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Background. Pyroptosis has been confirmed as a type of inflammatory programmed cell death in recent years. However, the
prognostic role of pyroptosis in colon cancer (CC) remains unclear. Methods. Dataset TCGA-COAD which came from the TCGA
portal was taken as the training cohort. GSE17538 from the GEO database was treated as validation cohorts. Differential ex-
pression genes (DEGs) between normal and tumor tissues were confirmed. Patients were classified into two subgroups according
to the expression characteristics of pyroptosis-related DEGs. The LASSO regression analysis was used to build the best prognostic
signature, and its reliability was validated using Kaplan-Meier, ROC, PCA, and t-SNE analyses. And a nomogram based on the
multivariate Cox analysis was developed. The enrichment analysis was performed in the GO and KEGG to investigate the potential
mechanism. In addition, we explored the difference in the abundance of infiltrating immune cells and immune microenvironment
between high- and low-risk groups. And we also predicted the association of common immune checkpoints with risk scores.
Finally, we verified the expression of the pyroptosis-related hub gene at the protein level by immunohistochemistry. Results. A
total of 23 pyroptosis-related DEGs were identified in the TCGA cohort. Patients were classified into two molecular clusters (MC)
based on DEGs. Kaplan-Meier survival analysis indicated that patients with MC1 represented significantly poorer OS than
patients with MC2. 13 overall survival- (OS-) related DEGs in MCs were used to construct the prognostic signature. Patients in the
high-risk group exhibited poorer OS compared to those in the low-risk group. Combined with the clinical features, the risk score
was found to be an independent prognostic factor of CC patients. The above results are verified in the external dataset GSE17538.
A nomogram was established and showed excellent performance. Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses indicated that the varied prognostic performance between high- and low-risk groups may be related to
the immune response mediated by local inflammation. Further analysis showed that the high-risk group has stronger immune cell
infiltration and lower tumor purity than the low-risk group. Through the correlation between risk score and immune checkpoint
expression, T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) was predicted as a potential therapeutic
target for the high-risk group. Conclusion. The 13-gene signature was associated with OS, immune cells, tumor purity, and
immune checkpoints in CC patients, and it could provide the basis for immunotherapy and predicting prognosis and help
clinicians make decisions for individualized treatment.

1. Introduction tendency in both morbidity and mortality [1]. Dietary habits,

age, obesity, smoking, and lack of physical exercise are well-
Colon cancer (CC), a common malignancy arising from the ~ known risk factors for colon cancer. The most common
digestive system of mankind, exhibited an obviously rising subtype of colon cancer is colon adenocarcinoma (COAD)
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which accounts for 98% of newly diagnosed colon cancer
cases with a 5-year survival rate of 40-60% [2]. For thera-
peutic effect, there are still significant individual differences
among patients with CC. the reason is not only associated
with socioeconomic factors but also associated with indi-
vidual genetic heterogeneity [3]. Therefore, it is obviously a
great challenge to investigate and develop new strategies for
the CC early diagnosis, more precision therapy, and pre-
dicting prognosis. Currently, the tumor-node-metastasis
(TNM) stage, based on anatomical information, is a com-
mon tool to evaluate the prognosis of patients. Nevertheless,
the great limitation of the TNM stage is that it may not fully
consider the genetic heterogeneity within individual tumors.
With the development of sequencing technology, there is a
deeper understanding of the transcriptomes of tumors.
Assessment of KRAS and BRAF mutation status or MSI
status is widely used in clinical treatments. This makes CC
patients diagnosed in the middle to the late stage have more
treatment opportunities than before [4]. However, because
of the complexity of the molecular mechanism affecting the
prognosis of CC, single gene/factor prediction models are
often accompanied by low accuracy. In contrast, polygene-
based models tend to show better results in predicting the
prognosis of various cancers [5-7]. Therefore, we need a
reliable prognostic gene signature to promote individualized
therapy and help survival prediction for CC patients.
Pyroptosis, also known as cell inflammatory necrosis, is
a kind of programmed cell death, which is characterized by
the continuous expansion of cells until the rupture of the
cell membrane, leading to the release of cell contents and
activating a strong inflammatory response [8]. Pyroptosis
occurs when activated caspase-1 cleaves the protein gas-
dermin D, releasing the gasdermin N subunit, which can
form a pore in the plasma membrane [9]. Pyroptosis is
closely related to a variety of diseases; for tumors, it is a
double-edged sword. On the one hand, as an innate im-
mune mechanism, pyroptosis can inhibit the development
of tumors, and on the other hand, as a proinflammatory cell
death mode, pyroptosis, in turn, provides a suitable mi-
croenvironment for tumor growth [10]. The long-term
chronic inflammatory response can lead to local tissue
dysplasia and thus carcinogenesis. Especially, considering
that the presence of a large number of bacteria in the
intestine may increase the chance of infection with the
occurrence of pyroptosis. Therefore, we hypothesized that
pyroptosis might play an important role in the develop-
ment of colon cancer. Although, up to now, several studies
have linked pyroptosis with colon cancer [11-13], there are
still few scientific and clinical studies on the correlation
between CC and pyroptosis; whether pyroptosis is corre-
lated with CC prognosis and identifies expression char-
acteristics of the key pyroptosis-related genes (PDGs) in
CC progression remains largely unknown. Despite sig-
nificant progress in CC gene signatures, few have con-
sidered the use of pyroptosis-related gene characteristics to
construct a prognostic signature in CC. Accordingly, we
carried out a systematic study on pyroptosis-related genes
to explore the expression characteristics of those in normal
and tumor tissues and predict the prognosis and immune
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response of patients by trying to construct a prognostic
signature.

