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Aims. +e purpose of this study was to explore the biological functions of the mTOR and AMPK signaling pathways in colon
cancer (CC). +e potential molecular mechanisms by which oleanolic acid (OA) induces autophagy and apoptosis were also
investigated. Methods. +e biological functions of mTOR were analyzed by GeneCards, the Search Tool for the Retrieval of
Interacting Genes (STRING), and the Database for Annotation, Visualization and Integrated Discovery (DAVID). Least absolute
shrinkage and selection operator (LASSO) regression analysis was used to obtain prognostic and survival data of CC patients from
the Gene Expression Omnibus (GEO) database. +e effects of OA on the CC cell lines HCT-116 and SW-480 were analyzed by
CCK-8, colony formation assay, and high-content system (HCS) array scan. +e apoptosis rate of SW-480 and HCT-116 cells was
detected by flow cytometry. +e mRNA and protein expression levels in HCT-116 and SW-480 cells and NCM-460 normal
colonic epithelial cells were detected by RT-PCR and Western blotting. Results. mTOR was highly expressed in CC patients and
acted as an oncogene. +e AMPK signaling pathway mediated by mTOR predicted the poor prognosis of CC patients. OA
effectively inhibited the proliferation and viability of CC cells. Furthermore, the apoptosis rate of CC cells was clearly increased
following OA administration. Regarding the molecular mechanism of OA, the results indicated that mTOR and the antiapoptosis
gene Bcl-2 were downregulated by OA. In addition, regulator genes of autophagy and apoptosis, including BAX, caspase-9,
caspase-8, and caspase-3, were significantly upregulated by OA. Moreover, OA upregulated AMPK and its downstream proteins,
including TSC2, BAX, Beclin 1, LC3B-II, and ULK1, to induce autophagy and apoptosis in CC cells.Conclusion.+e findings from
this study demonstrate that OA could effectively inhibit the proliferation and viability of CC cells. +e anti-CC activity of OA is
closely related to the activation of the AMPK-mTOR signaling pathway. Activation of AMPK and inhibition of mTOR are
involved in the induction of autophagy and apoptosis by OA. OA induced autophagy and apoptosis mainly in an AMPK
activation-dependent manner in CC cells.

1. Introduction

Colon cancer (CC) is one of the most common malignant
tumors and the third most common cancer, after lung and
prostate cancer, in the world [1]. According to global cancer
data, there are approximately 1.1 million newly diagnosed
CC patients and 550 thousand CC-related fatalities, and the
rate of death fromCC is predicted to increase by 60% in 2035

[2, 3]. Generally, surgery, radiotherapy, and chemotherapy
are the main treatment options for patients with CC at
present. However, only 70% of CCs are resectable, of which
75% are curable and 25% of resected patients will have
recurrent tumors [4]. Even with the progress in early di-
agnosis and treatment, the 5-year relative survival rate of CC
patients is still only 63% [1]. Moreover, increasing drug
resistance and adverse effects related to radiotherapy and
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chemotherapy have severely degraded the quality of life of
CC patients. +erefore, novel treatment strategies and drugs
are urgently required to meet the clinical needs of CC
patients.

Autophagy is a conserved, self-degradation system that is
critical for maintaining cellular homeostasis during stress
conditions. Dysregulated autophagy has implications in
health and cancer. Specifically, in cancer, autophagy plays a
dichotomous role by inhibiting tumor initiation but sup-
porting tumor progression [5]. Like apoptosis, autophagy is
a form of cell death [6]. Autophagy is mainly regulated by the
AMPK/mTOR signaling pathway, PI3K/Akt/mTOR sig-
naling pathway, and other related autophagy signaling
pathways. As one of the classical signaling pathways in
regulating autophagy, the AMPK/mTOR signaling pathway
has provided many potential therapeutic targets for CC.
mTOR, an atypical serine/threonine protein kinase protein,
regulates cell growth and proliferation predominantly by
promoting key anabolic processes, sensing nutrition levels
and growth factors, as well as various environmental cues
[7, 8]. Moreover, mTOR has been defined as an oncogene in
CC and has emerged as an effective target for CC therapy in
both in vitro and preclinical studies [9, 10]. In addition, the
energy sensor adenosine monophosphate (AMP)-activated
protein kinase (AMPK) plays a key role in maintaining
energy homeostasis by sensing energy loss and activating cell
autophagy [11]. Activation of AMPK can induce the ex-
pression levels of caspase-3, caspase-8, and caspase-9,
leading to apoptosis in CC cells [12]. AMPK activation also
stimulated autophagy by increasing the protein expression
levels of Beclin 1 and LC3-II and decreasing the levels of
p-mTOR and p-ULK1 in CC cells [13]. Furthermore, AMPK
can negatively regulate the mammalian target of mTOR,
thereby inducing autophagy and apoptosis of CC in vivo and
in vitro [13, 14]. Constitutively, suppression of mTOR, as
well as mTOR complex 1 (mTORC1), has been demon-
strated in CC cells, enhancing the ability to modulate growth
inhibition, proliferation, apoptosis, and autophagy of CC
[14]. +erefore, regulation of the AMPK/mTOR signaling
pathway could greatly contribute to the treatment of CC.

