Multiwalled carbon nanotubes (MWCNTs) have been synthesized on thin gold (Au) films using thermal chemical vapor deposition (CVD). The films were evolved to catalytic Au nanoparticles (Au NPs) by plasma argon (Ar) ion bombardment with a direct current (DC) power of 216 W. The characteristics of the MWCNTs grown on Au catalysts are strongly dependent on the growth temperature in thermal CVD process. The MWCNTs were then purified by oxidation (550°C) and acid treatments (3:1 H₂SO₄/HNO₃). After purifying the MWCNTs, they were dispersed in deionized water (DI water) under continuous sonications. The MWCNT solution was then ultrasonically dissolved in a conducting polymer mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) to prepare for an electronic ink. The ink was deposited onto the flexible and transparent plastic substrates such as polyethylene terephthalate (PET) with fabricated silver interdigitated electrode using two methods such as drop-casting and inkjet printing to compare in the detection of ammonia (NH₃) and other volatile organic compounds (VOCs) at room temperature. Based on the results, the gas response, sensitivity, and selectivity properties of MWCNT-PEDOT:PSS gas sensor for NH₃ detection are significantly enhanced by using inkjet printing technique. The sensing mechanism of fabricated gas sensor exposed to NH₃ has been also proposed based on the swelling behaviour of polymer due to the diffusion of NH₃ molecules into the polymer matrix. For the MWCNTs, they were mentioned as the conductive pathways for the enhancement of gas-sensing signals.

1. Introduction

Carbon nanotubes (CNTs) and their composites have attracted increasing attention in various applications for several years [1–5]. Many techniques have been presented to synthesize the multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) [6–9]. Chemical vapor deposition (CVD) is one of the most popular techniques for growing the CNTs. In this technique, metal catalyst particles or islands were presented as an important factor for growing the MWCNTs [10]. Recently, there have been extensive reports to demonstrate the growth of CNTs by using gold nanoparticles (Au NPs) as catalysts [11–14]. The catalyst behaviour of Au NPs can be presented when its particle size is reduced into nanoscale caused by size effects [14]. Because of the resistance to oxidation and good electric conductivity, the Au catalysts would be an ideal selection for the fabrication of CNT-based devices. The evolution of thin Au films to nanoparticles using thermal annealing and plasma ion bombardment was successfully reported for growing the CNTs [13]. For gas-sensing applications, the CNTs can be promoted as a good material due to its excellent properties such as high specific surface area, good electric conductivity, and high carrier mobility [15, 16]. The publications involving the gas-sensing devices have been focused on the high sensitivity and good selectivity at room temperature [16–19]. The CNTs decorated with some metal nanoparticles as a sensing film were reported to improve the
gas-sensing properties [20–23]. Furthermore, nitrogen doping and functionalization of CNTs with some organic compounds have been also presented to enhance the gas response to ammonia (NH₃) and other volatile organic compounds (VOCs) [24, 25]. Direct charge transfer process and reducing reaction between NH₃ and chemisorbed oxygen were presented as dominant processes for NH₃-sensing mechanism [21, 25].

In this work, the MWCNTs were grown on plasma ion-bombarded thin Au films by thermal CVD. The effects of growth temperature on the MWCNT morphologies and their crystalline qualities were demonstrated. After growing the MWCNTs, they were then prepared to a sensing film in form of an electronic ink by using purified MWCNT dispersion in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conducting polymer. The novel method in deposition of sensing film onto the plastic substrates with fabricated silver interdigitated electrodes by using inkjet printing technique for the enhancement of NH₃-sensing properties at room temperature was also evaluated. In addition, the sensing mechanism of fabricated NH₃ gas sensor has been proposed based on the swelling of the PEDOT:PSS polymer matrix together with the enhancement of sensing signals by MWCNTs.