2. Materials and Methods

2.1. Acquisition of Data. The level 3 RNA-seq data
(Workflow Type: HTSeq-FPKM) of 385 COAD patients and
the corresponding clinical information were obtained from
The Cancer Genome Atlas (TCGA) dataset (https://portal.
gdc.cancer.gov/), in which the method of acquisition and
application complied with the guidelines and policies.
FPKM values were then normalized by log2 (FPKM + 1) for
the subsequent analysis. The GSE17538 gene expression
profiles were acquired from the Gene Expression Omnibus
(GEO: https://www.ncbi.nlm.nih.gov/gds/) database, in-
cluding exhaustive transcriptome information about 238
cases of colon cancer patients (Platform: GPL570). The
original datasets extracted from GSE17538 were normalized
with the RMA method. Both TCGA and GEO databases are
publicly available; thus, ethical approval is not required for
the present study.

2.2. Identification of Differentially Expressed PRGs. A total of
33 pyroptosis-related genes were obtained from previous
reports [14]. Among them, GSDMA is deleted because there
is no annotation information about it in the GPL570 plat-
form. The “limma” package was used to identify DEGs
between tumor and adjacent normal tissues in the TCGA
cohort with a P value <0.05. Heatmap of DEGs was plotted
by “pheatmap” package. PPI networks of DEGs were con-
structed using STRING v11.5 (http://string-db.org/) with
default parameters (confidence = 0.4). Pearson’s correlations
among DEGs were calculated using “reshape2” package
(cutoff=0.2), and the correlation networks were generated
using “igraph” package. The MCODE plug-in in Cytoscape
software was used to identify the hub genes of the PPI
network.

2.3. PRGs-Based Classifications of CC Patients in the TCGA
and GSE17538 Cohorts. Unsupervised consensus clustering,
an algorithm based on k-means machine learning, was
utilized to explore a molecular classification of both the
TCGA and GSE17538 CC cohorts based on the expression
patterns of PRGs using the “ConsensusClusterPlus” package
[15] in R. The optimal number of clusters is determined
according to the consensus score and the relative change of
the area under the CDF curve of the consensus heatmap.
Then, Kaplan-Meier survival analysis was performed to
evaluate the prognosis of patients in different MCs. We also
performed comparisons of the clinicopathological variables
and the difference of tumor immune microenvironment
between different clusters of patients to further explore the
associations between the PRGs-based MCs and the clinical
features or local immune status of CC patients.

2.4. Development and Validation of the PRGs-Based Prog-
nostic Risk Signature. We analyzed the differences between
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patients with different clusters in the TCGA cohort and the
GSE17538 cohort to obtain intersecting genes (P <0.05).
Then, based on the TCGA cohort, we used univariate Cox
regression analysis to screen the genes related to prognosis
by setting a strict significance threshold (P <0.0001). Af-
terward, LASSO Cox regression analysis was performed to
construct a prognostic signature with minimizing the risk of
overfitting. The risk score of the patients is calculated
according to the normalized expression level of each gene
and corresponding regression coeflicient as the following
formula: Risk score=) Coefi* Expri. Then, patients were
divided into the high-risk group and the low-risk group
according to the median risk score. The survival curve was
drawn between the high-risk group with the low-risk group
by using the “survival” and “survminer” packages of the R
software, and the accuracy of the signature is evaluated using
the ROC curve. PCA and t-SNE were used for dimen-
sionality reduction analysis to assess the ability to distin-
guish different risk patients of the risk signature. The
stability of the risk signature is verified by the GSE17538
cohort.

2.5. Construction and Validation of a Predictive Nomogram.
The Cox regression analysis was performed to determine
whether the risk score and relevant clinical parameters could
be predictors associated with OS for CC patients. Consid-
ering the collinearity among the clinical variables, we ex-
cluded the T/N/M stage and retained the AJCC stage.
Subsequently, based on the results of multivariate Cox re-
gression analysis, a prognostic nomogram was generated to
predict 1-year, 2-year, and 3-year OS of CC patients in the
TCGA cohort. The predicted OS of the nomogram against
observed survival rates was plotted using the calibration
curve.