Oleanolic acid (3-α-3-hydroxyolean-12-en-28-oic acid,
OA) is a natural pentacyclic triterpene carboxylic acid that
exists widely in plant molecules. +e anticancer activities of
OA in various types of tumors, such as colorectal cancer,
thyroid cancer, gastric cancer, breast cancer, and prostate
cancer, have been explored [15, 16]. In colon cancer re-
search, a previous study demonstrated that OA decreased
the proliferation ability of HCT-15 cells by arresting the cell
cycle in the G0/G1 phase and inhibiting DNA replication
[17]. Another study revealed that OA induced strong G0/G1
cell cycle arrest and DNA fragmentation in HT-29 and
Caco-2 cells. Additionally, OA led to mitochondrial apo-
ptosis dependent on an increase in caspase-3 activity via a
p53-independent mechanism [18]. In addition, the inhibi-
tion of HT-29 cell proliferation induced by OA occurred in a
dose-dependent manner [19]. Another study indicated that
OA and its analogs with apoptosis-inducing activity effec-
tively inhibited the incidence of abnormal recess and
multitree lesions in rats with colon cancer, indicating that

OA and its analogs have a chemoprophylactic effect on colon
cancer in vivo [20]. Simultaneously, numerous phase I
clinical trials have reported that OA and its derivatives
exhibit potent antitumor activities in advanced solid tumors
with limited toxicities [21, 22]. +erefore, it is evident that
OA is a promising therapeutic agent against CC.

In this study, we preliminarily investigated the bio-
logical functions of the mTOR and AMPK signaling
pathways in CC. In addition, the therapeutic effects and
potential molecular mechanisms of OA in CC cells were
also investigated. +e results from this study revealed that
mTOR was highly expressed in CC patients and acted as
an oncogene. +e AMPK signaling pathway mediated by
mTOR predicted the poor prognosis of CC patients.
Furthermore, OA inhibited the proliferation and viability
of CC cells. +e apoptosis rate of CC cells was clearly
increased following OA treatment. In addition, activation
of AMPK and inhibition of mTOR were involved in
autophagy and apoptosis induced by OA. +e anticancer
activities of OA are closely related to activation of the
AMPK-mTOR signaling pathway, which is crucial in
apoptosis and autophagy processes. OA induced apoptosis
and autophagy predominantly via an AMPK activation-
dependent mechanism in CC cells.

2. Materials and Methods

2.1. Bioinformatics of mTOR. To explore the interacting
genes, proteins, and signaling pathways of mTOR, a pivotal
sensor of autophagy and apoptosis, the GeneCards (https://
www.genecards.org/) database, was applied [23].+e protein-
protein interaction (PPI) network of mTOR was constructed
by the Search Tool for the Retrieval of Interacting Genes
(STRING, http://string-db.org, version 11.0) [24]. To further
investigate the molecular mechanisms of mTOR in CC, the
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID, http://david.ncifcrf.gov, version 6.8) was
used [25]. Biological information was extracted from the
comprehensive set of genes and proteins, which provides
functional annotations. Kyoto Encyclopedia of Genes and
Genome (KEGG) enrichment analysis was applied to analyze
the function and cell signaling pathways of mTOR. Bubble
plots of enrichment results were drawn using the “ggplot”
package in R software (version 3.6.3, 64-bit, https://www.r-
project.org/). P< 0.05 was considered statistically significant.

+e Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo) database was applied to obtain prognostic
data and matched survival data of CC patients. Least ab-
solute shrinkage and selection operator (LASSO) regression
analysis [26] was performed for the prognostic value of
target genes by the R package glmnet.

