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Compelling evidence indicates that immune function is correlated with the prognosis of bladder cancer (BC). Here, we aimed to
develop a clinically translatable immune-related gene pairs (IRGPs) prognostic signature to estimate the overall survival (OS) of
bladder cancer. From the 251 prognostic-related IRGPs, 37 prognostic-related IRGPs were identified using LASSO regression. We
identified IRGPs with the potential to be prognostic markers. 2e established risk scores divided BC patients into high and low risk
score groups, and the survival analysis showed that risk score was related to OS in the TCGA-training set (p< 0.001; HR� 7.5 [5.3,
10]). ROC curve analysis showed that the AUC for the 1-year, 3-year, and 5-year follow-up was 0.820, 0.883, and 0.879, respectively.
2e model was verified in the TCGA-testing set and external dataset GSE13507. Multivariate analysis showed that risk score was an
independent prognostic predictor in patients with BC. In addition, significant differences were found in gene mutations, copy
number variations, and gene expression levels in patients with BC between the high and low risk score groups. Gene set enrichment
analysis showed that, in the high-risk score group, multiple immune-related pathways were inhibited, and multiple mesenchymal
phenotype-related pathways were activated. Immune infiltration analysis revealed that immune cells associated with poor prognosis
of BC were upregulated in the high-risk score group, whereas immune cells associated with a better prognosis of BC were
downregulated in the high-risk score group. Other immunoregulatory genes were also differentially expressed between high and low
risk score groups. A 37 IRGPs-based risk score signature is presented in this study. 2is signature can efficiently classify BC patients
into high and low risk score groups. 2is signature can be exploited to select high-risk BC patients for more targeted treatment.
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1. Introduction

Bladder cancer is the most common malignant tumor of the
urinary system with high morbidity and mortality [1]. It is
estimated that, in 2020, there would be approximately 81,400
new cases of bladder cancer cases and more than 17,980
deaths due to kidney cancer in the United States [2]. At the
time of initial diagnosis, approximately 75% of bladder
cancer patients are non-muscle invasive bladder cancer
(NMIBC), and about 25% of the patients are muscle infil-
trating bladder cancer (MIBC), or metastatic disease [3, 4].
NMIBC is commonly treated locally through intravesical
chemotherapy or immunotherapy in combination with
TURBT. However, most NMIBC relapses within 6–12
months, and 10%–15% of patients may progress to invasive
or metastatic disease [5]. Overall, the 5-year survival rate of
bladder cancer at all stages does not exceed 20% [6].

2e tumor microenvironment (TME) is primarily
composed of tumor cells, stroma, and invading immune
cells. 2e immune cells in TME play a critical role in
suppressing cancer or promoting tumors. Notably, the
CD8+T cells and natural killer cells play an antitumor
function, whereas tumor-associated macrophages and reg-
ulatory T cells serve as tumor promoters [7, 8]. Recently,
immunotherapy based on immune checkpoint inhibitors
has achieved satisfactory results in the treatment of bladder
cancer. However, this treatment is effective in some patients
since other patients do not respond to this therapy [9].
2erefore, there is an urgent need to identify prognostic
biomarkers for close monitoring of disease progress.

Considering the inherent biological heterogeneity of the
tumor and the technical bias caused by sequencing plat-
forms, the prognostic risk model should unify standardized
gene expression profiles, a data analysis challenge. Some
studies have explored the immunemarkers of bladder cancer
patients used to predict the overall survival rate of the pa-
tients [10]. However, due to the inherent biological diversity
of the tumor and the technical bias resulting from se-
quencing platforms, the clinical conversion of the prediction
results is difficult, and the practicality is low [10]. 2erefore,
we analyzed and compared the matching values of the gene
expression values to eliminate the inherent biological het-
erogeneity of the tumor and the technical bias caused by the
sequencing platform. Based on the findings of previous
research, this method is reliable, including in molecular
cancer classification [11, 12].

Here, based on the immune-associated genes in the
ImmPort database, we used the TCGA dataset and a
microarray dataset GSE13507 [13, 14] to establish and verify
signatures of 37 IRGPs targeting bladder cancer patients.
2en, the risk score was used to predict the prognosis of
bladder cancer. Finally, based on the 37 IRGPs, we divided
bladder cancer patients into high- and low-risk score groups.
We analyzed the differences between these two groups based
on gene mutation, copy number variation, expression dif-
ferences, and immune invasion to elucidate its potential
pathogenic mechanism. 2is study provides prognostic
biomarkers for patients with bladder cancer and provides a

theoretical basis for close monitoring of disease progression
and treatment stratification.

2. Materials and Methods

2.1. Data Downloading and Preprocessing. We retrieved the
fragments per kilobase of transcript per million mapped
reads (FPKM) standardized RNA sequencing dataset and
clinical data from the TCGA repository (https://portal.gdc.
cancer.gov/), containing 411 tumor samples and 19 non-
tumor samples. 2e gene expression value was converted to
log2 (TPM+ 1) for subsequent analysis. 2en, we retrieved
the gene expression data and clinical information in the
GSE13507 dataset from the Gene Expression Comprehen-
sive Database (https://www.ncbi.nlm.nih.gov/geo/), in-
cluding primary tumor 165, normal 9, control 58, and
recurrent 23. After normalization, we used the R package
(org.Hs.eg.db) (TCGA) or GPL6102 platform annotation file
(GSE13507) to convert the probes to gene names. If there
was any gene with multiple probes, we selected the probe
with the largest average expression value.

