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Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations
in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence
demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression,
recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and
clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of
this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will
summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC,
and discuss the clinical applications and future direction of this field.

1. Introduction

The phosphatidylinositol-3-kinase (PI3K) signaling pathway
is one of the pathways most commonly activated in human
cancers [1]. It is a major downstream signaling component
of receptor tyrosine kinases (RTKs) and is critical for
the regulation of cell proliferation, growth, differentiation,
migration, and survival [2]. Thus, it represents one of the
most promising targets for cancer prevention and therapy
[3].

Mounting reports of original studies and reviews have
been published, highlighting the paramount importance
of this pathway in human cancers. To avoid redundancy
with previous publications, in this paper we will focus
on summarizing recent progress in PI3K pathway research
in head and neck squamous cell carcinoma (HNSCC).
Specifically, this will include considerations of the molecular
alterations seen in some components of the PI3K pathway,
as well as functional studies of the role of the PI3K pathway

in HNSCC initiation, invasion, and metastasis studied both
in vitro and in vivo, with a particular focus on the use of
genetically engineered mouse models (GEMMs). Finally, we
will explore the potential of the PI3K pathway as a target for
chemoprevention and cancer therapy.

2. Common Molecular Alterations of HNSCCs

HNSCC refers to squamous cell carcinomas (SCCs) arising
from the oral cavity, tongue, pharyngeal, and laryngeal
regions. As the 6th most common human cancer worldwide,
they generate about 600,000 new cases and 350,000 cancer
deaths each year [4, 5]. HNSCCs usually occur at a relatively
late age and at a higher frequency in males possessing the
well-known etiological factors of tobacco and/or alcohol
usage [4, 5]. Recently, however, the incidence of HNSCC is
increasing in women of a relatively young age, correlating
with human papilloma virus (HPV) infection [4, 5].
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Historically, the best known molecular alterations in
HNSCC were the inactivation of tumor suppressors, such
as p16 and p53, and activation of oncogenes, such as EGFR
and Stat3 [5, 6]. We have studied the role of transforming
growth factor beta (TGFβ) pathway in HNSCC using both
human HNSCC samples and GEMM approaches [7–10].
Our studies indicate that inactivation of the type II receptor
of TGFβ (TGFβRII) and the downstream signal mediator of
TGFβ, Smad4, plays a crucial role in HNSCC development
and progression [8, 10]. Perhaps the most comprehensive
studies on molecular alterations of HNSCC came from two
recent publications describing whole exome sequencing on
human HNSCC samples [11, 12]. Two major results were
generated from these papers: (1) the discovery of novel
molecular alterations of the Notch signaling pathway in
human HNSCC samples and (2) the validation of the PI3K
pathway as one of the major targets for molecular alterations
in human HNSCC samples, including alterations of the
oncogene PIK3CA and the tumor suppressor gene PTEN.
These two papers, together with many previous reports,
clearly demonstrate the importance of the PI3K pathway in
HNSCC. Furthermore, they suggest its possible involvement
in every aspect of HNSCC development and progression,
including tumor initiation, invasion, recurrence, resistance
to therapeutics, and metastasis.

3. PI3K Signaling Pathway

PI3Ks are a family of enzymes that phosphorylate the 3-OH
group on phosphatidylinositols. There are three classes of
PI3Ks, with IA PI3K being the type most widely implicated
in human cancers [13]. Class IA PI3K primarily phos-
phorylate phosphatidylinositol-4,5,bisphosphate [PI(4,5)P2]
in the plasma membrane to generate the second messen-
ger phosphatidylinositol-3,4,5,trisphosphate [PI(3,4,5)P3].
These enzymes are heterodimers, consisting of a p85 reg-
ulatory and p110 catalytic subunit [13]. Class IA PI3K are
most often activated by RTK signaling and indirectly by Ras.
Upon RTK signaling, p85 binds to either phosphotyrosine
residues or adaptor molecules. This binding serves both to
recruit the p85-p110 heterodimer to the plasma membrane
and to relieve the basal inhibition of p110 by p85. p110
then phosphorylates PI(4,5)P2 to generate PI(3,4,5)P3. The
3-phosphatase PTEN (phosphatase and tensin homologue)
dephosphorylates PI(3,4,5)P3 and catalyses the reverse reac-
tion. PI(3,4,5)P3 binds a subset of pleckstrin homology
domain-containing proteins, including 3-phosphoinositide-
dependent protein kinase (PDK1) and protein kinase B
(also called AKT) to the plasma membrane. Once there,
AKT is phosphorylated at Thr308 by PDK1 and Ser473 by
the mammalian target of rapamycin (mTOR) complex 2
(mTORC2) [14]. It is believed that AKT is the central signal
mediator of the canonical PI3K signaling pathway. However,
recent studies also suggest that the link between PI3K and
AKT can be uncoupled [15–18] and that oncogenic PI3K
signaling can be transmitted through an AKT-independent
pathway, further adding to the complexity of PI3K signal
transduction. AKT phosphorylates numerous downstream

targets that regulate a wide array of cellular processes
important in tumor development and progression [19]. One
of its major effectors is mTOR complex 1 (mTORC1), which
is activated in multiple human cancers and is one of the
major targets in the PI3K pathway for chemoprevention and
therapy [14] (Figure 1).