2.6. Functional Enrichment and Immune Characterization
Analysis. The “limma” R package was used to identify DEGs
between the high-risk and low-risk groups (P < 0.05). Gene
Ontology (GO) including biological process (BP), cellular
component (CC), and molecular function (MF), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of the DEGs were performed using the
“clusterProfiler” R package. In order to compare the im-
mune status between different groups. The “gsva” package
was utilized to conduct the ssGSEA to calculate the scores of
infiltrating immune cells and to evaluate the activity of
immune-related pathways. Estimate, immune, and stromal
scores of each patient were calculated with the ESTIMATE
algorithm of the “estimate” package [16] to evaluate the
difference of immune microenvironment. The correlation
between the expression of common immune checkpoints
and risk score was analyzed by drawing a correlation matrix
diagram.

2.7. Statistical Analysis. All statistical analyses were ac-
complished with R software (v4.0.3). Continuous variables
were presented as mean+standard deviation (SD) as

appropriate. Normally and nonnormally distributed vari-
ables were analyzed using the unpaired Student’s ¢-test and
the Wilcoxon test, respectively. A hazard ratio (HR) and a
95% confidence interval (CI) were evaluated by univariable
and multivariate Cox regression models. The statistical value
P <0.05 indicates that the difference is statistically signifi-
cant (*P value < 0.05, **P value < 0.01, ***P value <
0.001).

3. Result

3.1. Identification of DEGs between Normal and Tumor
Tissues. Figure 1 provides an overview of the study flow-
chart. A total of 39 normal and 398 tumor tissues samples
with gene expression were included in the analysis. We
found that the majority of the pyroptosis-related genes (23/
32, 72%) were significantly differentially expressed between
the two groups (P<0.001). 10 genes are upregulated
(CASP8, NOD1, GPX4, CASP4, PJVK, IL6, IL1B, PLCG1,
NOD2, and GSDMC) and 13 downregulated (ELANE,
CASP5, NLRP7, IL18, NLRP3, NLRC4, PRKACA, NLRP1,
GSDMB, CASP9, CASP3, TIRAP, and NLRP2) in tumor
tissues. Figure 2(a) shows a heatmap of the expression levels
of these genes. To further explore the interactions between
the 23 pyroptosis-related DEGs, a PPI network was con-
structed (Figure 2(b)). The result shows that CASP4, CASP5,
and IL18 are at the core of the network. The correlation
network containing pyroptosis-related DEGs is presented in
Figure 2(c). A total of 11 hub genes including NOD2,
CASP4, NOD1, IL18, IL1B, NLRP1, CASP8, NLRC4, IL6,
CASP5, and NLRP3 were identified by the MCODE plug-in
in Cytoscape software (Figure 2(d)), and their protein levels
were verified using the Human Protein Atlas (HPA) data-
base (Figure 3).

3.2. Tumor Classification Based on the DEGs. To establish a
classification of CC based on the expression patterns of
PDGs, machine learning-based unsupervised consensus
clustering was performed on CC patients from the TCGA
cohort and GSE17538 cohort, respectively (Figures 4(a) and
4(e)). According to the relative change in the area under the
cumulative distribution function (CDF) curve and con-
sensus heatmap, the optimal number of clusters was de-
termined to be two (k value = 2), and no appreciable increase
was observed in the area under the CDF curve (Figures 4(b)-
4(c) and Figures 4(f)-4(g)). Thus, all CC patients were
classified into two groups: molecular cluster 1 (MC1, 58% in
TCGA and 63% in GSE17538) and molecular cluster 2 (MC2
42% in TCGA and 37% in GSE17538). Kaplan-Meier sur-
vival analysis indicated that patients with MC1 represented
significantly poorer OS than patients with MC2
(Figures 4(d) and 4(h)). The gene expression level and the
clinical features between two clusters are presented in a
heatmap. We can see that the pathological N stage was
significantly different between the two clusters in the TCGA
cohort (Figure 5(a)), and the pathological grade was sig-
nificantly different between the two clusters in the GSE17538
cohort (Figure 5(f)). We further analyzed the difference
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FIGURE 1: The workflow of the study (PRGs: pyroptosis-related genes, DEGs: differentially expressed genes).

between MC1 and MC2 on the tumor immune microen-
vironment. The results revealed that the patients with MC1
in the TCGA cohort had significantly higher immune scores
and lower tumor purity than those with MC2 (Figures 5(b)-
5(e)). Similar results were observed in the GSE17538 cohort
(Figures 5(g)-5(j)).