Additionally, we retrieved the masked somatic mutation
(workflow type is VarScan2 variant aggregation and
masking) and masked copy number segment data for
bladder cancer patients from TCGA. SNP included 412
bladder patients, and CNV data included 414 tumor tissues
and 394 normal tissues.

2.2.Construction of Signatures of Immune-RelatedGenePairs.
We retrieved 1,811 immune-related genes (IRG) from the
ImmPort database (https://immport.niaid.nih.gov) [15] for
the construction of the immune-related prognostic signa-
tures. 2ere were 1,223 immune genes shared between the
TCGA and GSE13507 datasets. Each IRGPs value was cal-
culated by comparing the gene expression levels of specific
samples in pairs. Specifically, in a pairwise comparison, if the
first gene expression value was greater than the other gene
expression value, the IRGPs were assigned a value of 1;
otherwise, it was 0. We constructed 1495729 IRGPs.

2.3. Screeningof IRGPsRelated toPrognosis. 2e frequency of
occurrence of each IRGP in the different tissues of TCGA
and GSE13507 was counted. We used the Chi-square test to
analyze the IRGPs that had differences in tumor tissues and
normal tissues. p< 0.05 was used as the cutoff value for
screening differential IRGPs. 2e IRGPs that showed dif-
ferential expression in both the TCGA and GSE13507
datasets were selected as the differential IRGPs for further
analysis.

We screened the bladder cancer patients with both
survival time (>30 days) and survival status using the Cox
proportional hazards regression model and survival analysis
(log-rank test) to analyze the prognosis of differential IRGPs.
We used p< 0.05 as the cutoff value for screening the
prognostic-related IRGPs. We screened 251 prognostic-re-
lated IRGPs as the initial candidate IRGPs.
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2.4. Construction of PrognosticModels of IRGPs. 2e patients
in the TCGA dataset were randomly allocated to the TCGA-
training set and the TCGA-testing set at a ratio of 7 : 3, and
the ratio of each BC stage was the same. Using the initial
candidate IRGPs, we conducted the least absolute shrinkage
and selection operator (LASSO) regression analysis in the
TCGA-training set. Subsequently, we calculated the indi-
vidualized risk score using the coefficients and constructed a
prognostic signature, which separates the high-risk score BC
patients from the low-risk score group. 2e receiver oper-
ating characteristic (ROC) analysis was performed, and the
area under the curve (AUC) was calculated at multiple time
points to evaluate the discrimination.

2en, we verified the prognostic signature using the same
coefficients and cutoff value in the TCGA-testing set and the
external dataset GSE13507. At the same time, the prognostic
model was presented as a risk map in each dataset, covering
the expression level of the contained genes, the distribution of
the risk scores, and the survival status of individuals.

2.5.MultivariateCoxRegressionAnalysis thePrognosticValue
of Risk Score. We retrieved the clinical features from the
TCGA and GSE13507 datasets, including survival time,
survival status, age, gender, stage, lymph node metastasis,
and distant metastasis status. We used the clinical data and
risk scores for multiple cox regression analysis to determine
the association linking the prognostic value of the risk scores
and clinical characteristics. A value of p< 0.05 signified
statistical significance.

2.6. SNPandCNVAnalysis. We used the maftools R package
[16] for visual analysis of gene mutations in the high- and
low-risk score groups of BC.

When performing the CNV analysis, a value of segment
mean less than −0.2 was recorded as −1 (i.e., missing copy
number), greater than 0.2 was recorded as 1 (i.e., the copy
number increased), and −0.2∼0.2 was recorded as 0 (i.e., wild
type). We counted the frequency of the copy number var-
iation in the high- and low-risk score groups and used the
chi-square test in difference analysis.

2.7. Immune Cell Infiltration Analysis. We used the
CIBERSORTx online tool (https://cibersortx.stanford.edu/
index.php) [17] to analyze the degree of immune cell in-
filtration in the different samples. Gene expression data was
used to estimate the gene expression profiles and provide
abundance estimates of the member cell types in mixed cell
populations. We used the RNA expression profile in the
TCGA dataset for immune-infiltration analysis. Using the
Monte Carlo sampling approach, CIBERSORTcalculates the
p value of the deconvolution for each sample to provide
confidence in the estimation [17]. We selected the samples
with p< 0.05 for subsequent analysis. We selected LM22 (22
immune cell types) as the signature matrix file, batch cor-
rection mode as B-mode, check bisable quantile normali-
zation, run in absolute mode, and 1000 for permutations for
significance analysis.

2.8. Gene Set Enrichment Analysis (GSEA). We used the
limma package for the high- and low-risk score group
difference analysis. Bioconductor software package clus-
terProfiler was used for gene set enrichment analysis [18].
We reported the log2 fold change between the gene ex-
pression profiles of high- and low-risk groups. 2e gene sets
from the high- vs. low-risk score groups were compared.2e
biological processes involved in this study were retrieved
from the Molecular Signature Database (c2: curated gene
sets, KEGG gene sets, gene symbols) (https://www.gsea-
msigdb.org/gsea/downloads.jsp).

