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Background. 3e role of ABL1 in hepatocellular carcinoma (HCC) is still unclear. 3erefore, this study aims to explore the
potential role of ABL1 in the progression of HCC using bioinformatics methods.Methods. We analyzed the expression, prognostic
potential, and immune cell effect of ABL1 in HCC by using a variety of datasets. Results. ABL1 is highly expressed in HCC and
associated with unfavorable overall survival (OS) and disease-free survival (DFS). Functional network analysis revealed that ABL1
plays an important role in mitochondrial activity, ATP metabolism, protein translation and metabolism, various neurological
diseases, nonalcoholic fatty liver disease, and notch signaling pathway. In addition, we found that ABL1 expression was closely
correlated with B cells, CD8 +Tcells, CD4+Tcells, macrophages, neutrophils, and dendritic cells. Furthermore, ABL1 expression
was positively associated with the expression levels of immune checkpoint genes, such as PD-1L, TIM3, TIGIT, and CTLA4.
Conclusion. ABL1 is associated with immune infiltration and prognosis of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is themost common primary
liver tumor and the secondmost common risk factor for cancer
death worldwide [1]. In China, approximately 400,000 people
die from liver cancer each year, accounting for more than 50%
of the global liver cancer death rate [2]. According to statistics,
the incidence of liver cancer will continue to rise in the next 20
years [3]. HCC prevention and treatment have become an
urgent problem for the global medical community. In its early
stages, HCC is occult and difficult to detect; thus, patients with

HCC are often diagnosed when the cancer has already ad-
vanced or metastasized. Although great progress has been
made in the comprehensive clinical treatment of HCC, the
prognosis of patients with advanced liver cancer is still poor [4].
3erefore, finding new and specific tumor markers to effec-
tively predict the prognosis of HCC patients is of great value for
guiding clinical treatment and improving patient survival.

3e human Abelson tyrosine-protein kinase 1 (ABL1)
gene is located on chromosome 9q34, and the ABL1 protein
encoded by it belongs to the ABL interacting protein family
[5]. ABL1 plays a role in a wide range of normal biological
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functions, including cytoskeleton remodeling [6]. In 1998,
Taki et al. revealed that ABL1 was associated with the oc-
currence of chronic myeloid leukemia [5]. Since then,
knowledge of the roles of ABL1 has gradually increased.
Subsequent studies have shown that ABL1 is abnormally
expressed in a variety of tumors and plays a crucial role in
tumor proliferation, migration, invasion, and metastasis [7].
ABL1 regulates a variety of signaling pathways, such as the
EGF and PI3K/AKT signaling pathways [8, 9]. In addition,
ABL1 has been found to be closely associated with the
prognosis of some tumors, including gastric and breast
cancers [10, 11].

So far, only a few studies have reported the relationship
between ABL1 and HCC. Chitsike et al. indicated that ABL1
was abnormally expressed in human liver cancer [12]. Wang
et al. further found that overexpression of ABL1 promoted
tumor progression through NOTCH1 in mouse liver cancer
[13]. However, the prognosis and clinical value of ABL1 in
HCC in humans is still unclear.

Immune infiltration is known to be closely related to the
progression of liver cancer [14]. In this study, we used a
variety of databases to comprehensively explore the clinical
significance of ABL1 in liver cancer, identify possible target
pathways, and determine the relationship between ABL1 and
immune infiltration. Our results provide a better under-
standing of the potential value of ABL1 in liver cancer.

2. Materials and Methods

2.1.DataAcquisition. Datasets with gene expression profiles
and clinical information regarding HCC mRNA expression
were downloaded from the TCGA database [15] (https://
TCGA data.nci.nih.gov/tcga/). Standardization was per-
formed on the downloaded HCC datasets, and cases that did
not contain survival information were excluded. 3e total
number of samples in the original study of the TCGA data
was 529, consisting of 369 liver cancer tissue samples and
160 paracancerous tissue samples. Five HCC samples con-
tained no survival information. Using the median of ABL1
mRNA expression as a node, HCC tissue samples with
survival information were divided according to ABL1 ex-
pression levels into a high expression group and a low
expression group, with 182 samples in each group.

