Corrigendum

Corrigendum to “Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest”

Suwit Duangmano,1,2 Phorntip Sae-lim,3 Apichart Suksamrarn,3 Pimpicha Patmasiriwat,1 and Frederick E. Domann2

1Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
2Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
3Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand

Correspondence should be addressed to Frederick E. Domann; frederick-domann@uiowa.edu

Received 4 June 2014; Accepted 24 July 2014

Copyright © 2015 Suwit Duangmano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In Figure 3(a) of the published paper entitled “Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest,” we mistakenly used the same flow cytometry data panel for the MDA-MB-231 cells treated with 2.5 μM and 5 μM cucurbitacin B. The corrected figure and legend are presented here.
Figure 3: Cell death of breast cancer cells induced by cucurbitacin B. (a) MCF7:5C, MDA-MB-231, and SKBR-3 were incubated with the indicated doses of cucurbitacin B for 48 hr and apoptosis was analyzed by staining phosphatidylserine translocation with FITC-Annexin V. Annexin V staining is represented on the x-axis and PI staining is represented on the y-axis. The most representative result of three independent experiments is shown. 5 μM data for MDA-MB-231 are not shown. Simple vertical bars represent the mean apoptosis rate of all of breast cancer cells (b). Results shown are the average of three independent experiments. * P < 0.05 versus nontreated control; ** P < 0.01 versus nontreated control.