2.9. Statistical Analysis. All statistical tests were performed
using R (R version 3.6.1, =http://www.r-project.org). For
measurement data, we used the Wilcoxon test to compare the
differences between groups. For counting data, the chi-square
test or Fisher test was used to perform differential analysis.
Cumulative survival time was calculated using the
Kaplan–Meier method, and the differences in survival curves
were analyzed using the log-rank test from the survival
package. We performed univariate and multivariate analyses
using the Cox proportional hazards regressionmodel.We used
the ggplot2 package to draw box and dumbbell diagrams and
the heatmap package to draw heatmaps. For all tests, ap< 0.05
indicated a statistically distinct difference. Statistical signifi-
cance is shown as ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.

3. Results

3.1. Construction of Prognostic-Related IRGPs. We retrieved
1,811 unique immune-related genes from the ImmPort
database, of which 1,223 IRGs were shared between the
TCGA and GSE13507 datasets. 2en, we constructed
1495729 immune-related gene pairs (IRGPs) using unique
1223 immune genes. Moreover, we used the TCGA and
GSE13507 datasets to construct differentially expressed
IRGPs; TCGA included 430 tissues (411 tumor tissues and
19 normal tissues), and GSE13507 included 223 tissues (165
primary tumor tissues, 58 control groups). 2e fisher test
results revealed that 22,477 and 39,374 IRGPs of TCGA and
GSE13507, respectively, had differences. 2ere were 3,829
differences in IRGPs between the two datasets. 2e analysis
process can be seen in Figure 1.

We used the cox proportional hazards regression model
and survival analysis (log-rank test) to screen the IRGPs
related to prognosis among the differentially expressed
IRGPs. Consequently, 391 bladder cancer patients were
screened regarding survival status and survival time (>30
days) in the TCGA dataset, and 251 IRGPs were associated
with prognosis (Supplementary Table 1). 2ese 251 IRGPs
related to prognosis were then utilized for subsequent model
construction (Figure 1).

3.2. Development and Internal Validation of a Prognostic
Signature. We recorded 391 BC patients in the TCGA
dataset with a follow-up time of >30 days.2e patients in the
TCGA dataset were randomly assigned to the TCGA-
training set (n� 276) and TCGA-testing set (n� 115) in 7 : 3
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ratios based on the different stages. 2e clinical data of the
patients in the TCGA-training set and TCGA-testing set
groups are shown in Table 1. 2ere was no statistical dif-
ference between the age, sex, stage, lymph node metastasis,
and distant metastasis in the two groups of patients (Table 1,
p> 0.05); therefore, further model construction could be
conducted.

Subsequently, we defined the IRGPs coefficient (IRGPC)
using the L1-penalized Cox proportional hazards regression
on the TCGA-training set and selected 37 IRGPs in the final
risk model (Table 2, Figures 2(a) and 2(b)). 2en, we used
IRGPC to calculate the risk score of each patient in the
TCGA-training set and set the optimal cutoff value of IRGP
for patients divided into high- or low-risk groups to −0.13

Bladder cancer datasets (n = 686)

TCGA dataset
(cancer = 411, normal = 19 )

GSE13507 dataset
(primary = 165, normal =

9, control = 58, recurrent 23)

1223 shared IRG in TCGA and
GSE13507

Construction of 1,495,729 
shared IRPG

3829 differentially IRPG in common (TCGA = 22,477, GEO13507 = 39374)

251 prognosis-related IRGP in 
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Figure 1: 2e process of model construction and subsequent analysis.
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(Figure 2(c) and Supplementary Table 2). Figures 2(c)–2(e)
shows the risk plot encompassing the distribution of the
patients in the groups based on the signature, survival status
of individuals between groups, and the expression level of
included IRGPs. From this figure, there is a clear difference
in the survival status between risk score groups, with the red
dots signifying death and the blue dot survival. A significant
number of deaths occurred in the high-risk score group. In
contrast, a considerable number of patients in the low-risk
score group survived throughout the follow-up. 2e risk
score stratified the TCGA-training set remarkably and di-
vided the patients into low- and high-risk score groups
regarding the OS. Our data indicate that the OS of patients in
the high-risk score group is distinctly lower compared with
the low-risk score group (p< 0.001; HR� 7.5 [5.3, 10])
(Figure 2(f )). 2e ROC curve analysis (Figure 2(j)) revealed
acceptable discrimination with AUCs of 0.820, 0.883, and
0.879 at 1-, 3-, and 5-year follow-up, respectively.

We used IRGPC and cutoff values to evaluate the risk
score of the BC patients in the TCGA-testing set. Conse-
quently, the patients in the TCGA-testing set were divided
into high- and low-risk score groups (see Supplementary
Table 2 for specific scores and risk groups). Figures 3(a)–
3(c) show the risk plot encompassing the distribution of the
patients in the groups based on the signature, survival
status of individuals between groups, and the expression
level of included IRGPs. 2e figure reveals that a significant
number of deaths occurred in the high-risk score group.
However, a remarkable number of patients in the low-risk
score group survived throughout the follow-up. 2e risk
score stratified the TCGA-testing set significantly and

divided the patients into low- and high-risk score groups
based on the OS. Our data indicate that the OS of the
patients in the high-risk score group is distinctly lower
compared with the low-risk score group (p � 0.003;
HR � 2.3 [1.5, 3.5]) (Figure 3(d)). 2e ROC curve analysis
(Figure 3(e)) revealed acceptable discrimination with
AUCs of 0.713, 0.666, and 0.703 at 1-, 3-, and 5-year follow-
up, respectively.