2. Materials and Methods

2.1. Preparation of Substrate. Copper foils (~50 μm thick) purchased from Brastech Company were used as substrates for growing the all MWCNTs. Firstly, the Cu substrates were mechanically polished with silicon carbide grinding papers (grit 3000). Then, they were cut into 3 × 3 cm² size samples and subsequently cleaned in acetone followed by methanol for 15 min and dried with nitrogen (N₂). The topographies of Cu substrates before and after polishing the surface are shown in Figures 1(a) and 1(b), respectively. Aluminum oxide (Al₂O₃) films with a thickness of 45 nm as buffer layers were first deposited onto the Cu substrates by a homemade reactive direct current (DC) magnetron sputtering. Thin gold films with a thickness of 10 nm were then deposited on Al₂O₃ films by using a commercial DC sputter coater (Scancoat Six; BOC Edwards). The thicknesses of buffer and catalyst films were chosen from the repeatedly previous work of us as a suitable thickness for the optimum result. The details of deposited conditions for the films kept in this study are shown in Table 1.

2.2. Formation of Catalytic Au NPs by Plasma Ion Bombardment. The Au/Al₂O₃ films deposited on Cu foils as substrates were ultrasonically cleaned with methanol and dried with N₂. For modifying the substrate, the sample was fixed with two screws on Cu target as a sample holder within a reactor chamber. Schematic illustration and photograph of chamber for plasma ion bombardment are shown in Figures 2(a) and 2(b), respectively. The chamber was evacuated to obtain a base pressure of 5 × 10⁻⁵ mbar by using an operation of a rotary pump and a diffusion pump. After obtaining the base pressure, Ar was introduced into the chamber with a flow rate of 5 sccm. The target was supplied with a constant power of 216 W (0.4 A and 540 V) by a DC power supply in Ar plasma for 5 min to achieve the formation of catalytic Au NPs on the substrate.

2.3. Growth of MWCNT by Thermal CVD. Again, the modified substrates were ultrasonically cleaned with methanol and dried with N₂ before inserting them into a horizontal quartz chamber of a home-built thermal CVD system. The details of this system were reported by the previous work of the first author [26]. The chamber was evacuated to the pressure of 10⁻² mbar with a rotary pump (Alcatel, 2012). Argon was fed into the chamber with a flow rate of 200 sccm while heating up the chamber to the growth temperatures of 880°C. The mixture of hydrogen (H₂) and acetylene (C₂H₂) gases was fed into the chamber with the flow rates of 100 sccm and 60 sccm, respectively. All gases were introduced through three flow meter controllers (Cole-Parmer, TW03227-12). After the thermal CVD process, the MWCNTs were grown, and they were cooled down under Ar atmosphere with a flow rate of 30 sccm until the temperature inside the chamber was nearly room temperature. The process was carefully repeated for the growth temperatures of 900 and 950°C, respectively.

2.4. Characterizations. The topography of Cu substrates was examined by an atomic force microscope (AFM, AR MFP-3D). After growing the MWCNTs, the samples were characterized in their morphologies by using a Quanta 450 FEI scanning electron microscope (SEM) working at 30 kV and 10 μA. The as-grown MWCNTs were removed from the substrate by a sonication in a dimethyl sulfoxide (DMSO) compound and dropped on a gold grid for analysis under high-resolution transmission electron microscope (HRTEM, Hitachi HT 7700) operated with energy dispersive X-ray spectroscopy (EDS). The crystalline qualities of MWCNTs grown on different growth temperature were identified by a Fourier-transform Raman spectrometer (FT-Raman, PerkinElmer Spectrum GX).