Cox. In total, there were 17 genes are strongly associated
with prognosis. Subsequently, the LASSO algorithm was
used to identify the most robust prognostic genes for CC
patients (Figures 6(b)-6(c)). A multivariate Cox prediction
signature was estimated using the prognostic genes selected
by the LASSO. We ultimately identified a 13-gene risk
signature. The risk score was calculated as follows: risk

score=(0.295 % KIF7 exp.) +(0.110%SYNGR3 exp.)+
3.3. Development and Validation of a Prognostic Risk  (0.067 + NCKAP5L exp.)+(0.297 * ZKSCAN2 exp.)+
Signature. After obtaining differential genes between MCl1 (0.011 % SIX2 exp.)+(0.096 * OLFM2 exp.)+ (0.028
and MC2(P < 0.05), we included a total of 363 patients with GPSM1 exp.)+(0.340 « ZEBI-ASI exp.)+(0.127 « CD72

complete prognosis information for univariate Cox analysis
to screen prognosis-related genes from the DEGs by
stringent conditions (P <0.0001). Figure 6(a) presents the
result obtained from the preliminary analysis of univariate

exp.)+(0.114 * TGFB2  exp.)+(0.023 = CSRP2  exp.)+
(0.081 * TRPV4 exp.) +(0.043 « LHX6 exp.). Based on the
median score calculated by the risk score formula, 363
patients were equally divided into low- and high-risk groups.
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FIGURE 2: Expression characteristics of 32 pyroptosis-related genes. (a) Heatmap of the pyroptosis-related gene expressions between the
normal and the tumor tissues. (b) PPI network exhibiting the interactions of the pyroptosis-related genes (interaction score =0.4). (c) The
correlation network of the pyroptosis-related genes (red line: positive correlation; blue line: negative correlation. The depth of the colors
reflects the strength of the relevance). (d) 11 hub genes identified by the MCODE (red: upregulation in tumor; blue: downregulation in the

tumor).

The principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) analysis showed that
patients with different risks were well separated into two
clusters (Figures 7(d)-7(e)). Patients in the high-risk group
had more deaths and a shorter survival time than those in the
low-risk group (Figure 7(c)). A significant difference in OS
time was detected between the low- and high-risk groups
(P <0.001, Figure 7(a)). Time-dependent receiver operating
characteristic (ROC) analysis was applied to evaluate the
sensitivity and specificity of the prognostic signature, and we
found that the area under the ROC curve (AUC) was 0.689
for 1-year, 0.710 for 3-year, and 0.821 for 5-year survival
(Figure 7(b)). In parallel, similar results were validated in the
GSE17538 cohort (Figures 7(f)-7(j)).

3.4. Clinical Value of Risk Signature. To verify the accuracy of
the risk signature, we investigated whether the risk score can
work as an independent prognostic factor for the survival of
CC patients. The risk score and clinical traits such as age,
gender, and pathological stage were included in the univariate
and multivariate regression analysis. Univariable Cox re-
gression analyses revealed that age, pathological stage, and

risk score were significantly correlated with OS (P <0.05,
Figure 8(a)). According to the results based on the multi-
variate analysis, age, pathological stage, and risk score were
still confirmed as independent predictors for OS (P <0.05,
Figure 8(b)). The independent prognostic value of the risk
score was also verified in the GSE15738 cohort (Figures 8(c)-
8(d)). On account of the independent predictor factors, a
nomogram was established (Figure 8(e)). The calibration
curves showed that the nomogram may be an ideal prediction
model (Figure 8(f)). The heatmap showed the characteristics
of 13-gene expression among different risk groups and their
relationship with clinical variables. We can see that, in the
TCGA cohort (Figure 8(g)), patients with different risks had
significant differences in the clinical characteristics of T stage
(P <0.05), N stage(P<0.01), M stage(P <0.05), and AJCC
Stage(P < 0.05), but the same results were not observed in the
GSE17538 cohort (Figure 8(h)).

3.5. GO and KEGG Pathway Analysis. To explore the un-
derlying molecular mechanism of the risk signature, we
identified differentially expressed genes between the high-
risk and low-risk groups (P < 0.05). GO and KEGG pathway
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FIGURE 3: Verification of hub PRG expressions in normal and tumor tissue utilizing the Human Protein Atlas (HPA) database. (a) CASP4;
(b) CASPS8; (c) IL-6; (d) IL-18; (e) NLRC4; (f) NLRPI; (g) NLRP3; (h) NOD2.

enrichment analyses were conducted on DEGs. GO en-
richment showed that these genes were mainly enriched in
cell junction assembly, extracellular matrix organization,
extracellular structure organization, collagen-containing
extracellular matrix, membrane region, extracellular matrix
structural constituent, cytokine binding, and immune re-
ceptor activity, etc. (Figure 9(a)). The KEGG pathway
showed that the differential gene pathway mainly involves
the PI3K-Akt signaling pathway, calcium signaling pathway,
Ras signaling pathway, etc. (Figure 9(b)).