2.2. Survival and Expression Analyses. 3e online database
Gene Expression Profiling Interactive Analysis (GEPIA) [16]
was used to analyze the expression of ABL1 in HCC tissues
and normal tissues and further assess the prognostic value of
ABL1 in liver cancer. In addition, we conducted univariate
or multivariate analysis on the clinicopathological infor-
mation available on ABL1 in HCC. Moreover, we used the
online database UALCAN [17] to evaluate the expression of
ABL1 protein in different groups.

2.3. Functional Enrichment Analysis. 3e LinkedOmics
database [18] is a free public website that can analyze TCGA
data. 3e LinkedOmics database was used to analyze ABL1-
related genes. 3e Pearson correlation coefficient was

applied for statistical analysis, and the results are expressed
as a volcano map and a heat map. In addition, Gene On-
tology Biological Process (GOBP) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analyses were
performed. Genes with a discovery rate (FDR)< 0.05 were
considered to be significantly enriched.

2.4.TIMERDatabaseAnalysis. TIMER [19] is a visualization
website that can perform automatic analysis and correlate
the immune penetration level and immunogenicity. 3e
TIMER website uses deconvolution to analyze gene ex-
pression profiles to infer the expression of tumor-infiltrating
immune cells. We used the TIMER database to explore the
relationship between the expression abundance of various
immune cells and the expression of ABL1 in HCC.

2.5. Evaluation of TumorMicroenvironment via CIBERSORT.
CIBERSORT [20] can assess changes in the expression of
specific genes in tissue based on a deconvolution algo-
rithm. We used CIBERSORT to evaluate the immune
response of 22 immune cell types in HCC. 3e “Vioplot”
package was used to visualize the differences in the 22
TIICs between the high and low ABL1 expression groups.
In addition, TISIDB [21] was used to analyze the rela-
tionship between ABL1 expression and 28 types of tumor-
infiltrating lymphocytes.

2.6. Statistical Analysis. 3e statistical data obtained from
TCGA were processed by R 3.5.3, and the P value< 0.05 was
considered statistically significant. 3e survival rate was
analyzed by a log-rank test and Mantel–Cox test. Logistic
regression was used to analyze the correlation between
clinical features and ABL1 expression. 3e correlation be-
tween the expression of ABL1, coexpressed genes, and 22
immune cell types was measured by the Pearson correlation
coefficient.

3. Results

3.1. Expression Levels and Prognostic Value of ABL1 in HCC.
To evaluate the expression of ABL1 in HCC tissues and
normal tissues, we used GEPIA to analyze 369 HCC spec-
imens from TCGA. 3is analysis revealed that ABL1 ex-
pression was significantly higher in HCC tissues than in
normal tissues (Figure 1). In addition, we performed a
subgroup analysis based on age, sex, cancer stage, and TP53
mutation status (Figure 2) and found that ABL1 expression
was significantly higher in HCC patients than in healthy
people.

In addition, we analyzed the association between ABL1
expression and clinicopathological characteristics in the
TCGA HCC cohort (Table 1). ABL1 expression was sig-
nificantly correlated with gender (<0.01), histological grade
(P � 0.013), and survival status (P< 0.01). We further an-
alyzed the prognostic value of ABL1 in HCC. 3e survival
curve from GEPIA showed that high expression of ABL1
predicts unfavorable OS (P � 0.014) and DFS (P � 0.035).

2 Journal of Oncology

https://TCGA
https://TCGA


3e results are shown in Figure 3. We also explored the
relationship between various clinicopathological features,
ABL1 expression, and prognosis of HCC.3e results of both
univariate and multivariate analyses indicated that ABL1
expression was associated with the prognosis of HCC
(Figure 4) (Table 2). 3ese results suggest that ABL1 is a
potentially effective independent prognostic marker for
HCC.

3.2. ABL1-Related Functions and Pathways in HCC. We
explored the biological interaction network of ABL1 in HCC
to clarify the biological function of ABL1. We first selected
the genes related to ABL1 and performed an enrichment
analysis. 3e top 50 genes with significant positive and
negative correlations with ABL1 are shown in Figures 5(a)
and 5(b). In addition, we performed GO and KEGG ana-
lyses. GO analysis showed that these genes mainly regulate
mitochondrial activity, ATP metabolism, protein transla-
tion, and metabolism (Figure 5(c)). KEGG pathway analysis
showed enrichment in various neurological diseases, non-
alcoholic fatty liver disease, and the notch signaling pathway
(Figure 5(d)). 3ese findings indicated the potential role of
ABL1 in HCC progression.