3.3. External Validation in GSE13507 Datasets. In the
GSE13507 cohort, we used the same IRGPC and cutoff values
to calculate the risk score of each patient in the external val-
idation GSE13507 and divided the patients into high- or low-
risk score groups (see Supplementary Table 2 for specific scores
and risk groupings). Figures 4(a)–4(d) shows the risk plot
encompassing distribution of groups based on the signature,
OS status of individuals between groups, disease-specific
survival (DSS) status of individuals between groups, and the
expression level of the included IRGPs. Similarly, a significant
number of deaths occurred in high-risk score groups, whereas
most of the patients in the low-risk score group remained alive
during the follow-up. 2e risk scores stratified GSE13507
markedly and divided patients into the low- and high-risk score
groups based on theOS andDSS.2ese results indicate that the
OS of the patients in the high-risk score group is remarkably
lower than in the low-risk score group (p � 0.006; HR� 1.6
[1.1, 2.4]). Besides, we show that the DSS of the patients in the
high-risk score group is markedly lower compared with the
low-risk score group (p � 0.001; HR� 2.2 [1.2, 4.1])
(Figures 4(e)–4(j)).2e ROC curve analysis of OS (Figure 4(f))

Table 1: Clinical characteristics of bladder cancer patients in different datasets.

Characteristic
TCGA cohort Validation cohort

Training set Testing set p value GSE13507
No. of samples 276 115 165
Median age in years (range) 68 (34–88) 69 (37–89) 0.8731 66 (24–88)
Gender
Male 207 83 0.6492 135
Female 69 32 30

Stage
T0 1 0

0.9500

24
T1 3 0 80
T2 96 41 31
T3 133 56 19
T4 42 18 11
TX 1 0 0

Lymph node metastasis
N0 153 72

0.8184

149
N1 34 10 8
N2 54 21 6
N3 6 1 1
NX 26 10 1
NA 3 1 0

Distant metastasis
M0 130 57

0.7559

158
M1 8 2 7
MX 137 55 0
NA 1 1 0
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revealed acceptable discrimination with AUCs of 0.673 and
0.640 at 1- , and 3-year follow-up, respectively. Moreover, the
ROC curve analysis of DSS (Figure 4(h)) showed acceptable
discrimination with AUCs of 0.644, 0.668, and 0.668 at 1-, 3-,
and 5-year follow-up, respectively.

3.4. Validation of the Risk Score as an Independent Prognostic
Factor. To further explore whether the risk score is an in-
dependent clinical prognostic factor, we performed

univariate and multivariate Cox proportional hazards re-
gression analysis on the TCGA and GSE13507 cohorts. In
the TCGA cohort, the results of the single factor analysis
indicated that the risk score, age, staging, lymph node
metastasis, and distant metastasis are risk factors of OS in
BC, and the multivariate analysis findings revealed that, after
adjusting for age, lymph node metastasis, and distant me-
tastasis, the risk score was still an independent prognostic
factor for OS in BC (HR� 3.39 [2.65–4.34], p< 0.001)
(Table 3). Similarly, in the GSE13507 cohort, our single

Table 2: Model information about IRGPs.

IRG 1 Full name IRG 2 Full name Lasso
coefficient

FGF9 Fibroblast growth factor 9 MICB MHC class I polypeptide-related sequence B 0.2288
CMKLR1 Chemokine-like receptor 1 BIRC5 Baculoviral IAP repeat-containing 5 0.1965
VIPR2 Vasoactive intestinal peptide receptor 2 GIPR Gastric inhibitory polypeptide receptor 0.3493
ELANE Elastase, neutrophil expressed IL9R Interleukin 9 receptor 0.2896
GHR Growth hormone receptor FLT4 Fms-related tyrosine kinase 4 0.0652
ELANE Elastase, neutrophil expressed ANGPTL6 Angiopoietin-like 6 0.0617

PCSK2 Proprotein convertase subtilisin/kexin type
2 FGF1 Fibroblast growth factor 1 0.0177

RORB RAR-related orphan receptor B GALR2 Galanin receptor 2 0.2577

EDNRB Endothelin receptor type B AGER Advanced glycosylation end product-specific
receptor 0.0772

LCN6 Lipocalin 6 TNFSF11 Tumor necrosis factor superfamily, member 11 0.1041
MASP1 Mannan-binding lectin serine peptidase 1 CSF2 Colony stimulating factor 2 0.1981
AHNAK AHNAK nucleoprotein PSMD8 Proteasome 26S subunit, non-ATPase, 8 0.2832

IL16 Interleukin 16 APOBEC3H Apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like 3H 0.0421

PDGFRA Platelet-derived growth factor receptor,
alpha polypeptide VAV2 VAV 2 guanine nucleotide exchange factor 0.0141

FGF9 Fibroblast growth factor 9 CST4 Cystatin S 0.0840
GHR Growth hormone receptor LHB Luteinizing hormone beta polypeptide 0.0237
LCN6 Lipocalin 6 IL13RA2 Interleukin 13 receptor, alpha 2 0.3899
OGN Osteoglycin NOX4 NADPH oxidase 4 0.0529
SFTPD Surfactant protein D ESM1 Endothelial cell-specific molecule 1 0.3064
TNC Tenascin C SPP1 Secreted phosphoprotein 1 0.2258

CMTM5 CKLF-like MARVEL transmembrane
domain containing 5 MPL Myeloproliferative leukemia virus oncogene 0.1306