In human HNSCC, molecular alterations at the levels of
both expression and function have been identified. These
include gain-of-function mutations and amplifications in
PIK3CA (the gene coding p110α, the catalytic subunit
of PI3K), loss of heterozygosity and inactivating muta-
tions in PTEN, and overexpression/activation of AKT and
mTOR signaling [5, 6]. Several reports utilizing the GEMM
approach, including our own studies, have confirmed the
functional importance of these molecular alterations in
HNSCC development and progression. In the following sub-
sections, we will summarize several molecular alterations
and functional studies, particularly those using GEMMs,
involving molecular components of the PI3K pathway in
HNSCC tumorigenesis.

3.1. PIK3CA. PIK3CA, the gene coding for the catalytic
subunit p110α of PI3K, is one of the most commonly
mutated oncogenes in multiple human malignancies (3441
mutated samples among a total of 27725 samples, about 12%,
according to the Catalogue of Somatic Mutations in Can-
cer (COSMIC) Database (http://www.sanger.ac.uk/genetics/
CGP/cosmic/)). Most of these mutations are clustered in
exon 9 and exon 20, which corresponds to the helical
domain mutant E545K, and the kinase domain mutant
H1047R, respectively. Almost all PIK3CA mutations are gain-
of-function mutants, further supporting its oncogenic role
in human malignancies [1]. In human HNSCC samples, the
PIK3CA mutation rate is about 10% [20] but is relatively
higher (20%) in HNSCC arising from a pharyngeal site [21].
In addition to somatic mutations, genomic amplification of
PIK3CA has also been reported in several human cancers [1].
Interestingly, a significantly higher percentage of PIK3CA
gene amplification was noted in squamous cell carcinoma,
compared to adenocarcinoma in lung [22]. In human
HNSCC tissue samples, over 30% of cases involving PIK3CA
amplification involve the candidate gene residing in the
common amplification region of 3q26.3 in human HNSCC
samples [23, 24].

PIK3CA alterations have been associated with cancer
recurrence [25], metastasis [26, 27], and poor prognosis
[28, 29] in a variety of human cancers. In HNSCC, PIK3CA
alterations correlate with an advanced stage [30, 31], vascular
invasion [24], and lymph node metastasis [32]. Interestingly,
in breast cancer cell motility and metastatic potential are
differentially enhanced depending on whether their muta-
tions are localized at the helical or kinase domain. An over-
expression of the helical domain through mutation E545K
of PIK3CA produces a more severe metastatic phenotype
compared to that of the kinase domain mutation H1047R
[33].

Although the activated forms of PIK3CA, generated
through either mutation or amplification, are transforming
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Figure 1: Schematic of the PI3K/AKT/mTOR pathway and its interacting molecules. Red: molecules have oncogenic property. Yellow:
molecules have tumor suppression property.

in vitro [1, 13], their oncogenic potential in vivo has only
recently been assessed through the GEMM approach. While
deletion or inactivation of PIK3CA significantly impairs
oncogenic transformation [34] and produces a significant
resistance to Ras-oncogene-induced tumorigenesis [35],
overexpression of PIK3CA results in hyperplasia in ovarian
surface epithelium [36] and can predispose mammary glands
to neoplastic transformation [37]. Moreover, a knock-in
PIK3CA H1047R mutant is sufficient to induce lung and
breast cancer development [38–40]. Work being done in our
own lab suggests that these trends apply to HNSCC as well.
Using a HNSCC inducible transgenic mouse line that we had
previously developed [9], we observe a strong oncogenic role
of PIK3CA in HNSCC at both initiation and progression
when it is overexpressed in head and neck epithelium
(L. Du et al.’s manuscript in preparation).

The underlying molecular mechanisms of PI3K-driven
oncogenesis are still unclear. Although AKT is largely
regarded as the dominant mediator of oncogenic PI3K
signaling [2], recent studies suggest that the link between
PI3K and AKT can be uncoupled [15–18]. For example,
PDK1, but not AKT, is activated in some breast cancers
with PIK3CA mutations [15] (Figure 1). Using a mouse
model of breast cancer conditionally expressing the PIK3CA
H1047R mutant, Liu et al. have shown that PIK3CA-driven
mammary tumors occur via both PI3K-pathway-dependent
and PI3K-pathway-independent mechanisms, suggesting the
complexity of the PI3K-driven oncogenic mechanisms [40].