3.3. Association between ABL1 Expression and Tumor-Infil-
trating Immune Cells. Immune infiltration is closely related
to tumor progression. 3erefore, we also evaluated the effect
of ABL1 expression on immune infiltrating cells in liver
cancer using CIBERSORT. 3e proportions of 22 immune
cell subgroups are shown in Figure 6. 3e results showed
that B cells, dendritic cells, macrophages, mast cells,
monocytes, NK cells, CD4 cells, and CD8 cells are signifi-
cantly affected by ABL1 expression. Among the identified
cells, naive B cells (P � 0.001623), M2 macrophages
(P � 0.003429), mast cells resting (P � 6.74e − 7), and NK
cells resting (P � 0.0002681) were most abundant in the
high ABL1 expression group, whereas dendritic cells resting
(P � 4.747e − 05), M0 macrophages (P � 3.308e − 12), CD4
cells (P � 0.0008109), and CD8 cells (P � 0.01354) were
significantly reduced.

We used TIMER to further study the association be-
tween ABL1 and the level of tumor immune cell infiltration
(Figure 7(a)).3e results revealed that high ABL1 expression
was significantly positively correlated with B cells (r� 0.285,
P � 7.25e − 08), CD8 cells (r� 0.212, P � 7.68e − 06), CD4
cells (r� 0.496, P � 8.43e − 23), macrophages (r� 0.46,
P � 3.24e − 19), neutrophils (r� 0.488, P � 4.32e − 22), and
dendritic cells (r� 0.394, P � 4.35e − 14) in HCC. 3ese
results suggest that ABL1 expression influences liver cancer
progression by altering immune cell infiltration.

3.4. Association between ABL1 Expression and Immune
Checkpoints. Immune checkpoint blockade therapy is a
popular immunotherapy method and shows a strong
therapeutic effect. We explored the relationship between
ABL1 expression and tumor immunotherapy.We found that
some immune checkpoints (PD-1L, TIM3, TIGIT, and
CTLA4) were positively correlated with ABL1 expression
(Figure 7(b)). In addition, these immune checkpoint
markers were significantly expressed in the group with high
ABL1 expression. We further explored the relationship
between ABL1 and various infiltrating immune cell types.
3e results showed that the expression level of ABL1 was
positively correlated with Tcell exhaustion, Tcells (general),
CD8 +T cells, CD4 +T cells, 31 cells, 32 cells, Tfh cells,
317 cells, Tregs, monocytes, TAMs, M1 macrophages, M2
macrophages, neutrophils, natural killer cells, and dendritic
cells. 3e results are shown in Table 3. 3is finding suggests
that ABL1 is involved in T cell exhaustion in the hepato-
cellular carcinoma tumor microenvironment.

4. Discussion

HCC can occur at any age and is most common in patients
with chronic hepatitis [22]. Viral hepatitis B is highly
prevalent in China, and HCC incidence shows an increasing
trend year by year [23]. HCC is highly malignant, and
surgical resection is currently the only curative therapeutic
intervention. Although great progress has been made in
developing diagnostic tools and treatments for liver cancer,
the prognosis of most patients with advanced HCC is still
very unsatisfactory. ABL1 is a gene that was first reported in
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Figure 1: ABL1 mRNA expression in HCC. ABL1 mRNA ex-
pression in liver cancer tissues is significantly higher than that in
normal tissues.
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leukemia. Subsequently, abnormal ABL1 expression was
found in a variety of other tumors. However, there are few
studies on the prognostic value and specific mechanism of

ABL1 in liver cancer. 3erefore, our research focused on the
potential relationship between ABL1 and HCC.We aimed to
evaluate the specific biological function of ABL1 in HCC
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Figure 2: ABL1 protein expression varies in various subgroups of HCC patients based on patient age, sex, cancer stage, and TP53 mutation
status. (a) Box plot shows the relative expression of ABL1 in different age groups of HCC patients. (b) Box plot shows the relative expression
of ABL1 in different sex groups of HCC patients. (c) Box plot shows the relative expression of ABL1 in the cancer stage group of HCC
patients. (d) Box plot shows the relative expression of ABL1 in the TP53 mutation status group of HCC patients.