2.5. Fabrication of Gas Sensor and Gas-Sensing Measurements. After growing the MWCNTs, the samples were purified by oxidation treatment at 550°C for 30 min followed by the acid-treated process using a mixture of sulfuric acid and nitric acid (3:1 H₂SO₄/HNO₃) under continuous sonication for 2 h. The purified MWCNTs were rinsed several times with distilled water and dried at 60°C in an oven. For preparing the precursor inks, 0.5 g of purified MWCNT powder was dispersed in 80 ml of deionized water (DI water) under continuous sonication for 2 h. The MWCNT solution was then ultrasonically dissolved in a polymer mixture of PEDOT:PSS with a weight ratio of 10% MWCNT solution to 90% PEDOT:PSS for 45 min. The inks were deposited onto the plastic substrates such as polyethylene terephthalate (PET) by two methods for comparison in their gas-sensing properties at room temperature. One was a simple method, i.e., drop-casting, and the other was applied method,
i.e., inkjet printing. For the drop-casted method, the ink with a volume of 20 µl was dropped onto the substrate by using a micropipette. For the inkjet printing technique, an ordinary inkjet office printer (HP deskjet ink 1112) was applied for micropipette. For the inkjet printing technique, an ordinary volume of 20 µl was inkjet-printed on the substrate with 5 printed the sensing films over the substrates. The ordinary ink in the printer was eliminated from a cartridge. The empty cartridge was carefully refilled with the 20 µl MWCNT-PEDOT:PSS conducting ink. It should be noted that the MWCNT content has been limited to 10 wt.% due to the problem of clogged nozzles in the printer-head. Then, the 20 µl ink was inkjet-printed on the substrate with 5 printed layers. A flow-through system was designed to measure the gas response of our gas sensors. The details of gas measurement system were explained by a previous work of our groups [18].

Table 1: Sputtered conditions for deposition of Al 2 O 3 and Au films.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Al 2 O 3 film</th>
<th>Au film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base pressure (mbar)</td>
<td>5 x 10⁻⁵</td>
<td>5 x 10⁻⁵</td>
</tr>
<tr>
<td>Working pressure (mbar)</td>
<td>3 x 10⁻³</td>
<td>1 x 10⁻¹</td>
</tr>
<tr>
<td>Substrate temperature (°C)</td>
<td>R.T</td>
<td>R.T</td>
</tr>
<tr>
<td>Distance between the target and the substrate (cm)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Ar flow rate (sccm)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>O 2 flow rate (sccm)</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>DC power (W)</td>
<td>216</td>
<td>20</td>
</tr>
<tr>
<td>Sputtering time (s)</td>
<td>60</td>
<td>30</td>
</tr>
</tbody>
</table>

3. Results and Discussion

Figure 3 shows the AFM topographical images of Au/Al 2 O 3 films after Ar ion bombarding and annealing processes. The mean roughness of the film as shown in Figure 3(a) is approximately 18.6 nm. The roughness was maybe due to the formation of Au grains according to the condition upon energy supply from Ar ion-bombardment. A 10 nm Au film with an Al 2 O 3 buffer layer was chosen to understand the morphology of the catalyst during the CVD process. The sample was replicated in all CVD conditions without the carbon source. As shown in Figure 3(b), the surface roughness of the film is approximately 4.5 nm. It is clearly seen that the surface roughness of Au catalyst film after annealing process is lower than the film before annealing. This result could be discussed due to the filling of catalyst particles on the buffer layer after annealing process [27]. The filling mechanism of catalyst particles on the buffer layer after annealing process is lower than the film before annealing. This result could be discussed due to the filling of catalyst particles on the buffer layer after annealing process [27]. The filling mechanism of catalyst particles on the buffer layer after annealing process is lower than the film before annealing. This result could be discussed due to the filling of catalyst particles on the buffer layer after annealing process [27]. The filling mechanism of catalyst particles on the buffer layer after annealing process is lower than the film before annealing. This result could be discussed due to the filling of catalyst particles on the buffer layer after annealing process [27]. The filling mechanism of catalyst particles on the buffer layer after annealing process is lower than the film before annealing. This result could be discussed due to the filling of catalyst particles on the buffer layer after annealing process [27].