To this point, sophisticated PIK3CA-GEMMs for a variety of
cancer types may prove to be powerful tools in revealing the
role of PIK3CA in a context- and stage-specific manner.

3.2. Other PI3K Molecules. Besides the common alterations
of the PIK3CA gene encoding the catalytic p110α subunit
of class IA PI3K, somatic mutations in the PIK3R1 gene
encoding the regulatory subunit p85α have been detected
in multiple human cancers [41], including endometrium
(26%), colon (5%), central nervous system (4%), breast
(2%), pancreatic (2%), and skin (1%) (adapted from the
COSMIC Database). Interestingly, somatic mutations of
PIK3R1 are fairly common (7%, 3/41) in human HNSCC
samples, with two missense mutations and one in-frame
insertion [12]. The functional consequence of these mutants
seems oncogenic as the mutants weaken an inhibitory inter-
action while retaining a stabilizing interaction between p85α
and p110α, resulting in an activation of PI3K signaling [41].
However, p85α has also been shown to positively regulate
PTEN [42], and reduced expression of p85α correlates with
decreased PTEN expression [43]. Furthermore, deletion of
PIK3R1 in mouse liver resulted in aggressive hepatocellular
carcinomas with pulmonary metastasis, suggesting a tumor
suppressor role [43]. Thus, further characterization of
PIK3R1 mutants using both in vitro and in vivo approaches
is warranted to reveal its role in HNSCC tumorigenesis.

Similar to the oncogenic role of the p110α catalytic
subunit, the other isoforms of the catalytic subunit, p110β,
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p110γ, and p110δ, have been shown to be oncogenic in
experimental settings although there are no reports of
molecular alterations of these isoform subunits in human
cancer samples [44]. p110β has been studied the most
among these isoform subunits, and most of the results
came from the p110β-GEMM approaches. Using a PTEN-
GEMM for prostate cancer, Jia et al. showed that ablation
of p110β, but not p110α, impeded prostate tumorigenesis
[45]. On the other hand, overexpression in a constitutively
activated form of the p110β isoform induced prostate
intraepithelial neoplasia in mice [46]. Furthermore, knock-
in of a catalytically inactive form of p110β blocked tumor
development in an ERBB2-GEMM for breast cancer [47].
Future research, using both human samples and GEMM
approaches and aiming to assess the roles of these iso-
form subunits in HNSCC, will surely produce interesting
results.

3.3. PTEN. PTEN acts as a negative regulator for the
PI3K signaling by dephosphorylating PI(3,4,5)P3 and is
the second most commonly mutated tumor suppressor in
human cancers [48]. It is estimated that the overall frequency
of PTEN mutations in sporadic human cancers is about
12% (2044 mutated samples among a total of 17452 samples
according to the COSMIC Database), with endometrium
cancer displaying the highest frequency among those con-
sidered (38%, 690 mutated samples among a total of 1837
samples in the COSMIC database). Somatic mutation of
PTEN in SCCs of the head and neck is about 3% (22 mutated
samples among a total of 745 samples in the COSMIC
database) but is higher in SCCs of skin (14%, 92 mutated
samples among a total of 658 samples in the COSMIC
database). Compared to the relatively less common somatic
mutation rate, loss of PTEN expression was more common
(∼30%) in human HNSCCs [49]. Loss of heterozygosity at
chromosome 10q near PTEN was detected in over 70% of
the PTEN-mutated HNSCCs [50], suggesting an inactivation
of a typical tumor suppressor. Promoter hypermethylation of
PTEN has also been detected in multiple PTEN expression-
lacking human cancers [51, 52]. This is, however, infrequent
(∼5%) in human HNSCC samples [53]. Nonetheless, loss of
PTEN expression has been correlated with tumor prognosis
and incorporated into the grading system used for human
HNSCC patients [49, 54].

The mechanisms driving the loss of PTEN expression
in human cancers are still unclear. Mutations of PIK3R1
and PIK3R2 have been shown to affect PTEN stability
[55]. Posttranscriptional regulation of PTEN by the devel-
opmental transcription factor GRHL-3 has been shown to
correlate with PTEN loss in SCCs in both the skin and
the head and neck [56]. Another potential mechanism
for PTEN loss is through posttranscriptional regulation by
recently discovered mRNAs, namely miR-21, miR-26a, and
miR-106b-25, all of which have been identified as PTEN-
targeting mRNAs [56–58]. We have shown recently that
miR-9 level is positively correlated with PTEN level in
human HNSCC cell lines [59]. PTEN expression level is
also regulated posttranslationally. For example, the ubiquitin
ligase NEDD4-1 has been shown to negatively correlate

with PTEN level [60]. Whether NEDD4-1 overexpression
accounts for a subset of PTEN loss in human HNSCC
samples requires further investigation (Figure 1).