Table 1: Association between ABL1 expression and clinicopathological characteristics in the TCGA HCC cohort.

Variable Low ABL1 expression (n� 170) High ABL1 expression (n� 171) X2 P value
Age 0.8026 0.3703
≤50 33 40
>50 137 131

Gender 6.6817 <0.01
Female 49 80
Male 121 111

TNM stage 3.1116 0.119
I/II 124 114
III/IV 46 57

Histologic grade 6.1729 0.013
G1/G2 123 91
G3/G4 47 80

Survival status
Alive 113 105 48.0403 <0.01
Dead 57 66
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Figure 3: 3e prognostic value of ABL1 in HCC. (a) OS. (b) DFS.
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through bioinformatics methods to identify ABL1-related
pathways and determine the association between ABL1 and
tumor immunity.

Our analysis showed that ABL1 expression was signif-
icantly higher in liver cancer tissues than in normal tissues.
Subgroup analysis further confirmed that ABL1 mRNA was
highly expressed in HCC. In addition, we used the GEPIA
database to evaluate the prognostic value of ABL1 in HCC.
We found that high ABL1 expression was significantly as-
sociated with adverse OS and DFS. Multivariate Cox re-
gression analysis further showed that the ABL1 expression

level was an independent risk factor for liver cancer
prognosis.

Coexpressed genes act synergistically in strictly regulated
biological processes, and thus they can provide alternative
pathways to sidestep barriers, providing an adaptive evo-
lution advantage [24]. We performed enrichment analysis of
ABL1-related genes. GO analysis revealed some functional
terms related to ABL1, such as the histone modification
(P � 2.48e − 09), the ATP metabolic process
(P � 2.27e − 05), and theWnt signaling pathway (P � 0.035)
[25–27]. Functional enrichment analysis showed that ABL1
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Figure 5: ABL1 coexpressed genes and functional enrichment. (a) 3e heat map shows the top 50 genes positively related to ABL1. (b) 3e
heat map shows the top 50 genes negatively related to ABL1. (c) GO enrichment analysis. (d) KEGG enrichment analysis.

Table 2: Univariate and multivariate Cox regression of ABL1 expression for overall survival in patients with HCC.

Variable Univariate Cox regression HR (95% CI) P value Multivariate Cox regression HR (95% CI) P value
Age 1.008 (0.995–1.022) 0.221 1.0083 (0.9940–1.023) 0.257303
Sex 0.8039 (0.5647–1.144) 0.226 0.9787 (0.6671–1.436) 0.912241
Grade 0.8703 (0.6133–1.235) 0.437 0.8675 (0.6068–1.240) 0.435503
ABL1 1.062 (1.032–1.093) 4.61E− 05 1.0597 (1.0286–1.092) 0.000138
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was associated with Huntington’s disease (P � 1.12e − 08),
amyotrophic lateral sclerosis (P � 3.0e − 07), Alzheimer’s
disease (P � 3.59e − 07), and Parkinson’s disease
(P � 6.53e − 08). Surprisingly, ABL1 was also associated
with nonalcoholic fatty liver disease (P � 5.96e − 08). In
addition, we found pathways and metabolic processes re-
lated to tumors, such as oxidative phosphorylation
(P � 5.54e − 08), inositol phosphate metabolism
(P � 0.0035), and notch signaling pathway (P � 0.0038).
3ese results indicate that ABL1 is involved in a variety of
diseases and may play an important role in them.3e results
also confirmed that ABL1 regulates the progression of HCC
through a complex mechanism, revealing ABL1 as a po-
tential target in HCC treatment.