Figure 5 shows the MWCNTs grown on Ar ion-bombarded substrates using Au NPs as catalysts with different growth temperatures of 880, 900, and 950°C. It is seen that the MWCNTs were grown in the temperature range of 900–950°C (Figures 5(b)-5(c)). However, they were not observed on the substrate at the growth temperature of 880°C (Figure 5(a)). This is due to the fact that higher growth temperatures lead to high exothermic reaction from C 2 H 2 to MWCNTs. The high energy for carbon decomposition can easily heat the Au catalysts to the suitable temperature for MWCNT growth. Therefore, the growth temperature must be high enough to allow for the formation of the MWCNTs on the Au catalysts. To confirm the catalyst compositions, the MWCNTs were removed on their substrates using sonication in DMSO solvent and dropped them on a gold
The crystalline qualities of MWCNTs grown on substrates have been identified using intensity ratio of D to G bands \((I_D/I_G) \) of Raman spectrum [28, 29]. The D and G bands are defined as the amorphous carbonaceous impurities or defects with sp\(^3\) carbon bonds \((\sim 1350 \text{ cm}^{-1}) \) and graphitic nature of carbon with sp\(^2\) carbon bonds \((\sim 1580 \text{ cm}^{-1}) \), respectively [28]. Figure 6 shows the Raman spectra of MWCNTs grown on substrates at temperatures of 900°C and 950°C. It is seen that the \(I_D/I_G \) ratios for the MWCNTs grown on substrate at 900°C and 950°C are found to be 1.08 and 0.84, respectively. It was discussed that the adjacent Au nanoparticles could be combined and formed into a larger particle at high temperature (950°C). The formation of amorphous carbon structures on the large catalyst was identified by using the diffusion model for CNT formation. The model predicts that if the size of catalyst is larger than the diffusion length of carbon, CNT growth is poor [28]. As can be seen in Figure 3(a), some big Au particles were formed beside the small nanoparticles. They

Figure 2: (a) Schematic illustration and (b) photograph of reactor chamber for plasma ion bombardment.

Figure 3: AFM topographical images of sputtered Au/Al\(_2\)O\(_3\) films deposited on polished Cu foil (a) after bombarding with Ar ion and (b) after annealing processes.

Figure 4: Schematic illustration of filling mechanism for Au films deposited onto the Al\(_2\)O\(_3\)/Cu foils (a) after bombarding with Ar ion and (b) after annealing processes.

TEM grid. The EDS spectrum of a catalyst particle under a TEM grid is shown in Figure 5(d). The spectrum on the catalyst showed the signals of C and Au and no signal for Al or other metals. Therefore, an Au nanoparticle as shown with inset image of HRTEM in Figure 5(d) can be confirmed to be a catalyst for MWCNT growth even though some signals of Au may be obtained from the TEM grid.
cause the formation of amorphous carbon structures. This may be the source why the ratio of D to G-band intensity of the grown MWCNTs at 950 °C is still quite large. The optimum result such as the MWCNTs grown on Ar ion-bombarded thin Au film at growth temperature of 950 °C was further more investigated.

The poor dispersion of MWCNTs within aqueous solution is still a main problem for the preparation of sensing ink in gas sensor applications. Therefore, surface modification and functionalization of MWCNTs with some organic compounds are required for their enhancements of solubility and compatibility properties. In this work, the
MWCNTs were purified by oxidation treatment followed by the acid-treated process using a mixture of sulfuric acid and nitric acid (3:1 H₂SO₄/HNO₃) under continuous sonication. These processes have been claimed in the removal of carboxylic impurities and attachment of carboxylic (COOH) organic compounds on the CNT surface [30].

To understand the effect of purified process on the dispersion quality of MWCNTs, 0.5 g of purified MWCNTs was immersed in 80 ml DI water under continuous sonication for 2 h. Figure 7(a) shows photographs of purified MWCNT solution after storage in 1 day and the same solution after storage in 30 days. It can be observed that the solution is stable during storage in 30 days. This is indicative of the high dispersion quality for purified MWCNTs with excellent sensing performance. The solution was then dissolved in a conducting polymer mixture of PEDOT:PSS to prepare for an electronic ink. The ink was deposited onto the flexible and transparent plastic substrates with fabricated silver interdigitated electrode using two methods including drop-casting and inkjet printing. The schematic diagram of the structure for fabricated gas sensor is shown in Figure 7(b).