Other molecules closely related to PTEN have also
been found to be altered in multiple human cancers. PIP3
RAC exchanger 2a (P-REX2a) has been implicated as a
PTEN-interacting protein and antagonizes PTEN in human
cancers [61]. Similar to the phosphatase activity of PTEN
in the PI3K/AKT signaling pathway, inositol polyphosphate
4-phosphatase type II (INPP4B) is able to suppress the
PI3K/AKT signaling pathway and behaves as a tumor
suppressor in at least breast and ovarian cancers [62]. Lastly,
the PTEN pseudogene PTENP1 has been shown to regulate
PTEN level and acts as a tumor suppressor in human cancers
[63] (Figure 1).

One of the major consequences of PTEN alteration is the
activation of its main downstream targets AKT and mTOR,
which are oncogenic in HNSCC tumorigenesis and are
attractive targets for cancer therapies [48]. However, recent
studies have identified several novel pathways downstream
of PTEN. For example, the JNK signaling pathway has been
found to be a functional target of PTEN and is significantly
associated with PTEN loss [64]. Protein synthesis by the
RNA-dependent protein kinase (PKR) and the subunit of
eukaryotic translation initiation factor 2 (eIF2) phosphoryla-
tion pathway is also required for tumor suppression by PTEN
[65]. These results generate potential therapeutic targets
to act alongside targeting of the canonical PI3K signaling
pathway.

Given the potent tumor suppressor role of PTEN in
multiple human cancers, GEMMs possessing tissue-specific
deletion of PTEN have been created to better understand
PTEN in tumorigenesis [66]. The most striking PTEN-
GEMM for human cancer is the prostate PTEN deletion
model, in which mice with a single deletion of PTEN in
prostate cells developed metastatic prostate cancer [66].
PTEN deletion also resulted in spontaneous tumor develop-
ment in other organs, such as breast, lung, bladder, and skin,
with a wide range of tumor onset pattern and penetrance
[66]. Furthermore, PTEN deletion increases susceptibility
of mice to the induction of lung cancer by the tobacco
carcinogen NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-
1-butanone] suggesting a role for PTEN in tobacco-induced
tumor initiation [67]. Additionally, PTEN deletion enhances
tumor development and progression in the presence of
additional molecular changes, such as Ras and p53 [68, 69].
Using head-and-neck-specific GEMMs, we deleted PTEN
specifically in the head and neck region and observed both
premalignant lesions and tumor development. This head-
and-neck-specific PTEN-GEMM can be utilized as a model
for testing chemoprevention and therapeutic approaches
targeting PI3K pathway (J. P. Shen et al.’s manuscript in
preparation).

3.4. AKT. The serine/threonine kinase AKT is the central
mediator of the canonical PI3K pathway and mediates mul-
tiple cellular processes, including cell survival, proliferation,
angiogenesis, metabolism, and protein translation through
numerous downstream signaling proteins [19]. There are
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many publications covering almost every aspect of AKT
relation to human cancers. For this particular paper, we will
focus on the following topics: (1) molecular alterations of
AKT in human cancers, (2) isoform-specific role of AKT
in human cancers, (3) tobacco carcinogen-induced AKT
activation, (4) in vivo role of AKT in human cancers, and
(5) regulation of AKT by interacting proteins.

3.4.1. Molecular Alterations of AKT in Human Cancers. Given
its central node position in the canonical PI3K pathway,
AKT can be activated by either upstream PIK3CA activation
or PTEN inactivation. This subsequent AKT activation,
together with molecular alterations of AKT itself, represents
one of the most frequent molecular changes in human
cancers and provides rationale for targeting AKT as a
therapeutic approach.

All three isoforms of AKT, that is AKT1, AKT2, and
AKT3, have been reported to be altered in various human
cancers [70, 71]. Somatic mutation occurs most frequently
in AKT1 and almost exclusively manifests as the E17K
mutation [72, 73]. This AKT1 E17K somatic mutation was
detected in about 5% of breast cancers and 3% of both
thyroid and urinary cancers (adapted from the COSMIC
database). Although the AKT1 E17K mutation has not been
identified so far in human SCCs of head and neck according
to a single report [74], this mutation has been found in
human SCCs of lung [75]. Mutations of AKT2 have been
sporadically reported in various human cancers, but none of
these mutations occur at the corresponding position of the
E17K in AKT1 [71]. Of particular note, somatic mutation
of AKT2 is relatively common in endometrial carcinoma
[71]. Mutations of AKT3 at both E17K and other sites were
reported in melanoma [76] and endometrial carcinoma [71].
Unfortunately, as of yet there are no studies examining AKT2
and AKT3 mutations in human HNSCC samples. It is also
worth noting that, although several studies have shown the
oncogenic properties of these AKT mutations in vitro, a
confirmation of their functional significance requires further
investigation and demonstration of validity in vivo.