3.6. Immune Characterizations Analysis and Immune
Checkpoint Prediction. Through the ESTIMATE algorithm,

we explore the different characteristics of the immune
microenvironment in the two risk groups, and we further
compared the enrichment scores of 16 types of immune cells
and the activity of 16 immune-related pathways between the
low- and high-risk groups in both the TCGA and GSE17538
cohorts by employing the single-sample gene set enrichment
analysis (ssGSEA). The results showed that the stromal score
and immune score in the high-risk group were higher than
those in the low-risk group. Conversely, the tumor purity of
the high-risk group was unexpectedly lower than the low-
risk group (Figures 10(a) and 10(d)). Specifically, the high-
risk group generally had higher levels of infiltration of
immune cells, especially active DC cells, B cells, macro-
phages, neutrophils, NK cells, and TIL cells (Figures 10(b)
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and 10(e) ). And 4 immune pathways including human
leukocyte antigen (HLA), parainflammation, and Type I and
Type I IEN response showed higher activity in the high-risk
group than those in the low-risk group (Figures 10(c) and
10(f)). Given the importance of checkpoints in immuno-
therapy, although the checkpoint pathway had no significant
difference between the high-risk group and low-risk group,
correlation analysis was remained performed between the
risk score and checkpoint expression. We found that
common checkpoints such as CD274, CEACAMI,
HAVCR2, and CTLA4 in the treatment of colon cancer were
significantly correlated with risk score (Figures 11(a) and
11(g)). Of these, CD274, PDCDI1, and HAVCR2 were
positively correlated with the risk score (Figures 11(b),
11(d), 11(e), 11(h), 11(g), and 11(k)), and CEACAM1 was
negatively correlated with the risk score (Figures 11(c) and
11(i)). These predictions can help to guide a treatment
strategy for targeted drugs.

4. Discussion

Although great progress has been made in the treatment and
diagnosis of CC compared with the past, the mortality and
morbidity of CC are still very high. In particular, CC patients
are getting younger and younger, which makes us pay great

attention to the early diagnosis and prognosis of CC patients
[17]. In the past few decades, many clinical parameters such
as age, sex, pathological stage, imaging data, and some serum
markers have been widely used to predict the prognosis of
patients with CC. However, due to individual differences, the
effect of improving treatment and predicting the prognosis
of patients through these single factors is often limited. Due
to the rapid development of gene sequencing technology, the
mRNA levels and mutations of many genes have become
predictive markers for the prognosis of malignant tumors.
However, because the expression level of a single gene can be
regulated by a variety of signal pathways, its predictive effect
is usually low. The application of key regulatory factors
expression features that play a role in the same signal
pathway to construct a polygene model is of great signifi-
cance to improve the accuracy of prediction and explore new
targeted therapies. Some studies in recent years have shown
that pyroptosis is involved in the development of CC; tar-
geting pyroptosis was considered as an effective way of
overcoming chemoresistance, leading it to be a novel ap-
proach for the treatment of CC [12].

In this study, we have collected 32 pyroptosis-related
genes reported in public and systematically analyze their
expression characteristics in normal and tumor tissues of
colon cancer. As expected, 23 (72%) pyroptosis-related



Journal of Oncology

§ Lo e 1 [ o rrmrrren 1 1 1 [T 11 [ITH} [ N"' ‘g(l) 2000 2 33333
101 1l 5 NZ
“ 2 1000
—, m %? N
41 0 \I (/0] [f s £
il I n £ -1000
\‘I’ I, J‘ 1] HI | If [l lel IIH |II\” ” ’ H | Il T ” 2000
Il ||| | ||| |||| | | (AR g
(L | M \ I|} - -3000 i
i l l {11 §::§::}‘ o}
[ Stage IV

hh I M “ 1! “ fn | HJ, ’”n i " e
: H ( il "”' L il e
|[‘lr, 'I,‘ ”I Ww ;; ! |“|]':|'|m’ i [ ,h'“"}w"lll “I'\(J S =
l“"'l ' '\ l ||| H' i it ||| -
W‘ '\ [y '\ i Hl
IHI|"|| |;‘H \”I l‘{h '{[ *\ ' Mf "m'l' ”n » 1"‘| "If” il[w’uh ‘
I ”I m}”‘ H l"“'! 11} W ':‘Hl “ “HHWH H\
[[ r ||||'||i|| h 1||1||||| '"" f ||‘h d”|l||l"f| ||.‘ Tdn: |"| '” \
)
B MC2 "

\ LPV}J P'r!;”lurrlih; &"u'”wr f I iﬁ
,:j.. | ."' i Il ...;,'»'il ||||||:“
M ikl VI
| M“t “‘ }'s' M'w"’ 8

a
EEC

—-E-—='
=

AAAAAA
TTTTT

StromalScore
|

FiGgure 5: Continued.