Figure 8 shows the SEM images of MWCNT-PEDOT:PSS sensing films on silver interdigitated electrode deposited by drop-casting and inkjet printing. The morphologies of sensing film obtained from drop-casting method are shown in Figures 8(a) and 8(b). Due to the high surface tension of PEDOT:PSS, the droplets of sensing film with different sizes tend to form in a low compress and poor coverage on the substrate surface. On the other hand, the MWCNT-PEDOT:PSS sensing film obtained from inkjet printing gave the best compress in terms of coverage and density as shown in Figures 8(c) and 8(d). It can be seen in the insert image of Figure 8(d) that the MWCNTs are randomly imbedded in the matrix of PEDOT:PSS polymer.

The performance of our fabricated gas sensors was evaluated using gas response and sensitivity and selectivity properties. The gas response was defined by equation (1). For the sensitivity, it is the slope of linear graph in the relation of gas response versus gas concentration. The selectivity was defined as a comparative gas response between different VOC test gases:

\[\text{S}(\%) = \frac{R_{\text{gas}} - R_{\text{air}}}{R_{\text{air}}} \times 100, \]

where \(R_{\text{gas}}\) and \(R_{\text{air}}\) are the resistances of the gas sensor in test gas and dry air, respectively.

Figure 9 shows the resistance changes of gas sensors prepared by drop-casting and inkjet printing with a function of NH₃ concentrations (Figure 9(a)) and the comparative gas response of sensor exposed to various VOCs with a fixed concentration of 1000 ppm (Figure 9(b)). For the resistance change in response to NH₃, it is seen that the sensor obtained from inkjet printing condition has much higher baseline resistance than the sensor from drop-casting. It was also discussed that the filling of oxygen vacancies on MWCNT surface obtained from a heating element in an inkjet printer could lead to the increase in baseline resistance of gas sensor. In both cases, the changes of resistance are proportional to decreasing concentration of NH₃ gas from 1000 to 100 ppm.

In case of drop-casted condition, the gas responses of MWCNT-PEDOT:PSS gas sensor exposed to NH₃ in the concentrations of 100, 200, 500, and 1000 ppm are found to be 0.2, 0.3, 0.8, and 2.1%, respectively. In the same NH₃ concentrations, the gas responses of MWCNT-PEDOT:PSS gas sensor obtained from inkjet-printed condition are also found to be 8.5, 23.3, 40.7, and 73.7%, respectively. The selectivity of MWCNT-PEDOT:PSS gas sensors was further investigated by using different VOC vapors including methanol, acetone, and DMF as the test gases as shown in Figure 9(b). It is seen that the sensor obtained from drop-casting shows the very low responses and low selectivity to all test gases. On the other hand, the sensor obtained from inkjet printing exhibits high response to NH₃ (~74%), while its response to other VOCs are low (≤10%).

It is well known that both PEDOT:PSS and MWCNTs are p-type semiconductors [31, 32]. In this work, the fabricated MWCNT-PEDOT:PSS gas sensors also behave as a p-type semiconductor since the resistances of drop-casted and inkjet-printed gas sensors increase when NH₃ reducing gases are absorbed on their sensing films (Figure 9(a)). In addition, the gas response of inkjet-printed MWCNT-PEDOT:PSS gas sensor was further investigated with an oxidizing gas (i.e., nitrogen dioxide (NO₂)). A tank of NO₂ (99.5% purity) was connected with the flow-through system as a source of target gas. During the NO₂-sensing measurement, the resistances of gas sensor were recorded every second using a LabVIEW software program and a NI USB DAQ 6008 device. It has been found in Figure 10 that the sensor shows no noticeable response to NO₂ at room temperature. However, the sensor exhibits a slight decrease of resistance upon exposure to NO₂, corresponding to the p-type semiconductor gas sensor towards an oxidizing gas [33]. This result can be discussed that the hole charge carriers could be higher than the charge transfer due to integration between two p-type semiconductor materials. This leads to the very low response of our gas sensor for an electron acceptor as NO₂. Based on the gas-sensing results, the inkjet-printed MWCNT-PEDOT:PSS gas sensor is performed to show the highest response and highest selectivity to NH₃ at room temperature. Although the sensor cannot perfectly recover to baseline resistance, the property of the sensor in response to NH₃ at high concentrations is much higher compared to some other works [17–19].