HCC is a typical inflammatory-related tumor. Its tumor
microenvironment includes a large number of immune cells,
inflammatory factors, and extracellular matrix, forming a
complex immune microenvironment. Immune cells in the
tumor microenvironment of HCC mainly include tumor-
infiltrating lymphocytes (TILs), tumor-associated macro-
phages (TAMs), tumor-associated neutrophils (TANs), my-
eloid-derived suppressor cells (MDSCs), and dendritic cells
(DCs). TILs are composed of regulatory T cells, cytotoxic
T lymphocytes, B cells, and NK cells in HCC. Regulatory
T cells are a subset of CD4+T cells, a group of lymphocytes
with a high degree of immunosuppression, which can achieve
immunosuppressive effects by inhibiting CD8+T cells [28].
Studies displayed that regulatory Tcells increased significantly
in HCC and were related to tumor size, invasiveness, and
prognosis [29, 30]. Lee et al. found that CD4+CD25+Treg

infiltrated in HCC could effectively inhibit the immune re-
sponse of dendritic cell [31]. CD8+T cells are the main cy-
totoxic T lymphocytes that play an antitumor effect in HCC.
Our previous study found that IL-21 produced by
CD8+T cells in HCC induced the differentiation of B cells
into plasma cells, which stimulated humoral immunity and
was associated with favorable prognosis [32]. In addition, the
expression of Fas/FasL on CD8+T cells was positively cor-
related with the antitumor immunity of liver cancer [33].
B cells can directly present tumor-related antigens to CD4+T
and CD8+Tcells to exert antitumor immunity or directly kill
tumor cells. CD20 (+) B cells in the tumor microenvironment
can produce IFN-c, interleukin 12p40, granzyme B, and
TRAIL and acted in cooperation with CD8 (+) T cells to
promote tumor immunity and predict good prognosis in
HCC [34]. However, a study found that PD-1 (hi) B cell
infiltration in HCC could induce tumor immune tolerance
and lead to poor prognosis [35]. NK cells are an important
component of innate immunity, and their defects or inhi-
bition of function can significantly affect the prognosis of
HCC patients. Recently, some scholars have found that
CD49a +NK cells, a subgroup of NK cells, highly expressing
immune checkpoints PD-1 and TIGIT, exert immunosup-
pressive effects to promote poor prognosis in patients with
HCC [36]. TAMs can be divided into M1 type and M2 type.
M2 type macrophages can secrete a variety of cytokines and
rely on a variety of ways to promote liver cancer invasion and
metastasis [37]. However, M1 type can exert effective anti-
tumor effects and inhibit the progression of liver cancer [38].
TANs also are multifaceted. On the one hand, it can recruit
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regulatory Tcells and TAMs to promote liver cancer invasion
andmetastasis [39]. On the other hand, it can directly kill liver
cancer cells and inhibit tumor progression [39]. MDSCs are a
group of immature myeloid cells with strong immunosup-
pressive activity and can inhibit antitumor immunity from
different ways. Studies revealed that targeting MDSC in HCC
could enhance the antitumor effect of immune checkpoint
inhibitors [40]. DCs are the most important antigen-pre-
senting cells in the human body, which stimulate adaptive
immune responses by presenting antigens to other immune
cells. DCs can simultaneously regulate immune response and
immune tolerance and play an important role in regulatory
immunity. A report revealed that DCs changed from the early
state of immune activation to the state of immunosuppression
during the progression of liver cancer [41]. Another study
showed that plasmacytoid dendritic cells infiltrated in HCC
were a risk factor for poor prognosis [42]. 3ey may induce
the production of a variety of regulatory cells and inhibit the
function of cytotoxic T cells leading to immune escape. We
used CIBERSORT to analyze the tumor immune microen-
vironment of HCC. We found that ABL1 expression was
significantly correlated with increased infiltration of B cells,

dendritic cells, macrophages, CD4+ cells, and CD8+ cells. We
further verified these results with TIMER and found that high
ABL1 expression was positively correlated with B cells
(r� 0.285, P � 7.25e − 08), CD8 cells (r� 0.212,
P � 7.68e − 06), CD4+ cells (r� 0.496, P � 8.43e − 23),
macrophages (r� 0.46, P � 3.24e − 19), neutrophils
(r� 0.488, P � 4.32e − 22), and dendritic cells (r� 0.394,
P � 4.35e − 14) in HCC. Among these immune cells, CD4+
cells weremost strongly associated with ABL1 expression.3e
findings indicate that ABL1 has an important effect on im-
mune infiltrating cells in HCC.