2.2. Preparation of Oleanolic Acid and Reagents. Standard of
OA (purity≥ 98%, Cat. no. CHB180311) was purchased
from Chroma Biotechnology Co, Ltd. (Chengdu, China).
OAwas dissolved in dimethyl sulfoxide (DMSO) and diluted
to the corresponding concentration when applied to cell
lines.
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Acadesine (AICAR, Cat. no. HY-13417), a specific ag-
onist of AMPK, and rapamycin (Cat. no. AY-22989), a
selective small-molecule inhibitor of mTOR, were obtained
from MedChem Express (Shanghai, China). AICAR and
rapamycin were dissolved in DMSO and diluted to the
indicated concentrations when applied to cell lines.

2.3. Cell Lines and Culture. +e human-derived COAD cell
lines SW-480 (ATA-CL1052) and HCT-116 (CL0125) were
purchased from PuJian Cell Center (Wuhan, China) and
FengHui Cell Center (Beijing, China), respectively, and the
human normal colon epithelial cell line NCM-460 (ATA-
CL1041) was purchased from PuJian Cell Center (Wuhan,
China). All cell lines were cultivated in Dulbecco’s modified
Eagle’s medium (Gibco, +ermo Fisher Scientific, Inc.)
including ten percent fetal bovine serum (Gibco, +ermo
Fisher Scientific, Inc.), 1% streptomycin, and penicillin
(+ermo Fisher Scientific, Inc.) and then nurtured in 5%
CO2 at 37°C.

2.4. Cell Viability and Proliferation Evaluation. +e viability
of SW-480 and HCT-116 cells treated with OA for 24 h was
assessed by adding 10% (vol/vol) cell counting kit-8 (CCK-8;
Lot. PG658, Dojindo, Tokyo, Japan) to the cells and incu-
bating for 15min at 37°C. Absorbance was measured at
450 nm. Cell viability was calculated as cell viability (%)�

100× (OD treatment/OD control). For SW-480 and HCT-
116 cells, the 50% inhibitory concentration (IC50) was
calculated.

+e proliferation of HCT-116 and SW-480 cells was
evaluated by colony formation assay. Five hundred cancer
cells per well were seeded into a twelve-well plate. +en, the
cells were cultured with fresh medium containing OA or
DMSO. +e medium was exchanged every 2 days. Ten days
later, colonies were fixed with 4% paraformaldehyde for
10min, followed by 0.25% crystal violet staining at room
temperature.

2.5. Fluorescent Staining and Morphological Identification.
Cell samples were collected and stained with fluorescent
dyes. +e main fluorescent dyes included Hoechst 33342
(H3570, Invitrogen) for quantitative cell counts, calcein AM
(C3099, Invitrogen) for cell survival tracking, ethidium
homodimer-1 (EthD-1) (L3224, Invitrogen) for apoptotic
cell tracking, Deep Red Actin Tracking Stain (A57245,
Invitrogen) for filamentous actin (F-actin, a cell structure of
membranes) marking, and tetramethylrhodamine (TMRM,
T668, Invitrogen) as a mitochondrial membrane potential
indicator. Morphological identification and quantitative
statistics of HCT-116 and SW-480 cells were examined by a
high-content system (HCS) array scan (+ermo Scientific,
Massachusetts, USA). +e parameters and forma settings
were reported previously by O’Brien et al. [27] and Yang
et al. [23], and the wavelength in different channels was set to
collect fluorescent images. +e mean fluorescence intensity
of cells was analyzed by the Array Scan XTI system through a
software algorithm.

2.6. Flow Cytometry (FCM) for Apoptosis Analysis. +e ap-
optosis of HCT-116 and SW-480 cells was analyzed by FCM.
+e Apoptosis Detection Kit (Cat. no. 559763) was pur-
chased from BD (San Jose, CA). Cells for the experiment
were collected and washed with cold PBS and then stained
with Annexin V/PE and 7-amino-actinomycin (7-AAD) in
400 μl binding buffer. +e cells were incubated for 20min at
room temperature, and the apoptosis rate was analyzed by
FCM (BD, FACSCanto II, USA).