To understand the effects of MWCNT content on the gas-sensing performance of fabricated gas sensor, the bare PEDOT:PSS and the PEDOT:PSS with the low content of MWCNTs were further more investigated. Although the MWCNT contents are up to 2, 5, and 8 wt.%., the gas responses of the sensors are similar to the case of bare PEDOT:PSS polymer. This is due to the lack of MWCNTs within the precursor inks. The MWCNTs were mentioned as the conductive pathways for the enhancement of sensing signals.

For the carbon-based gas sensor in literature data, the working range of baseline resistance in response to NH₃ was indicated to be in the order of kΩ [34, 35]. The amount of MWCNTs within the precursor inks has an effect on the baseline line or initial resistance of the sensors. The initial resistance of MWCNT gas sensor decreased when the
MWCNT content of sensor was increased. In this work, the initial resistances of inkjet-printed and drop-casted MWCNT gas sensors with a weight ratio of 10% MWCNTs to 90% PEDOT:PSS were found to be 1.80 and 0.96 kΩ, respectively. These values fall within the working range of initial resistance for fabricated gas sensor in response to NH₃ (i.e., around kΩ). This is the main reason why the weight ratio of 10% MWCNTs to 90% PEDOT:PSS was considered to be the optimization of MWCNT concentration.

There have been some papers reporting that the PEDOT:PSS polymer can be used as a sensing film for NH₃ detection [19, 36, 37]. Figure 11 shows the resistance changes of the inkjet-printed gas sensors preparing the sensing film with bare PEDOT:PSS (Figure 11(a)) and MWCNT-PEDOT:PSS (Figure 11(b)). Two sensors were further exposed to a single pulse of 1000 ppm NH₃ at room temperature. It is observed that the sensors present the increments of resistance upon exposure to NH₃ vapors before they almost recover to their baseline lines in dry air. After calculating the gas response, the response values of inkjet-printed PEDOT:PSS and inkjet-printed MWCNT-PEDOT:PSS gas sensors are found to be ~4.0% and ~74.0%, respectively. Thus, the bare PEDOT:PSS gas sensor is still able to respond to NH₃ and its response is substantially enhanced after MWCNT integration.

Figure 12 shows a graph of gas response as a function of NH₃ concentration for the sensors prepared by drop-casting and inkjet printing. It is seen that the gas response increased with increasing NH₃ concentration. Furthermore, it is also found that the sensor obtained from inkjet printing technique showed higher NH₃ gas response than the sensor obtained from drop-casting in every NH₃ concentration. This is because of the homogeneous gain effect when the
sensing film is inkjet-printed on the substrate unlike in the case of drop-casted deposition. This effect was previously explained in the enhancement of carrier conductive pathways \[38, 39\]. The sensitivities of drop-casted and inkjet-printed MWCNT-PEDOT:PSS gas sensors calculated from the linear regression line are found to be 0.002 and 0.069 ppm\(^{-1}\), respectively. Therefore, the inkjet-printed MWCNT-PEDOT:PSS gas sensor has significantly higher sensitivity than the drop-casted MWCNT-PEDOT:PSS gas sensor after exposure to NH\(_3\) in the concentration range of 100 ppm to 1000 ppm.

The schematic illustration of conductive pathways in electron transports for inkjet-printed MWCNT-PEDOT:PSS and drop-casted MWCNT-PEDOT:PSS networks is shown in Figures 13(a) and 13(b), respectively. Because of the excellent compress and good coverage of inkjet-printed MWCNT-PEDOT:PSS networks, a series of highly conductive pathways for electron transports was formed between the silver contracts. On the other hand, due to the high surface tension of PEDOT:PSS, the mismatch between the drop-casted MWCNT-PEDOT:PSS junctions creates the low conductive pathways for electron transports. This cause leads to the low

![Figure 9: (a) Resistance changes of the fabricated gas sensors prepared by drop-casting and inkjet printing exposed to NH\(_3\) with various concentrations. (b) Gas response of sensor exposed to various VOCs with a fixed concentration of 1000 ppm.](image)

![Figure 10: Resistance change of inkjet-printed MWCNT-PEDOT:PSS gas sensor exposed to 1000 ppm NO\(_2\) at room temperature.](image)

![Figure 11: Resistance changes of the gas sensors prepared by inkjet printing exposed to 1000 ppm NH\(_3\) with (a) bare PEDOT:PSS and (b) MWCNT-PEDOT:PSS as sensing films.](image)
signals for the NH$_3$ response of drop-casted MWCNT-PEDOT:PSS gas sensor.