Immune checkpoints have been proven to be effective
targets for the treatment of tumors. Studies have shown that
the expression of immune checkpoints such as PD-1L,
TIM3, TIGIT, and CTLA4 can affect tumor progression and
thus change patient prognosis [43–46]. Immunosuppres-
sants based on immune checkpoints have been effectively
used in clinical practice. In the current study, we found that
ABL1 expression was positively correlated with PD-1L,
TIM3, TIGIT, and CTLA4 expression. Interestingly, we also
found that high expression of ABL1 was positively correlated
with the expression of markers of these immune checkpoints,
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Figure 7: ABL1 expression affects immune cell infiltration in HCC. (a) 3e relationship between ABL1 expression and immune infiltrating
cells was analyzed by TIMER. (b) ABL1 expression is positively correlated with PD-L1, TIGIT, TIM3, and CTLA4 expression.
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Table 3: Spearman correlation analysis between ABL1 expression and markers of immune cells in HCC.

Terms Markers R P value

T cell exhaustion

PDCD1 (PD-1) 0.2 ∗∗∗

CTLA4 0.111 ∗

LAG3 0.063 0.198
HAVCR2 (TIM3) 0.281 ∗∗∗

GZMB 0.086 0.078
BTLA 0.087 0.074

CD244 (SLAMF4) 0.041 0.403
CD274 (PD-L1) 0.201 ∗∗∗

CD96 0.201 ∗∗∗

IDO1 0.1 ∗

KDR 0.162 ∗∗∗

PDCD1LG2 (PD-L2) 0.197 ∗∗∗

TGFBR1 0.498 ∗∗∗

TIGIT 0.145 ∗∗

T cell (general)

CD3E 0.145 ∗∗

CD3G 0.197 ∗∗∗

CD28 0.181 ∗∗∗

CD2 0.137 ∗∗

CD8+T cells CD8A 0.144 ∗∗

CD8B 0.098 ∗

CD4+T cells
CD4 0.059 0.228

CD40LG (CD40L) 0.143 ∗∗

CXCR4 0.306 ∗∗∗

31 cells

TBX21 0.093 0.055
STAT4 0.242 ∗∗∗

STAT1 0.211 ∗∗∗

IFNG 0.082 0.093

32 cells STAT6 0.34 ∗∗∗

STAT5A 0.448 ∗∗∗

Tfh cells BCL6 0.306 ∗∗∗

IL-21 0.092 0.058

317 cells STAT3 0.306 ∗∗∗

IL17A 0.092 0.058

Treg

FOXP3 −0.035 0.473
STAT5B 0.375 ∗∗∗

TGFB1 0.342 ∗∗∗

IL2RA (CD25) 0.271 ∗∗∗

B cell CD19 0.072 0.141
CD79A 0.058 0.235

Monocyte CD86 (B7-2) 0.251 ∗∗∗

CSF1R 0.281 ∗∗∗

TAM
CCL2 0.176 ∗∗∗

CD68 0.014 0.777
IL10 0.258 ∗∗∗

M1 macrophage IRF5 0.316 ∗∗∗

PTGS2 0.142 ∗∗

M2 macrophage
CD163 0.09 0.063
VSIG4 0.164 ∗∗∗

MS4A4A 0.219 ∗∗∗

Neutrophils
CEACAM8 0.039 0.428
ITGAM 0.363 ∗∗∗

CCR7 0.088 0.071
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such as STAT1, STAT3, STAT4, STAT6, STAT5A, and BCL6.
In addition, we also observed that ABL1 expression was sig-
nificantly correlated with monocytes, tumor-associated mac-
rophages, M1/M2 macrophages, NK cells, and dendritic cells.
3ese results show that ABL1 can regulate immune cell in-
filtration and affect the progression of HCC.

5. Conclusion

Our results demonstrated that high ABL1 expression is as-
sociated with unfavorable prognosis in HCC. 3e high ABL1
expression significantly influences the immune cell infiltration
and immune checkpoint expression in the tumor microenvi-
ronment in HCC. We hypothesize that specific molecular
targeting ABL1 expression could affect immune cell infiltration
in the tumor microenvironment and improve the prognosis of
patients with HCC. Targeting ABL1 expression may effectively
strengthen the effectiveness of other immune checkpoint in-
hibitors in HCC. ABL1 may be a promising prognostic bio-
marker and therapeutic target for HCC patients. Our research
provides a basis for the role of ABL1 in HCC, and further
research is strongly recommended.
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