Journal of Oncology

1.5e-09
5000

2500

ESTIMATEScore
=]

-2500

MCl1 MC2

Cluster
B Mcl
B MC2

®

TumorPurity

e
N
G

e
w
S

S
o
G

1.5e-09

MC1 MC2

Cluster
B McCl
B MC2

)

FiGure 5: Characteristics of different cluster patients. Heatmap and clinicopathological features of the two MCs in the TCGA (a) and
GSE17538 (f) cohorts. Comparison of stromal (b and g), immune (c and h), ESTIMATE (d and i), and tumor purity (e and j) scores in two

MCs presented in Violin Plot.

pvalue Hazard ratio I 16 14 13 12 171616141414 14 1313 131313121210 6
ELENI  <0.001 1.674(1.300-2.156) e ) ! ! ! ! T T
KIF7 <0.001 1.668 (1.330-2.093) | e w i i
SYNGR3  <0.001 1.153 (1.083-1.227) - = I 1
HEYL <0.001 1.174 (1.087-1.268) | « : " ! |
NCKAPSL <0.001 1.536 (1.248-1.890) [e— < T R X |
ZKSCAN2 <0.001 1.774 (1.400-2.247) | e | IS
EBF4 <0.001 1.302 (1.145-1.482) | - 2 o A= | ! N
SIX2 <0.001 1.164 (1.079-1.256) i g < T e, : il
CDK5R1 ~ <0.001 1.881 (1.393-2.540) o 2 £~ ! !
OLEM2  <0.001 1.134 (1.073-1.198) - 3 | == ci=h ! i
GPSM1  <0.001 1.323 (1.175-1.490) i © =7 — 3 _ teideastt i
ZEBI-AS1 <0.001 1.747 (1.339-2.278) | R ! !
CD72 <0.001 1.656 (1.320-2.077) I o | ERS | |
TGFB2  <0.001 1.261 (1.128-1.410) | HH S = I !
CSRP2  <0.001 1.646 (1.307-2.073) | = | i
TRPV4  <0.001 1.285 (1.143-1.445) e - © i |
LHX6 <0.001 1.885 (1.415-2.513) | T - - - T Bl - T L —
LI I R B R
00 05 1.0 15 20 25 -6 - 4 -3 -6 - - -3
Hazard ratio Log Lambda Log (A)
(a) (b) (c)

F1GURE 6: Construction of risk signature in the TCGA cohort. (a) Forest plots showing the results of the univariate Cox regression analysis
between DEGs expression and OS. (b) LASSO regression of the 17 OS-related genes (c) Cross-validation for tuning parameter selection in

the lasso regression.

DEGs were identified, suggesting that pyroptosis might play
an important role in the development of CC. The PPI
network constructed by DEGs suggests that NOD2, CASP4,
NOD1, IL18, IL1B, NLRP1, CASP8, NLRC4, IL6, CASP5,
and NLRP3 are at the core of the network. This is not
surprising. Both caspase-4 and caspase-5 are considered to
be members of the caspase family associated with inflam-
mation. When a cancer cell is undergoing pyroptosis, a large
amount of IL-18 is released out of the cell, reshaping the
microenvironment and inducing immune response [18],
which may also explain the reason why IL-18 mRNA ex-
pression in normal tissue is higher than in tumor tissue.
Based on the expression characteristics of these DEGs, we
divided the patients into two subgroups (MC1 and MC2).
Combined with survival data, we found a trend of worse
prognosis in MC1 patients. Heatmap showed that patho-
logical N stage and tumor histological grade were signifi-
cantly different between the two subgroups in the TCGA
cohort and GSE17538 cohort, respectively. When analyzing
the tumor microenvironment of the two cohorts, we were
surprised to find that their characteristics were consistent;
that is, the tumor purity was lower in the MC1 group with a

poor prognosis. This finding is consistent with Zhang et al.
[19] and Gong et al. [20]. The traditional belief that lower
levels of tumor purity often mean stronger immune re-
sponses, leading to better prognoses of patients, which is
contrary to the findings of the present study. We speculate
that there are two possible reasons for this phenomenon. In
our previous studies [21], we found that pretreatment sys-
temic inflammatory markers play an important role in the
prognosis of patients with locally advanced rectal cancer;
among them, the prognostic value of neutrophil-to-lym-
phocyte (NLR) has a high value in evaluating the survival
rate of patients. Hence, it could conceivably be hypothesized
that the inflammatory response caused by pyroptosis in the
MCI1 group leads to changes in systemic inflammatory
markers of the whole body, which affects the prognosis of the
patients. Another possible reason is cancer metastasis.
Heatmap above shows that pathological N stage and tumor
histological grade were statistically different between MC1
and MC2. On the basis of this finding, another conclusion
can be postulated; that is, the metastasis rate was higher and
the tumor differentiation was lower in the MC1 group.
Consistent with our finding, Mao et al. [22] also reported
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that the low tumor purity was related to the poor prognosis
of colon cancer.