The response time was defined as the time of resistance change for the sensor after a gas-sensing cycle. The response time of sensors from all experiments was measured for ~ 10 min. However, the resistance of all fabricated sensors does not perfectly return to its baseline resistance, although the NH$_3$ flow is stopped. Therefore, the recovery time of all fabricated sensors cannot be indicated due to the fact that the NH$_3$ molecules will diffuse slowly throughout the polymer chains by dry air purging at room temperature. The sensing mechanism of the PEDOT:PSS polymer-based gas sensor can be mentioned by using a swelling process [40, 41]. The possible sensing mechanism of the sensor in this study was discussed based on the fact that the MWCNTs embedded into PEDOT:PSS matrix act as conductive pathways. A PSS chain in PEDOT:PSS polymer interacts with PEDOT chains over its length. There is a very short distance of interchain for PEDOT to allow for the presentation of electron hopping process. The swelling process leads to the disruption of the conductive pathways in the sensing film. After the diffusion of NH$_3$ molecules into the PEDOT:PSS matrix, the interchain distance of PEDOT was increased because of the swelling process. Therefore, the electron hopping process could be able to more difficult. This cause leads to a significant increase in the resistance of the MWCNT-PEDOT:PSS gas sensor upon exposure to the NH$_3$ vapors.

The NH$_3$-sensing measurements were further repeated every week for 30 days. It has been found that the inkjet-printed MWCNT-PEDOT:PSS gas sensor presents the good stability with only $\sim 5\%$ of letdown from its initial response under room temperature storage. Baseline drift is a vital performance parameter of gas sensor. It appears when the sensor response has changed over time. In this study, the baseline resistances of sensors are higher after detecting a high NH$_3$ concentration and shift upward from the initial baseline resistance after 4 sensing cycles at room temperature (Figure 9(a)). This is due to the fact that the NH$_3$ molecules under a high concentration are not desorbed completely on the sensing film at room temperature. All the parameters of our sensors may not be the highest performance achieved nowadays. However, the authors try to present the fact that the deposition of sensing film by inkjet printing technique may be a good selection in combination with other factors for the powerful gas-sensing performance at room temperature.

4. Conclusions
The MWCNTs have been successfully grown on plasma ion-bombarded thin gold films using thermal CVD process.
The optimum temperature for the growth of effective MWCNTs on the films is 950°C. The purified MWCNT solution was mixed together with a conducting polymer of PEDOT:PSS for preparing an electronic ink. The inkjet printing of gas-sensing ink from an ordinary inkjet office printer has been presented as a good method for enhancement of NH₃ gas-sensing properties at room temperature. The inkjet-printed MWCNT-PEDOT:PSS gas sensor presents the p-type semiconductor behaviour under NH₃ and NO₂ gases. The enhanced sensing properties of NH₃ gas sensor were attributed to homogeneous gain effect of sensing films to improve the MWCNT conductive pathways for the electron transports. The dominant sensing mechanism of fabricated NH₃ gas sensor has been further presented based on the swelling of the polymer due to the diffusion of NH₃ molecules into the chains of polymer matrix. This finding can be beneficial for application in printable or wearable NH₃ gas-sensing technology.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was funded by the Research and Development Institute, Rajamangala University of Technology Krungthep, Thailand. The authors are thankful to Mr. Gun Chaloeipote, one of the Ph.D. students from Department of Physics, Faculty of Science, Kasetsart University, Thailand, for fruitful cooperation.

References