LTBP4 Latent transforming growth factor beta
binding protein 4 VAV2 VAV 2 guanine nucleotide exchange factor 0.1395

FGF13 Fibroblast growth factor 13 CST4 Cystatin S 0.0819

NR2F1 Nuclear receptor subfamily 2, group F,
member 1 ESM1 Endothelial cell-specific molecule 1 0.0037

NR2F1 Nuclear receptor subfamily 2, group F,
member 1 TCF7L2 Transcription factor 7-like 2 0.1656

PIK3R3 Phosphoinositide-3-kinase, regulatory
subunit 3 (gamma) RAC3 Ras-related C3 botulinum toxin substrate 3 −0.1612

BMP5 Bone morphogenetic protein 5 OXTR Oxytocin receptor −0.2999
HLA-
DOA

Major histocompatibility complex, class II,
DO alpha RAC3 Ras-related C3 botulinum toxin substrate 3 −0.1058

NTF3 Neurotrophin 3 NOX4 NADPH oxidase 4 −0.1384
PRF1 Perforin 1 RAC3 Ras-related C3 botulinum toxin substrate 3 −0.1295
IL10RA Interleukin 10 receptor, alpha TOR2A Torsin family 2, member A −0.1601
LIFR Leukemia inhibitory factor receptor alpha CALCRL Calcitonin receptor-like −0.2448
JAK2 Janus kinase 2 RAC3 Ras-related C3 botulinum toxin substrate 3 −0.3199

ROBO3 Roundabout, axon guidance receptor,
homolog 3 ESM1 Endothelial cell-specific molecule 1 −0.6215

PRKCB Protein kinase C, beta DLL4 Delta-like 4 −0.2046
RBP4 Retinol binding protein 4, plasma RAC3 Ras-related C3 botulinum toxin substrate 3 −0.5189
PRKCB Protein kinase C, beta FCGR3A Fc fragment of IgG, low affinity IIIa, receptor −0.2420
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Figure 2: Development of the prognostic signature based on IRGPs in the TCGA-training set. (a, b) Identification of 37 IRGPs by LASSO
regression analysis; (c) distribution of risk scores based on IRGPs in bladder patients; (d) survival status of patients in different groups; (e)
heatmap of the expression profiles of IRGPs; (f ) survival analysis for the signature-defined risk groups; (g) time-dependent ROC curve of the
37-IRGPs prognostic signature.
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factor analysis results posited that the risk score, age, lymph
node metastasis, and distant metastasis are risk factors for
OS in BC. 2e results of the multivariate analysis in the
GSE13507 cohort revealed that after adjusting age, lymph
node metastasis, and distant metastasis, the risk score is still
a bladder cancer patient independent prognostic factor of
OS (HR� 1.54 [1.01–2.35], p � 0.046). Additionally, single-
factor analysis posited that the risk score, age, staging, lymph
node metastasis, and distant metastasis are risk factors for
DSS in bladder cancer patients. However, the multifactorial
analysis findings indicated that after adjusting age, staging,
lymph node metastasis, and distant metastasis, risk core is
not a bladder cancer independent prognostic factor for DSS
(HR� 1.83 [1.00–3.36], p � 0.0504).

3.5. Analysis of Gene Mutation, Variation in Copy Number,
andTranscriptomeExpressionDifferences in theDifferent Risk
Score Groups. Our findings show that the risk score is an
independent prognostic factor for bladder cancer patients
and divides the patients into high- and low-risk score
groups. Next, we investigated whether there are differences
in gene mutation, variation in copy numbers, and tran-
scriptome expression between the high- and low-risk
groups.

Consequently, we found that the proportions of patients
with gene mutations were 95.42% (146 in 153) and 94.09%
(223 in 237) in the low-risk score and high-risk score groups,
respectively (Figures 5(a) and 5(b)). 2e overall frequency of
gene mutations is the same. However, there are significant
differences in the frequency of single-gene mutations in
different groups. In the top 20 gene mutation frequency, in
the high-risk group, ARID1A (27% vs. 20%), MACF1 (18%

vs. 9%), KMT2C (16% vs. 12%), etc. were remarkably higher
compared with the low-risk score group. However, EP300
(11% vs. 18%), TTN (39% vs. 44%), KDM6A (23% vs. 28%),
PIK3CA (18% vs. 23%), SYNE1 (15% vs. 21%), FLG (11% vs.
16%), ERBB2 (8% vs. 14%), LRP1B (7% vs. 13%), etc. were
distinctly lower in the high-risk score group than in the low-
risk score group (Supplementary Table 3).

In the high- and low-risk score group, the variation in
gene copy numbers is significant (Figure 5(c)). Among the top
50 genes with different copy number variations, the frequency
of copy number variation of EDA2R, ZDHHC9, AIFM1, SPR,
EMX1, EXOC6B, TCG24, SGK3, PPP1R42, MCMDC2,
COPS5, C8orf44-SGK3, TRAPPC9, MED30, TRPS1, UTP23,
RAD21, C087350.1, EIF3H, SLC30A8, andAARD in the high-
risk score group was markedly higher relative to the low-risk
score group. However, the other genes were distinctly lower in
the high-risk score group than in the low-risk score group.
Notably, the copy number variation in the high- and low-risk
score groups was primarily based on the copy number am-
plification (Supplementary Table 4). Besides, we identified five
genes, namely ZNF436, TCEA3, HNRNPR, EMX1, and SPR,
with the most significant differences in copy number varia-
tion. ZNF436, TCEA3, and HNRNPR have a high copy
number variation frequency in the low-risk score group, and
EMX1 and SPR have a high copy variation frequency in the
high-risk score group.