2.7. Real-Time Quantitative PCR for mRNA Expression.
Microarray analysis was performed using RNA extracts from
SW-480, HCT-116, and NCM-460 cells to validate the ex-
pression level of mRNA. TRIzol reagent (Nordic Bioscience,
Beijing, China) was applied, and mRNA was converted into
cDNA using a reverse transcription kit (+ermo Scientific,
USA) according to the manufacturer’s protocol. +e primer
sequences for mTOR, Bcl-2, BAX, caspase-3, caspase-8, and
caspase-9 are listed in Table 1. Quantitative real-time PCR
for these mRNAs was performed and analyzed using cDNA
and SYBR Green PCR Master Mix (Nordic Bioscience,
Beijing, China). RT-PCRwas performed on a 7500 Fast Real-
Time PCR system (Applied Biosystems, Foster City, CA,
USA). +e relative amounts of mRNA were determined
based on 2−ΔΔCt calculations with β-actin as an endogenous
reference.

2.8. Western Blotting (WB). +e WB procedures were per-
formed as previously described by Yang et al. [28]. Details on
the main antibodies are as follows: rabbit anti-AMPK-α Ab
(Proteintech, Cat. no. 66536-1-Ig, dilution: 1 :1000), rabbit
anti-mTOR Ab (Proteintech, Cat. no. 66888-1-Ig, dilution:
1 : 5000), phospho-mTOR (Ser 2448) Ab (Cell Signaling
Technology, Cat. no. 2971, dilution: 1 : 500), rabbit anti-
TSC2 Ab (Proteintech, Cat. no. 24601-1-AP, dilution: 1 :
500), phospho-TSC2 (Ser 1387) Ab (Cell Signaling Tech-
nology, Cat. no. 5584, dilution: 1 : 500), rabbit anti-BAX Ab
(Proteintech, Cat. no. 50599-2-Ig, dilution: 1 :1000), rabbit
anti-Beclin 1 Ab (Proteintech, Cat. no. 11306-1-AP, dilution:
1 :1000), rabbit anti-LC3B-II Ab (Proteintech, Cat. no.
18725-1-AP, dilution: 1 : 500), rabbit anti-ULK1 Ab (Pro-
teintech, Cat. no. 20986-1-AP, dilution: 1 :1000), Phospho-
ULK1 (Ser 317) Ab (Cell Signaling Technology, Cat. no.
37762, dilution: 1 :1000), and GAPDHmonoclonal antibody
(Proteintech, 60004-1-Ig, dilution: 1 :10000).+e gray values
of the blots in the scanned images were measured using
ImageJ Plus software (National Institutes of Health,
Bethesda, MD, USA), and GAPDH was set as a loading
control for the gray value of each target protein.

2.9. Statistical Analysis. All data are presented as the
mean± standard deviation (SD) and were analyzed with the
SPSS software program (version 18.0; SPSS Inc., Chicago, IL,
USA). Data are presented using one-way ANOVA followed
by LSD. P< 0.05 was considered statistically significant, and
P< 0.01 was considered highly significant. GraphPad Prism
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software for Windows (version 8.0; San Diego, CA, USA)
was utilized for the visible presentation of all the results.

3. Results

3.1. mTOR and Its Interacting Genes Were Significantly
Enriched in the AMPK Signaling Pathway. +ere were 2454
genes that interact with mTOR in the GeneCards database.
+en, the top 25 interacting genes (AKT1, MLST8, RHEB,
RICTOR, RPTOR, BCL2L1, CDC37, DEPTOR, EIF4EBP1,
FKBP1A, GSK3B, GTF3C2, MAPKAP1, MTMR3, MTOR,
PDPK1, PREX1, RAB1A, RHEBL1, SIRT1, STK38, TP53,
TPCN2, ULK1, and YWHAZ) were selected to explore the
interacting proteins of mTOR. +e STRING database was
used to establish a PPI network of mTOR (Figure 1(a)). In
total, the enrichment P value of the PPI network was
<1.0e− 16, indicating that the interacting proteins were at
least partially connected as a group biologically. KEGG
pathway enrichment analysis in the DAVID database was
used to explore the interacting genes of mTOR in signaling
pathways. +e top 10 enriched pathways are presented in
Figures 1(b) and 1(c). +e interacting genes of mTOR were
significantly enriched in the AMPK signaling pathway with
an enrichment P value� 1.30e− 08 (Figure 1(c)). In the
AMPK signaling pathway, the enriched genes were mTOR,
RPTOR, RPS6KB1, PDPK1, RHEB, AKT1S1, EIF4EBP1, and
AKT1 (Figure 1(b)).