In addition to somatic mutation, overexpression of AKT
isoforms, particularly AKT2, has been reported in multiple
human cancers [77]. Gene amplification of AKT2 was
reported in human ovarian and pancreatic cancers [77]. Also,
overexpression of AKT2 at the messenger level has been
shown in breast and colon cancers and seems to correlate
with cancer migration, invasion, and metastasis [78, 79].
Interestingly, AKT2 has been shown to be transcriptionally
regulated by the master regulator of epithelial-mesenchymal
transition (EMT), Twist, and is associated with tumor
progression and metastasis [78, 79]. Overexpression of AKT1
and AKT3 has only been shown in human gastric cancer [77]
and melanoma [80], respectively. In human HNSCC samples
the overexpression of AKT2, but not AKT1 or AKT3, has
been reported in one study [81].

Pan-AKT activation through phosphorylation of Ser437
and Thr308 is fairly common in multiple human cancers
[19, 70]. Evaluation of these phosphorylation sites yields
prognostic value in human lung cancer [82] and predicts
chemotherapeutic benefit in breast cancer [83]. Persistent

AKT activation is also common in human HNSCC samples,
and occurs as early as the premalignancy stage, including
dysplasia and carcinoma in situ, suggesting that AKT acti-
vation is an early event in human HNSCC tumorigenesis
[6, 84, 85]. However, reports have also shown AKT activation
to correlate with a poor clinical outcome in human HNSCC
patients [86, 87]. The role of AKT activation in human
HNSCC development and progression is still in need of
further investigation.

3.4.2. Isoform-Specific Role of AKT in Human Cancer.
Although AKT1, 2, and 3 share high sequence homology,
clinical studies suggest the existence of isoform-specific roles
of AKT in multiple human cancers [19, 70]. This is further
validated by experimental studies using both in vitro and
in vivo approaches. While AKT1 and AKT2 play a similar
role in regulating cell survival and proliferation, they behave
distinctly in their regulation of cell migration and EMT [88,
89]. For example, AKT1 knockdown induces cell migration
and EMT in breast cancer cell lines, while AKT2 knockdown
suppresses these behaviors [90]. This is further exemplified
in breast cancer mouse models: while overexpression of
AKT1 accelerates ErbB-2 mediated mammary tumorigenesis
and suppresses tumor invasion [91], overexpression of AKT2
markedly increases the incidence of pulmonary metastases in
breast cancer [92]. These data suggest that AKT1 acts as a
metastasis suppressor, while AKT2 as a metastasis promoter,
further warranting the need to use isoform-specific AKT
inhibitors in clinical management of cancer patients.

The underlying mechanisms regulating the isoform-
specific roles of AKT are still unclear. Distinct downstream
targets of each AKT isoform might mediate this separate
signaling transduction and be responsible for the distinct
behavior of AKT isoforms in human breast cancer progres-
sion and metastasis. A recent report showing regulation of
mRNA-200, which plays a critical role in cell migration and
EMT, by the ratio of AKT1 to AKT2 [93] suggests another
potential mechanism for the isoform-specific roles of AKT.
Whether these trends are context or stage specific is still
unclear. As of yet, there are no human HNSCC studies that
address these questions though they are needed to guide
future clinical trials on HNSCC patients using AKT isoform-
specific inhibitors.

3.4.3. Tobacco Exposure and AKT Activation. Though tobac-
co exposure is one of most important etiological fac-
tors in HNSCC tumorigenesis, its underlying molecular
mechanisms remain poorly understood [4]. In addition
to the formation of DNA adducts, tobacco carcinogens,
such as NNK, activate several signal transduction pathways,
including AKT, in both normal and cancer cells in the
lung [94]. We have shown that, in both HNSCC tumors
and the adjacent mucosa, AKT is activated at a higher
frequency in HNSCC patients who are smokers compared to
those who are nonsmokers [95]. Also, adding physiologically
relevant concentrations of NNK to normal head and neck
epithelial cells and HNSCC cell lines will rapidly and
constitutively activate AKT in a dose-dependent and time-
dependent manner. Finally, we demonstrated that NNK
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exposure to mouse head and neck epithelium results in
epithelial hyperproliferation and reduced apoptosis, which
is correlated with AKT activation [95]. These studies suggest
that AKT activation plays a pivotal role in mediating tobacco-
induced HNSCC carcinogenesis and that it may be an
effective target for chemoprevention.