We identified 55 differentially expressed genes in the
high- and low-risk score groups (Figure 5(d) and Supple-
mentary Table 5). In the high-risk score group, the ex-
pression levels of CTSE and TRIM31were significantly lower
relative to the low-risk score group, and the expression levels
of the rest of the genes were higher compared with the low-
risk score group.
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Figure 3: Development of a prognostic signature based on IRGPs in the TCGA-testing set. (a) Distribution of risk scores based on IRGPs in
bladder patients; (b) survival status of patients in different groups; (c) heatmap of expression profiles of IRGPs; (d) survival analysis for the
signature-defined risk groups; (e) time-dependent ROC curve of the 37-IRGPs prognostic signature.
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3.6. Gene Set Enrichment Analysis. To explore the under-
lying mechanism between the high- and low-risk score
groups, we conducted the GSEA of the differential ex-
pression of high- and low-risk score groups. In the high-
risk score group, various immune-related pathways were
inhibited, including the allograft rejection, primary im-
munodeficiency, graft versus host disease, the intestinal
immune network for IgA production, autoimmune thyroid
disease, T-cell receptor signaling axis, and natural killer
cell-mediated cytotoxicity pathways (Figures 6(a) and
6(b)). Additionally, in the high-risk score group, various
mesenchymal phenotype-related pathways were activated,
including the ECM receptor interaction, focal adhesion,
TGF-β signaling axis, WNTsignaling axis, MAPK signaling
cascade, and the GAP junction (Figures 6(a) and 6(c)).
Inhibition of the immune pathways and activation of

mesenchymal phenotype-related pathways provide mo-
lecular mechanism evidence of bladder cancer prognosis,
thereby predicting the prognosis of BC.

3.7. Difference of Tumor-Infiltrating Immune Cells between
Different Risk Groups. Based on the GSEA analysis findings,
the immune-related pathways are suppressed in the high-
risk group. 2erefore, we further explored the differences
between immune cell infiltration in the high- and low-risk
score groups. In the high-risk score group, the immune
infiltration degree of memory B cells, resting dendritic cells,
CD8 Tcells, and follicular helper T cells was markedly lower
than in the low-risk score group (Figures 7(a) and 7(b)).
Moreover, the degree of immune infiltration of naı̈ve B cells,
M0 macrophages, and resting mast cells was significantly
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Figure 4: Development of the prognostic signature based on IRGPs in independent validation. GSE13507 dataset. (a) Distribution of risk
scores based on IRGPs in bladder patients; (b) OS status of patients in different groups; (c) DSS status of patients in different groups; (d)
heatmap of expression profiles of IRGPs; (e) survival analysis of OS between signature-defined risk groups; (f ) time-dependent ROC curve
of OS based on the 37-IRGPs prognostic signature; (g) survival analysis of DSS between signature-defined risk groups; (h) time-dependent
ROC curve of DSS based on the 37-IRGPs prognostic signature.

12 Journal of Oncology



elevated in the high-risk score group. Subsequently, the
survival analysis results showed that naı̈ve B cells, M0
macrophages, and resting mast cells were associated with
poor prognosis in BC patients (Figure 7(c)). 2e infiltrating
immune cells, including memory B cells, resting dendritic
cells, CD8 T cells, and follicular helper T cells, were asso-
ciated with improved prognosis in BC patients (Figure 7(c)).
2erefore, the degree of differential immune cell infiltration
in the high- and low-risk score groups is strongly related to
the prognosis of bladder cancer patients.

3.8. Differences in Immunoregulatory Gene Between the Dif-
ferent Risk Groups. In the different risk score groups, the
immune-regulatory genes were also partially different.
Compared with the low-risk score group, some immuno-
modulatory genes, including BTN3A1, BTN3A2, and CD40,
were markedly reduced in the high-risk score group
(Figure 8(a)). However, ENTPD1 and SELP were remarkably
elevated in the high-risk group compared with the low-risk
group (Figure 8(a)). Compared with the low-risk score group,
CD276, ENDRB, and VEGFB immune-suppressive genes
were distinctly elevated in the high-risk score group. In
contrast, VEGFA was remarkably reduced in the high-risk
group relative to the low-risk group (Figure 8(b)). 2erefore,
the differential expression of some immunoregulatory genes
constitutes a potential mechanism underlying the differences
in the infiltration of different immune cells in different groups.

4. Discussion

Bladder cancer is the ninth most common malignant tumor
in the world and ranks fifth in developed countries. At the
initial hospital visit, approximately 20% of the patients are

diagnosed with muscle infiltrative diseases. Due to disease
recurrence, progression and high disease-specific mortality,
multiple treatment modalities are required [19]. Localized
bladder cancer is predominantly treated using chemother-
apy, radiation therapy, and radical cystectomy, whereas
patients with metastatic disease undergo systemic chemo-
therapy. Despite the aggressive treatment approach, there is
still a poor prognosis in a considerable number of patients.
2e increase popularity of immunotherapy, including anti-
PD1/PD-L1, and anti-CTLA-4 therapies, has shown great
success in the treatment of human cancer, particularly in
solid tumors. Cancers with a high mutation burden, in-
cluding Hodgkin’s lymphoma, melanoma, renal cell carci-
noma, nonsmall cell lung cancer, and urinary tract epithelial
bladder cancer, show promising response rates to anti-PD-1/
PD-L1 antibody therapy [20–24]. However, most patients
with BC respond poorly to immunotherapy.2erefore, there
is a need for reliable immune-related biomarkers to stratify
BC patients to identify patients with a high risk of recurrence
and to guide adjuvant therapy.