In order to further explore the value of the two MCs, we
constructed a 13-gene signature based on DEGs of MCs
(KIF7, SYNGR3, NCKAP5L, ZKSCAN2, SIX2, OLFM2,
GPSM1, ZEBI-AS1, CD72, TGFB2, CSRP2, TRPV4, and
LHX6). Kinesin superfamily (KIF) has a long-reported sig-
nificant influence on the initiation, development, and prog-
ress of cancer. In addition to participating in the Hedgehog
signaling pathway [23], KIF7 was also found to correlate with
worse outcomes of breast cancer [24]. Hou et al. [25] and
Oliphant et al. [26] both reported the crucial role of SIX
homeobox 2 (SIX2) in promoting the stemness of tumor cells,
Among them, Michael found that SIX2 can regulate SRY-Box
Transcription Factor 2 (SOX2) and induce cancer stem cell
programs to mediate advanced metastasis of triple-negative
breast cancer, which is in line with our finding that SIX2 was
an independent prognostic gene for colon cancer. Moreover,
members of the transforming growth factor-$ (TGFB) family

are regarded as the main mediators of epithelial-mesenchymal
transition (EMT), which can cause a lack of response to
immune checkpoint blockade (ICB). Research results of Yang
et al. [27] revealed that TGFB2 could not only play a vital role
in linking EMT and tumor mutational burden (TMB) in
gastric cancer but also be correlated with poor prognosis.
MicroRNA is a class of short noncoding RNA that achieves
posttranscriptional regulation by specifically binding to target
genes. A variety of miRNAs have been demonstrated to
prevent protein expression and affect signaling pathways
associated with tumors at the posttranscriptional level and
play important roles in multiple stages of colorectal cancer
development [28, 29]. LncRNA is another class of ncRNA
with a length of more than 200 nucleotides, which are ab-
normally expressed in various types of tumor cells and are
involved in the biological behavior of a variety of malignant
tumors. Recent studies have shown that IncRNAs can act as
competitive endogenous RNAs (ceRNAs) by binding to re-
sponse elements (MRE) of microRNAs, thereby indirectly
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F1Gure 8: Clinical value of risk signature. (a and ¢) The univariate Cox regression analysis of the associations between the risk scores and
clinical parameters and the overall survival (OS) of patients in two cohorts. (b and d) The multivariate Cox regression analysis of the
associations between the risk scores and clinical parameters and the OS of patients in two cohorts. (¢) Nomogram to predict the 1-year, 3-
year, and 5-year overall survival rates of CC patients. (f) The calibration curve of the nomogram. (g and h) Heatmap for the connections

between clinicopathologic features and the risk groups (* P <0.05).
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regulating gene silencing resulting from miRNAs [30]. ZEB1-
AS1 is a key tumor-associated IncRNA that is considered an
oncogenic regulator and a prognostic marker in a variety of
malignancies [31, 32]. In colon cancer, on the other hand,
several scholars have confirmed that ZEB1-ASI1 can bind to
multiple miRNAs through the ceRNA mechanism, thereby
promoting the proliferation and migration of colon cancer
[33-35]. This helps us to demonstrate the accuracy and ef-
fectiveness of the model at the experimental level.
Validation of the signature showed a good ability to
differentiate patients with different risks. And we found that
the risk score calculated by risk signature can work as an
independent predictor for OS. Based on the above, a no-
mogram was established to predict the outcome of CC
patients, and calibration curves showed the efficacy of this
nomogram. To explore the underlying molecular mecha-
nism of the risk signature, we performed GO and KEGG
enrichment analyses. The result showed that DEGs between
the high-risk group and low-risk group are involved in both
extracellular components and immune receptor activity. In
addition, pathways including the PI3K-Akt signaling
pathway, calcium signaling pathway, and Ras signaling
pathway are enriched. In the same vein, Wu et al. [36] in
their research note that the phosphoinositide 3-kinase
(PI3K) signaling pathway affects cadherin cell-cell adhesion
and also contributes to gastric cancer progression and
metastasis. Although the immune-related pathways were
less enriched in KEGG results, the increasingly important
role of immunotherapy in cancer treatment has to be
considered. Hence, the next step of our study was the
analysis of immune status in different risk groups. By an-
alyzing the overall feature of the tumor microenvironment,
we noticed that the microenvironment characteristics of
high- and low-risk groups are in a high level of concordance

between those of different MCs patients mentioned above.
That is, patients with poorer prognoses had higher immune
scores and lower tumor purity in the microenvironment.

We know that inflammation is an important component
of the tumor microenvironment and is closely related to the
development of tumors. Chronic inflammation-induced ge-
nomic mutations are a common premise driving the evolu-
tionary development of colorectal cancer, while cellular
mutations promoted by the immune response with dysre-
gulated genomic damage repair are the basic impetus for
colorectal cancer cell evolution [37, 38]. Also in the chronic
inflammatory microenvironment, mutant cells that survive
selection and survival competition often cause changes in the
conduction pattern of key signaling pathways in the cell; for
example, there is persistent activation of the Wnt signaling
pathway in links that promote intestinal adenoma produc-
tion, which can break the regulatory balance of normal in-
testinal epithelial cell proliferation, differentiation, and
apoptosis [39]. In addition, primitive mutant cells often get
the ability of stem cell activity and immune tolerance.
Therefore, different microenvironments may affect the risk of
cancer in patients with different intestinal diseases such as
inflammatory bowel disease, microcolitis, and irritable bowel
syndrome [40, 41]. Our results demonstrated the above theory
that patients in the high-risk group have a tumor immune
infiltrating microenvironment with a worse prognosis.