3.2. AMPK Signaling Pathway Mediated by mTOR Predicted
the Poor Prognosis of CC Patients. To validate the expression
level of mTOR in the AMPK signaling pathway, the mRNA
and protein expression of mTOR was determined by RT-
PCR andWB.+e results are presented in Figures 2(a)–2(d).
+e mRNA expression of mTOR in HCT-116 and SW-480
cell lines was significantly higher than that in NCM-460 cells
(Figure 2(a)). However, neither the total protein
(Figures 2(b) and 2(c)) nor the phosphorylated mTOR (p-
mTOR, Figures 2(b) and 2(d)) was nonsignificant versus
NCM-460 cells in HCT-116 and SW-480 cell lines. We
speculated that the high mRNA expression of mTOR was
beneficial to the escape and survival of CC cells, which
contributed to the poor prognosis of CC patients [29].

+en, a prognostic risk score was constructed and
combined with the clinical information of CC patients by
using seven mTOR regulator-associated signatures in the
AMPK signaling pathway through LASSO regression analysis.
+e risk score formula used in the GSE 17536 cohort was as
follows: risk score8 � −0.9321∗ expMTOR − 0.48157∗

expRPTOR+0.147918∗ expRPS6KB1+0.693419∗ expPDPK1+1.173
201∗ expRHEB− 0.08506∗ expAKT1S1− 0.00923∗ expEIF4EBP1 −

0.63697 ∗ expAKT1. +e results revealed that patients with a
high-risk score had significantly lower OS than those with
a low-risk score (Figure 2(e)). +e increased expression
levels of RPS6KB1, PDPK1, and RHEB were associated
with high risk, highlighting them as risk factors. Elevated
expression of MTOR, RPTOR, AKT1S1, EIF4EBP1, and
AKT1 was correlated with low risk, suggesting that they are
protective factors. ROC analysis of risk score with the
AUCs for predicting 1-, 3-, and 5-year OS were 0.67, 0.65,
and 0.83, respectively (Figure 2(f )), indicating that this
prognostic model has a high area under the AUC. Finally,
z-score analysis of risk score was used to categorize
samples into the high-risk group (with scores > 0) and the
low-risk group (with scores < 0). Eighty-eight samples
were classified into the high-risk group, and 89 samples
were classified into the low-risk group (Figure 2(g)). KM
analysis revealed significant survival differences in the two
groups (log rank P< 0.0001, HR � 2.72, and 95% CI :
1.77–4.16, Figure 2(g)), indicating that patients in the
high-risk groupmight have a poor prognosis with a shorter
OS.

3.3. OA Suppressed the Viability and Proliferation of CC Cells
in a Dose-Dependent Manner. +e IC50 concentrations of
OA for HCT-116 and SW-480 cells were explored first. +e
concentrations of OA were set as 10 μM to 200 μM. As
presented in Figure 3(a), 100 μM OA notably inhibited the
viability of HCT-116 cells (cell viability was 50.37± 4.62),
and 80 μM OA remarkably restrained the viability of SW-
480 cells (cell viability was 50.10± 3.73, Figure 3(b)). In
addition, as the concentration of OA increased, the viability
of cells gradually decreased. +e cell viability of HCT-116
cells treated with 200 μM OA was lower than 75%
(23.82± 7.73, Figure 3(a)) as well as that of SW-480 cells
(22.84± 5.92, Figure 3(b)). Accordingly, 100 μM and 80 μM
OA were set as the IC50 values for HCT-116 and SW-480
cells, respectively.

+e results of the colony formation assay are shown in
Figures 3(c) and 3(d). As the concentration of OA increased
(50 μM, 75 μM, and 100 μM), the proliferation of HCT-116
cells was significantly reduced (Figure 3(c)).+e same results
were observed in SW-480 cells. +e proliferation ability of
SW-480 cells gradually declined with the increasing con-
centration of OA (40 μM, 60 μM, and 80 μM, Figure 3(d)).
+ese results demonstrated that OA suppressed the viability

Table 1: Primers sequences of real-time PCR analyses for mRNA expression.