To identify reliable prognostic biomarkers for bladder
cancer, we preprocessed the TCGA data from the RNA-Seq
platform and the GSE13507 data from the microarray-se-
quencing platform.2rough the method of comparing values
in the gene expression profile of a single sample, inherent
technical differences on different platforms are reduced;
therefore, there is no need to strictly and uniformly normalize
the data. Hence, the 37 IRGPs could be potentially used for
individualized and single-sample assessment of the survival of
BC patients and can be easily applied in clinical practice.

Using the L1-penalized Cox proportional hazards re-
gression on TCGA and GSE13507 data, we identified 37
IRGPs as potential clinical biomarkers for BC. Based on the
prognostic characteristics of the 37 IRGPs, the overall

Table 3: Univariate and multivariate analyses of prognostic factors in the TCGA data set and independent validation data set.

Characteristics
Univariate Multivariate

Hazard ratio CI95 p value Hazard ratio CI95 p value
TCGA dataset (OS)
Riskscore 3.95 3.12–4.99 <0.0001 3.39 2.65–4.34 <0.0001
Age 1.85 1.25–2.73 0.0020 1.5 1.01–2.22 0.0452
Gender 1.19 0.86–1.66 0.2932 NA NA NA
Stage_T 1.69 1.37–2.09 0.0360 1.35 1.07–1.71 0.0104
Stage_N 1.15 1.05–1.25 0.0015 1.18 1.07–1.3 0.0011
Stage_M 1.11 1.01–1.23 <0.0001 1.01 0.91–1.13 0.7855

GSE13507 dataset (OS)
Riskscore 1.58 1.05–2.37 0.0270 1.54 1.01–2.35 0.0462
Age 3.9 1.86–8.19 0.0003 3.62 1.72–7.62 0.0007
Gender 1.56 0.88–2.77 0.1290 NA NA NA
Stage_T 1.03 0.89–1.2 0.7038 NA NA NA
Stage_N 2.71 1.99–3.69 <0.0001 2.19 1.52–3.13 <0.0001
Stage_M 9.9 4.38–22.37 <0.0001 2.62 1.05–6.54 0.0397

GSE13507 dataset (DSS)
Riskscore 2.24 1.23–4.08 0.0087 1.83 1–3.36 0.0504
Age 3.12 1.09–8.9 0.0336 3.18 1.08–9.34 0.0355
Gender 2.1 0.97–4.54 0.0600 NA NA NA
Stage_T 1.34 1.09–1.63 0.0046 1.34 1.06–1.7 0.0155
Stage_N 3.29 2.36–4.58 <0.0001 2.55 1.77–3.69 <0.0001
Stage_M 13.12 5.28–32.6 <0.0001 2.52 0.92–6.85 0.0708
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survival rate and disease-specific survival rate of BC are
divided into two subgroups with different survival outcomes,
namely, the high- and low-risk score groups. 2e prognosis
of the high-risk score group is significantly dismal compared
with the low-risk score group. We validated our prognostic
signature using the TCGA-testing set and GSE13507. 2e

multivariate Cox analysis results showed that in TCGA, the
IRGPs-based risk score is independent of clinical factors
including age, stage, lymph node metastasis, and distant
metastasis in bladder cancer patients, and the risk score is an
independent prognostic marker. Similarly, in the GSE13507
cohort, we provided support that our risk score prognostic
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Figure 5: Analysis of gene mutation, copy number variation, and differential expression of the gene in different risk groups. (a) Visu-
alization of gene mutations in patients of low-risk score groups; (b) visualization of gene mutations in patients of the high-risk score group;
(c) dumbbell diagram showing copy number variation in different groups; (d) heatmap of differential expression of the gene in different
groups.
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biosignature is independent for BC, implying that the
prognostic characteristics based on 37 IRGPs are not related
to the dataset.

To explore the mechanism of effectively stratifying BC
patients based on the IRGPs signature, we divided the BC
into high- and low-risk score groups based on the risk score.
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Figure 6: Gene set enrichment analysis of different groups. (a) Bubble chart of GSEA analysis in different groups; (b) GSEA analysis of
immune-related pathways in different groups; (c) GSEA analysis of mesenchymal-related pathways in different groups.
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Next, we explored gene mutation, copy number variations,
and gene expression differences between these groups.
Consequently, our findings revealed no significant difference
in the total frequency of gene mutations between the two
groups. However, there was a remarkable difference in the
frequency of single-gene mutations between the two groups.
For instance, in the high-risk score group, the mutation
frequency of lysine-specific methyltransferase 2C (KMT2C)
was higher. KMT2C is a tumor suppressor, and cells with
low KMT2C activity lack homologous recombination-me-
diated double-strand break DNA repair, resulting in a
significantly high rate of endogenous DNA damage and
genomic instability [25]. Additionally, the findings of studies
show that specific mutations in EP300 predict a lower risk of
recurrence and reduce breast cancer mortality [26]. In the
high-risk score group, the mutation frequency of EP300 is
higher. In BC, the EP300 mutations are associated with a
higher burden of tumor mutations and indicate a good
clinical prognosis [27]. 2e differences in different gene
mutations could be a potential mechanism for poor prog-
nosis in the high-risk score groups.

