresses and macrostrains. The macrostresses and macrostrains are understood here as the stresses and strains within the framework of continuous system (medium), to which the initial system is reduced after application of continualization and homogenization principles. 
Note also that, in composite materials, when the material is being modeled by the piecewise homogeneous medium, the inhomogeneous fields of stresses and strains near the boundary surface in each component (each homogeneous medium) arise as a rule. The statement above is true for all of the four scales mechanics (macro-, meso-, micro-, and nano-).
Below, inapplicability of principles of continualization and homogenization near the boundary surface is illustrated by an example of layered materials within the framework of micromechanics of composite materials. More specifically, let us consider the layered composite material formed of two alternating layers of constant thickness, which are made of materials with distinguishing properties.
In Figures 2 and 3, the two-dimensional representative area is shown, which includes the part of boundary surface also, that is, the representative volume near the boundary surface. At that, the dotted line denotes the exarticulation of the part of material near the boundary surface, and the size of the representative area side is 
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 are the thicknesses of the forming of material layers. Thus, the sizes of representative area are distinguished one order from the structural components size 
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, which usually, in different publications, is assumed to be sufficient, when the sizes of representative area are being discussed.






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Figure 2: The layered material with boundary surface parallel to interfaces.





























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Figure 3: The layered material with boundary surface placed perpendicularly to interfaces.


It seems obvious that, owing to presence of boundary surface with arbitrary sizes of the representative area in Figures 2 and 3, the strains and stresses in the representative area are inhomogeneous. At that, this inhomogeneity will decrease with distance from the boundary surface. This phenomenon of inhomogeneity of fields is known in solid mechanics for homogeneous materials. In this case, the values of strains and stresses become more homogeneous, when moving off from the boundary surface. 
When applied to statical problems, this phenomenon corresponds to the Saint-Venant edge effect. 
When applied to problems of wave dynamics, this phenomenon corresponds to onset of surface waves with amplitude damping with moving off from the boundary surface.
The notion of surface instability for homogeneous anisotropic body (which corresponds to model 3) is seemingly introduced for the first time in [55]. Results of investigations of phenomenon of surface instability for different homogeneous materials with using strong 3D theories are represented along with other results in many monographs (e.g., starting with [56, 57] and finishing with [58, 59]). In the work in [60], the phenomenon occurring near the boundary surface of elastic anisotropic body was called the skin effect.
Thus, in problems of statics, dynamics, and stability of mechanics of homogeneous materials (including  model 3), the phenomenon consisting in the fields of inhomogeneous strains and stresses arising near the boundary surface of material, which damp quickly moving off from the boundary surface (skin effect, edge effect, and near-the-surface effect), is known quite well.
It is obvious that similar type effects take place both for materials with discrete structure (model 1) and for piece-wise homogeneous materials (model 2). For these materials, owing to existence of edge or near-the-surface effects, the additional complication arises-near the boundary surface, the principles of continualization and homogenization are inapplicable, because, including the boundary surface representative volume of arbitrary size, the fields of strains and stresses are inhomogeneous. 
Taking into account the considerations above, it seems expedient to form the following conclusions.
Conclusion 1. For materials with discrete structure (model 1) and for piece-wise homogeneous materials (model 2), the study of edge effects can be carried out within the framework of initial models only because the principles of continualization and homogenization are he