Genes Forward Reverse
mTOR CTTGCTGAACTGGAGGCTGATGG CCGTTTTCTTATGGGCTGGCTCTC
Bcl-2 TACGAGTGGGATGCGGGAGATG CCGGGCTGGGAGGAGAAGATG
BAX GATGCGTCCACCAAGAAGCTGAG CACGGCGGCAATCATCCTCTG
Caspase-3 GTGGAGGCCGACTTCTTGTATGC TGGCACAAAGCGACTGGATGAAC
Caspase-8 CGGATGAGGCTGACTTTCTGCTG GGCTCTGGCAAAGTGACTGGATG
Caspase-9 GACCAGAGATTCGCAAACCAGAGG AAGAGCACCGACATCACCAAATCC
β-Actin GGCCAACCGCGAGAAGATGAC GGATAGCACAGCCTGGATAGCAAC
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and proliferation of HCT-116 and SW-480 cells in a dose-
dependent manner.

3.4. OA Induced Apoptosis in CC Cells via AMPK Activation
and mTOR Suppression. FCM was applied to analyze the
apoptosis rate of HCT-116 and SW-480 cells following
AICAR, rapamycin, and OA intervention. +e results are
presented in Figure 4(a). +e results indicated that Annexin

V/PE-positive cells (both early and late apoptosis) were
significantly increased after AICAR (1mM), rapamycin
(1 μM), and OA treatment. AICAR, rapamycin, and OA
mainly induced HCT-116 and SW-480 cell apoptosis at the
early stage (Figure 4(a)). +us, we speculated that the ac-
tivation of AMPK and suppression of mTOR could induce
apoptosis of CC cells.

+en, morphological features and quantitative statistics
of HCT-116 and SW-480 cells were identified by HCS array.
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Figure 2: (a) mRNA expressions of mTOR verified by RT-PCR, ∗∗P< 0.01 versus NCM-460 group. (b) Western blotting images of mTOR
and p-mTOR (Ser 2448). (c) Relative protein level of mTOR. (d) Relative protein level of p-mTOR; NS: nonsignificant versus NCM-460
group. (e) Risk score, survival status, and the expression of 4 mTOR, RPTOR, RPS6KB1, PDPK1, RHEB, AKT1S1, EIF4EBP1, and AKT1. (f )
1-, 3-, and 5-year ROC analysis of prognosis classification for risk score. (g) KM survival analysis of patients with high-risk score vs. low-risk
score. +e red curve represents high expression and the blue curve represents low expression.
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As displayed in Figures 4(b) and 4(c), HCT-116 and SW-480
cells in the DMSO group presented homogeneous calcein,
AM, and EthD-1 fluorescence. In contrast, EthD-1 staining
showed a significant increase in red fluorescent cells in the
AICAR (1mM), rapamycin (1 μM), and OA groups (50 μM
and 100 μM for HCT-116 cells, 40 μM and 80 μM for SW-
480 cells). Regarding quantitative statistics, the surviving cell
count of HCT-116 cells was significantly decreased
(Figure 4(d)), and apoptotic cells were clearly increased
(Figure 4(e)) after treatment with AICAR, rapamycin, and
OA for 24 h. +e same results were observed with SW-480
cells. As presented in Figures 4(f) and 4(g), a decline in
surviving cells (Figure 4(f)) and a surge in apoptotic cell
counts (Figure 4(g)) were detected. +ese results suggested
that OA may induce apoptosis in CC cells via AMPK ac-
tivation and mTOR suppression.

3.5. OA Stimulated Autophagy in CC Cells by Activating the
AMPK-mTORSignalingPathway. In the initial period of cell
autophagy, the cell membrane, mitochondria, cytoplasm,
and nucleus undergo varying degrees of changes, and these
changes can be judged as evidence for evaluating cell
autophagy [30, 31]. F-actin, the structure of cell membranes,
and mitochondrial membrane potential were assessed in this
study. As shown in Figure 5(a), AICAR (the specific agonist
of AMPK) and rapamycin (the target inhibitor of mTOR)

did not affect F-actin in HCT-116 cells or SW-480 cells
(Figure 5(b)), indicating that the target site of AICAR and
rapamycin was not the cell membrane. Notably, the injured
F-actin was obviously increased in the OA group, especially
at concentrations of 100 μM for HCT-116 cells (Figure 5(a))
and 80 μM for SW-480 cells (Figure 5(b)).

As presented in Figure 5(c), the mitochondrial mem-
brane potential was depolarized and decreased in HCT-
116 cells following AICAR, rapamycin, and OA interven-
tion. Furthermore, the fluorescence intensity of the cell
nucleus marked by Hoechst 33342 was remarkably in-
creased. +e same changes were observed in SW-480 cells
(Figure 5(d)). +ese changes indicated that autophagy in
HCT-116 cells and SW-480 cells induced by OA, AICAR,
and rapamycin mainly occurred in mitochondria.