Regarding copy number variation, we established that in
both the high- and low-risk score groups, copy number
variation is primarily based on copy number amplification.

We identified five genes, namely ZNF436, TCEA3,
HNRNPR, EMX1, and SPR, with the most significant dif-
ferences in copy number variation. ZNF436, TCEA3, and
HNRNPR had a high copy number variation frequency in
the low-risk score group, whereas EMX1 and SPR had a high
copy variation frequency in the high-risk score group.
ZNF436 is a member of the zinc finger transcription factor
family and acts as a negative modulator in gene transcription
mediated by the MAPK signaling pathway [28]. In ovarian
cancer cells, the interaction between TCEA3 and TGFβ
receptor-I is activated through the Smad-dependent JNK
pathway, which induces the death of ovarian cancer cells
[29]. SPR and its downstream metabolite BH4 are critical
modulators of T cell biology and are easily manipulated to
modulate anticancer immunity [30]. 2e differences in copy
number variations affect the prognosis of bladder cancer
patients.

At the same time, the transcriptome levels in BC patients
also differed in the high- and low-risk score groups. 2e
CRYAB gene had the most significant difference in ex-
pression levels in the high- and low-risk score groups. As an
antiapoptotic protein, CRYAB negatively regulates the ap-
optotic members of the Bcl-2 family, Bax, and caspase-3
through multiple signaling pathways [31, 32]. Additionally,
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Figure 7: Analysis of immune infiltration in different groups. (a) Heatmap of infiltration of immune cells in different groups; (b) differential
analysis of immune cells in different groups; (c) survival analysis of immune cells in BC.
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intracellular CRYAB is an effective factor in controlling
neuroinflammation in various situations [33]. Macrophages
promote the metastasis of non-small cell lung cancer by
upregulating CRYAB [34]. Some other differential genes are
also related to immune modulation. 2erefore, we con-
ducted GSEA analysis and found that in the high-risk score
group, multiple immune-related signaling pathways are
inhibited, including T cell receptor signaling pathway and
natural killer cell-mediated cytotoxicity cascade. Moreover,
we established that the mesenchymal-related signaling
pathways consisting of the ECM receptor interaction, focal
adhesion, TGF-β signaling pathway, WNT signaling path-
way, MAPK signaling pathway, and GAP junction are ac-
tivated. 2erefore, in BC, gene mutations, copy number
variations, and differential transcriptome expression affect
the poor prognosis of high-risk score patients through
immunosuppression and matrix activation.

To further verify the mechanism of immunity in the
high- and low-risk score BC patients, we analyzed the dif-
ferences in the degree of immune cell infiltration and im-
mune-regulatory genes in the groups. We established that
the näıve B cells, M0 macrophages, and resting mast cells are
significantly elevated in the high-risk score group, which is
related to the poor prognosis of bladder cancer patients.
Besides, we found that the memory B cells, resting dendritic
cells, CD8 T cells, and follicular helper T cells are signifi-
cantly reduced in the high-risk score group, and their low

infiltration level is associated with poor prognosis in patients
with BC. CD8+ T lymphocytes are major antitumor effector
cells [35]. Increasing research evidence shows that CD8
Tcells mediate the regression of various tumors, resulting in
durable long-term disease remissions [36]. Tfollicular helper
(Tfh) cells have protective roles in nonlymphoid tumors.
Higher levels of Tfh cells infiltrate, and their ability to or-
ganize tertiary lymphoid structures within tumors is asso-
ciated with increased survival and reduced
immunosuppression, which strongly correlate with in-
creased survival in breast cancer [37]. Here, the immuno-
suppressive genes (CD276, ENDRB, and VEGFB) were
significantly elevated in the high-risk score group. CD276 is
a member of the immune-modulator family and coordinates
antitumor immunity. 2e overexpression of CD276 is re-
lated to poor prognosis in tumor patients and the potential
of tumor invasion and metastasis [38, 39]. In conclusion, the
differences in the tumor immune microenvironment (in-
cluding immune cell infiltration and immune-regulatory
genes) are potentially responsible for the differences in
survival outcomes observed between the two groups defined
by prognostic markers.

Herein, we report a prognostic signature based on IRGPs
to predict the survival rate of BC patients, which has clinical
significance and effectiveness in different datasets. To the
best of our knowledge, this is the first IRGPs-based signature
reported in BC. However, our study did not entail in vitro
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Figure 8: Differential expression of immunoregulatory genes in different groups. (a) Differential expression of immunostimulatory genes in
different groups; (b) differential expression of immunosuppressive genes in different groups.

18 Journal of Oncology



and in vivo experiments; therefore, the results cannot fully
elucidate the molecular mechanism of BC. 2erefore, it is
necessary to conduct further research.

5. Conclusions

We systematically studied the prognostic value of 37 IRGPs
as potential independent prognostic factors for BC and
provided a risk assessment for the prognosis of BC. In the
high- and low-risk score patients, there are differences in
gene mutations, copy number variations, and gene ex-
pression levels. 2e changes in immune-related signaling
pathways and mesenchymal-related signaling pathways in
the two groups affect the prognosis of patients with BC. 2e
biosignatures based on 37 IRGPs are promising for BC
prognosis.
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