3.4.4. In Vivo Role of AKT in Human Cancers. The precise
functional consequence of AKT activation cannot be assessed
without in vivo studies. This is particularly critical for the
evaluation of the isoform-specific role of AKT in context-
and stage-specific manners. Current in vivo models of AKT
activation overwhelmingly confirm its oncogenic role at
differing levels of potency in various cancer types. However,
at least in breast cancer models, the distinct roles of different
AKT isoforms in cancer progression and metastasis have
been observed as described previously. Mice constitutively
overexpressing an activated AKT driven by a keratin 5
promoter developed both skin and head and neck tumors
and an increased sensitivity to skin carcinogenesis [96,
97]. The oral lesions seen in these specimens were mostly
epithelial dysplasia, their malignant transition hampered by
the induction of premature senescence. This suggests that
AKT activation is an early event but not sufficient by itself
to HNSCC tumorigenesis [97]. This is further supported
by the introduction of p53 loss, which synergizes with AKT
activation to develop metastatic HNSCC [97].

3.4.5. Regulation of AKT by Interacting Proteins. Numerous
proteins similar to PTEN have been identified as regulators of
AKT activation and stability. PH domain leucine-rich repeat
protein phosphatase (PHLPP) has been shown to attenuate
AKT signaling through the regulation of distinct AKT
isoforms [98]. Deletion or loss of expression of PHLPP has
been reported in a significant fraction of colon and prostate
cancers [99, 100]. FK506-binding protein 51 (FKBP51) has
been shown to act as a scaffolding protein for AKT and
PHLPP, as well as promote the dephosphorylation of AKT.
Furthermore, FKBP51 is downregulated in pancreatic cancer
samples and cell lines [101]. Posttranslational modifications
of AKT through ubiquitinating proteins such as TTC3 have
also been reported [102]; however, this protein role in onco-
genic AKT activation has not been studied. Lastly, the p53
target gene PH domain-only protein (PHLDA3) has been
found to compete with the PH domain of AKT for binding
to membrane lipids, thereby inhibiting AKT translocation to
the cellular membrane and, thus, its activation. Consistent
with its function, loss of the PHLDA3 genomic locus is
frequently observed in primary human lung cancer samples
[103]. However, such studies have not yet been reported in
HNSCC cases (Figure 1).

3.5. PDK1. Although it is widely accepted that AKT activa-
tion acts as the primary oncogenic mediator in canonical
PI3K signaling [2], as has been stated previously in this
paper, recent studies suggest that the link between PI3K
and AKT can be uncoupled [15–18]. For example, AKT
signaling is diminished in human breast cancer cell lines

and clinical samples harboring PIK3CA mutation. In lieu of
AKT, these cells make use of a signaling pathway involving
the PI3K effector PDK1 and its downstream substrate SGK3
[15]. Compared to AKT, there are few studies of PDK1
in human cancers. Increased gene copy numbers of PDK1
have been found in 21% of breast cancer samples, and
total PDK1 mRNA and protein have been observed to be
overexpressed in the majority of human breast cancer [104].
Overexpression of PDK1 promotes invasion and activation
of matrix metalloproteinase [105], while downregulation of
PDK1 inhibits migration and experimental metastases of
human breast cancer cells [106]. Introduction of a hypo-
morphic mutation of PDK1 in a PTEN cancer mouse model
suppresses tumorigenesis [107], confirming the oncogenic
role of PDK1 as one of the downstream effectors of the
PI3K/PTEN signaling, and suggesting PDK1 as a promising
anticancer target. However, the role of PDK1 and its
correlation with the canonical PI3K/PTEN/AKT pathway in
HNSCC development and progression has not been assessed
yet.

3.6. mTOR and Its Related Molecules. Among the numerous
molecules that could act as downstream effectors of the
PI3K/AKT pathway, mTOR is of particular interest. mTOR
assembles into at least two distinct complexes, that is,
mTORC1 and mTORC2. mTORC2 contains Rictor, SIN1
and mLST8/GbL and acts upstream of AKT to phosphorylate
the Ser473 of AKT. In contrast, mTORC1 contains Raptor,
PRAS40, and mLST8/GbL and acts as a major downstream
target of AKT. mTORC1 regulates cell growth by controlling
key eukaryotic translational regulators, including p70-S6
kinase, and the eukaryotic translational initiation factor, 4E
binding protein 1 (4E-BP1) [14]. In addition, the growth
factor receptor-bound protein 10 (Grb10) has been recently
identified as an mTORC1 substrate. The mTORC1-mediated
phosphorylation stabilizes Grb10, leading to the inhibition
of the PI3K and ERK-MAPK pathways. Interestingly, Grb10
is frequently downregulated in various human cancers, with
the loss of Grb10 and PTEN being mutually exclusive. This
indicates Grb1 as being a tumor suppressor, potentially
regulated by mTORC1 [108] (Figure 1).