In addition, our study also found that the characteristics
of tumor purity in different risk groups were highly con-
sistent with the above MC classification. This also flanks that
our prognostic model is robust. However, whether tumor
purity represents biological relevance and intrinsic char-
acteristics of the tumor, or just systemic bias determined by
external characteristics, such as surgical resection and tissue
preparation, is still controversial [42]. Thus, tumor purity
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has important clinical, genomic, and biological significance
and is an important confounding factor in cancer genome or
transcriptome analysis. We need to make a specific analysis
of different specific tumors. In our study, we found that the
expressions of active DC cells, B cells, macrophages, neu-
trophils, NK cells, and TIL cells were higher in the high-risk
group than those in the low-risk group in both TCGA and
GSE17538 cohort, indicating stronger immune functions in
the high-risk group. Immune cells participate in all stages of
tumorigenesis and development, showing both antitumor
and tumor-promoting effects. In the previously mentioned
heatmap, we found that the poor prognosis of patients with

MCI1 type was associated with a low grade of the tumor,
which suggests that cancer stem cells (CSCs) may play an
important role in the pyrosis-related immune response. A
number of emerging experimental evidence have recently
confirmed the effects of CSCs on immune cells in the tumor
microenvironment, including tumor-associated macro-
phages and T cells, and the importance of these immune cells
in maintaining CSC stemness [43]. CSCs have the ability to
evade cell death and metastasize, although they may stay
dormant for long periods of time [44]. Considering that a
small proportion of tumor cells undergo pyroptosis is suf-
ficient to effectively regulate the tumor immune
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microenvironment, which in turn activates the T-cell-me-
diated antitumor immune response [45], and T cells have an
activating effect on cancer stem cells [46], a possible ex-
planation of our study result is that pyroptosis remodels the
immune microenvironment, which activates the ability of
cancer stem cells to metastasize to distant sites, leading to
poor patient prognosis. Thus, the effects of immune
checkpoints in high-risk patients deserve further explora-
tion. We selected immune checkpoints common in colon
cancer therapy for analysis, finding that CD274, PDCD1,
and HAVCR?2 were positively correlated with the risk score.
Among them, HAVCR?2, which coding TIM-3, showed the
highest association with the risk score (R=0.31 or 0.63 in
TCGA and GSE17538, respectively). So far, a large number
of studies [47] have confirmed that Tim-3 plays an inhibitory
role in antitumor innate immunity, and the targeting drugs
based on TIM-3 are also in clinical trials [48], which suggest
that we can improve the prognosis of patients in the high-
risk group by targeting TIM-3.

The purpose of the current study was to determine
expression features and prognostic value of pyroptosis-re-
lated genes in CC. The results of this study show that most of
the pyrogenic genes have significant expression differences
between tumor and normal tissues. Based on the expression
characteristics of DEGs, we clustered patients and con-
structed a prognostic signature, and the accuracy of the
signature was validated on TCGA and GSE17538 cohorts,
respectively. Further analysis suggests that TIM-3 may be a
potential target for improving the prognosis of patients in
the high-risk group. At present, there are few studies on
pyroptosis in colon cancer. As far as we know, we first
systematically reported the prognostic value of pyroptosis-
related genes in colon cancer; these findings have significant
implications for the understanding of the role of pyroptosis-
induced changes in the immune microenvironment in the
development of colon cancer, which provides a theoretical
basis for future research. However, the present study has
several limitations that need to be acknowledged. First, this
signature only employs retrospective data from two data-
bases, and further prospective studies are needed to prove its
clinical value. Secondly, the role of pyroptosis in the tumor
immune microenvironment and the therapeutic effect of
targeted TIM-3 on patients require more verification by in
vitro experiments and clinical trials. Thirdly, colonoscopy is
so far considered the gold standard for diagnosing colorectal
pathology [49]. Aggressive colonoscopy can improve the
early detection rate of colorectal cancer. However, as an
invasive examination, the complications caused by colo-
noscopy, such as perforation and bleeding after poly-
pectomy, are inevitable. In addition, it has been reported that
a lesion miss rate ranging between 6% and 12% for large
polyps and 5% for cancers has been described [50].
Therefore, it is a better choice to select an experienced
endoscopist for examination. However, there are no reports
that targeted colonoscopy screening and monitoring policies
will curb the rise in colorectal cancer incidence, and the
scope of colonoscopy combined with biological sample
analysis is also limited to feces, blood, and urine [51].
Therefore, this study may be more suitable for patients with

Journal of Oncology

confirmed colon cancer, and more targeted treatment can be
performed through the screening of patients with different
prognostic risks.

5. Conclusion

In conclusion, our study provides a good prognostic sig-
nature for patients with colon cancer, and the validity and
reliability of this signature are verified in two datasets.
Importantly, we provide a prognostic nomogram to par-
ticipate in clinical treatment decisions and provide potential
targets for targeted therapy in patients, providing us with
new insights into the development of colon cancer and
discovering new therapeutic methods.
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