In addition to directly activating mTORC1, AKT also
phosphorylates tuberous sclerosis complex (TSC) 1 and
TSC2, releasing their inhibition of the Ras-like small G pro-
tein, Rheb, which in turn activates mTORC1. During condi-
tions of low nutrient availability, mTOR signaling is normally
inhibited by AMP activated protein kinase (AMPK), which
is activated by its upstream serine/threonine kinase LKB1
(Figure 1). Interestingly, these negative regulators of mTOR,
that is, TSC1, TSC2, and LKB1, are tumor suppressors, and
germline mutations of TSC1/2 or LKB1 cause hamartomas
and predisposition to multiple malignancies in humans [14].
The critical connection of mTOR to the PI3K/AKT pathway
has led to the prediction that the targeting of mTOR may be
useful in cancer therapy. Indeed, using the mTOR inhibitor,
rapamycin, yields promising results for multiple human
cancers [109].

In human HNSCC, activation of mTOR/p70-S6/4E-BP1
pathway is a frequent event in clinical specimens and cell
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lines [110]. Amplification of Rictor has been reported in
one study [111]. LOH of TSC1/2 and DNA methylation
of TSC2 have been reported in human HNSCC samples
[112], and overexpression of TSC2 inhibits cell growth both
in vitro and in vivo [113]. A somatic mutation of LKB1,
which leads to the loss of growth inhibition, has been
found in a human HNSCC patient [114]. Decreased nuclear
LKB1 levels have been shown to correlate with HNSCC
metastasis [115]. Consistent with the effects of anti-mTOR
therapy in other cancers, inhibition of mTOR by rapamycin
displays a potent antitumor effect in HNSCC in vitro [110],
in oral carcinogenesis model [116], and in a HNSCC-
GEMM [117]. Targeting mTOR has also been shown to be a
possible adjuvant therapy for microscopic residual disease in
human HNSCC patients [118]. However, studies exploring
the frequencies of these molecular alterations and their
mechanisms in HNSCC tumorigenesis are still lacking.

4. PI3K Pathway as Target for
Chemoprevention and Therapy

4.1. Chemoprevention. Activation of PI3K/AKT/mTOR
pathway has been illustrated as an early event in
multiple human cancers, suggesting that targeting the
PI3K/AKT/mTOR pathway may have chemopreventive
value. This is further exemplified by tobacco exposure
activation of AKT/mTOR in multiple tobacco-related
malignancies, including HNSCC [95, 119]. The tobacco-
associated NNK and the DNA adduct-forming agent
4-nitroquinoline-1-oxide (4NQO) activate AKT/mTOR
as early as premalignancy stage [95, 119, 120]. Inhibition
of this pathway by either Deguelin, a natural compound
belonging to the rotenoid family [121], or Metformin,
an antidiabetes medicine, has been shown to possess
chemopreventive effects on a tobacco carcinogen-induced
lung tumorigenesis model [122]. In addition, mTOR
inhibition by rapamycin has been shown to prevent early
onset of HNSCC tumorigenesis in both the 4NQO-induced
HNSCC mouse model [116] and a HNSCC-GEMM [117].
Additionally, resveratrol, a phytoalexin enriched in red
grapes, strawberries, and peanuts, has been found to be a
potent chemoprevention agent for many cancers [123]. One
of the major mechanisms of its chemopreventive effect is
through inhibition of the PI3K/AKT/mTOR pathway [124].
It will be interesting to study its chemopreventive effect on
both the 4-NQO-induced HNSCC mouse model and the
HNSCC-GEMMs.

4.2. Targeted Therapy. Personalized cancer therapies with
selective molecular targets have emerged as a novel class of
anticancer agents, with demonstrated clinical efficacy and
less toxicity than conventional therapies [125]. In this sit-
uation, the PI3K/AKT/mTOR pathway has been extensively
studied in almost all human malignancies including HNSCC
and in both experimental and clinical settings [126]. Multiple
drugs have been designed to target this pathway, making
it the most “druggable” pathway for targeted therapies of
human cancers. This has been summarized and reviewed in

many articles. Given the scope of this paper, we will only
comment on a few aspects. For a more detailed explanation
of progress in PI3K targeted therapy on HNSCC, please refer
to any of the several excellent reviews available on the topic
[3, 5, 126, 127].

(1) Identification of Biomarkers for the Personalized Cancer
Therapy Targeting the PI3K Pathway. Since the concept of
personalized cancer therapy is based on the identification of
a subset of patients whose tumors carry specific molecular
alterations, biomarker identification is critical for predicting
the effectiveness of targeted therapy [125]. For example, both
PIK3CA mutations and nuclear phosphorylation of AKT are
shown as biomarkers for the effectiveness of PI3K inhibitors
for human cancer patients [128, 129]. In addition, human
cancer patients harboring PIK3CA mutations are sensitive
to targeted therapy using the mTOR inhibitor everolimus,
while human cancer patients carrying Kras mutations are
resistant to the treatment [130]. This is further confirmed in
a PIK3CA-GEMM and Kras-GEMM for lung cancer. While
NVP-BEZ235, a dual pan-PI3K and mTOR inhibitor, led to
marked tumor regression in the PIK3CA-GEMM, it did not
affect tumor growth significantly when treating the Kras-
GEMM unless it was used in combination with a MEK
inhibitor [38]. Finally, a recent report of the screening of
over three hundred nonredundant PI3K-pathway-relevant
phosphopeptides identified PRAS40, a molecule involved
in protein phosphorylation, as a biomarker correlated with
PI3K pathway activation and AKT inhibitor sensitivity [131].

(2) Activation of PI3K/AKT/mTOR Pathway as a Resistance
Mechanism to Targeted Therapy or Radiotherapy. EGFR tar-
geted therapy is the first FDA-approved protocol for treating
human HNSCC patients [132]. However, resistance to EGFR
therapy remains a major obstacle to positive clinical out-
comes [127]. Activation of the canonical PI3K/AKT/mTOR
pathway seems to be associated with resistance to EGFR
inhibitor in multiple human cancers [133]. However, a
recent study showed that an EGFR-activating mutation
resistant to targeted therapy activates the mTORC2-NF-
κB signaling pathway in an AKT-independent manner in
glioblastoma patients [134]. Further studies are necessary to
investigate the role of both canonical and noncanonical PI3K
pathways in resistance to EGFR therapy in human HNSCC
patients. HNSCC is relatively sensitive to radiotherapy [135].
However, activation of the PI3K/AKT/mTOR pathway is
implicated in all major mechanisms of radioresistance,
including intrinsic radioresistance, tumor cell proliferation,
and hypoxia [135]. Thus, blocking the PI3K/AKT/mTOR
pathway has great potential to enhance the effectiveness of
radiotherapy for HNSCC patients.

(3) Synergistic Effect of Combination with Other Receptor
Tyrosine Kinase Targeted Therapies. Recent evidence of mul-
tiple feedback loops and interactions with other signaling
pathways highlights the complexity of PI3K signaling. Using
an inducible PIK3CA-GEMM for breast cancer, Liu et al.
identified c-Myc elevation as a potential mechanism by
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which tumors develop resistance to PI3K-targeted thera-
pies [40]. Moreover, inhibition of AKT induces activation
of upstream RTK signaling pathways, such as HER3 [136],
and mTOR inhibition causes activation of AKT signaling
[137] or MAPK pathway [138]. These studies suggest that
combination therapies of PI3K-targeted therapy together
with targeting c-Myc, Her3, or MAPK pathway, may be more
effective for the treatment of certain human cancer patients.

5. Prospectus

Mounting evidence clearly shows both the paramount
importance of the PI3K pathway in the tumorigenesis of
many human malignancies including HNSCC, and the
promising results of targeting this pathway for treatment
of human cancer patients. However, there are still many
questions that need to be answered. Compared to the
extensive studies on PIK3CA, there are few studies on the
other subunits of class IA PI3Ks and their interactions with
PIK3CA and PTEN. Studies of classes II and III of PI3Ks in
human cancers are generally lacking. Although several pro-
teins interacting with PTEN or AKT have been shown to play
a role in tumorigenesis, more studies must be undertaken
to discover novel molecules modulating the PI3K pathway,
and assess their roles in tumorigenesis. In addition to the
relatively linear canonical PI3K/AKT pathway, more and
more noncanonical pathways are expected to be identified.
Furthermore, the newly discovered mRNAs described in this
paper add yet another layer of complexity to our under-
standing of the molecular regulation of the PI3K signaling
pathway. Integrative mapping of molecular alterations in
human cancers, particularly in HNSCC samples, is highly
demanding. Utilization of multiple molecular approaches,
especially GEMMs of the PI3K signaling pathway, will help
us to better understand the complexity of this pathway
in human cancers, as well as in context and stage-specific
manners. Ultimately, these studies will yield identifiable
biomarkers for improved clinical diagnosis and prognosis,
contributing to strategies of therapy and prevention that
will allow for the better management of human cancers and
better outcomes for human patients.
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