+en, the expression levels of AMPK-α and p-mTOR were
examined by WB. Remarkably, the expression of AMPK-α
proteins was significantly stimulated by AICAR at 1mM and
OA directly in HCT-116 cells and SW-480 cells (Figures 5(e),
5(f), and 5(h), resp.). Meanwhile, the expression level of
p-mTOR was notably suppressed by AICAR, rapamycin, and
OA in both CC cell lines (Figures 5(e), 5(g), and 5(i), resp.).
However, rapamycin at 1μM did not reduce the expression
level of AMPK-α.+ese results revealed that OA could activate
AMPK and suppress mTOR (via reducing phosphorylation
level), which led to the biological effects of autophagy and
apoptosis in CC cells.
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Figure 4: Apoptosis of CC cells induced by AICAR, rapamycin, and OA. (a) Apoptosis rate of HCT-116 and SW-480 cells detected by FCM.
(b) Morphological features of HCT-116 cells. Survival cells (green fluorescence) and apoptotic cells (red fluorescence) were reflected by
fluorescence staining intensity. (c) Morphological features of SW-480 cells. Survival cells (green fluorescence) and apoptotic cells (red
fluorescence) were reflected by fluorescence staining intensity. (d) Survival cells count of HCT-116 cells. (e) Apoptotic cells count of HCT-
116 cells. (f ) Survival cells count of SW-480 cells. (g) Apoptotic cells count of SW-480 cells. ∗∗P< 0.01 versus DMSO group.
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3.6. OA Regulated the Expression of mRNA Related to
Autophagy and Apoptosis in CC Cells. To further clarify the
relationship between OA and the AMPK-mTOR signaling
pathway in the process of autophagy and apoptosis, the
mRNA levels related to autophagy and apoptosis were
verified by RT-PCR experiments. +e results are presented
in Figures 6(a) and 6(b) with a heatmap. +e mRNA ex-
pression of mTOR (Figure 6(c)), serving as a pivotal sensor
of autophagy, and the antiapoptosis gene BCL-2
(Figure 6(d)) were downregulated by AICAR, rapamycin,
and OA in HCT-116 and SW-480 cells. Furthermore, the
regulator genes of autophagy and apoptosis, including BAX
(Figure 6(e)), caspase-9 (Figure 6(f )), caspase-8
(Figure 6(g)), and caspase-3 (Figure 6(h)), were noticeably
increased following AMPK and OA intervention. +us, we
speculated that the autophagy and apoptosis induced by OA
may be AMPK activation dependent.

3.7. OA Triggered the AMPK-mTOR Signaling Pathway in CC
Cells in an AMPK Activation-Dependent Manner. +e
downstream proteins in the AMPK-mTOR signaling
pathway were estimated by WB experiments. +e protein

expression of HCT-116 cells and SW-480 cells is presented
in Figures 7(a) and 7(g), respectively. +e total protein
expression of TSC2, a direct target of AMPK, was not
significantly different between the groups. However, the
phosphorylation level of TSC2 (p-TSC2) was increased by
AICAR and OA in HCT-116 cells (Figure 7(b)) and SW-480
cells (Figure 7(h)). Of note, p-TSC2 remained at a lower level
in the rapamycin group. Furthermore, followed by activation
of AMPK and inhibition of mTOR and OA intervention, the
expression of autophagy-related proteins, including BAX
(Figures 7(c) and 7(i)), Beclin 1 (Figures 7(d) and 7(j)), and
LC3B-II (Figures 7(e) and 7(k)), was clearly increased in
HCT-116 cells and SW-480 cells. In addition, the phos-
phorylation level of ULK1 (p-ULK1), a regulatory protein of
autophagy, was upregulated by AICAR and OA (Figures 7(f )
and 7(l)) in HCT-116 cells and SW-480 cells, respectively.
Compared with AICAR and OA at high concentrations
(100 μM for HCT-116, 80 μM for SW-480), p-ULK1
remained at a lower level in rapamycin and OA at low
concentrations (50 μM for HCT-116, 40 μM for SW-480).
+ese results demonstrated that OA might trigger the
AMPK-mTOR signaling pathway and induce autophagy in
CC cells in an AMPK activation-dependent manner.
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Figure 5: Influences of OA on the F-actin, mitochondrial membrane potential, and protein expression of HCT-116 and SW-480 cells. (a) F-
actin identification of HCT-116 cells. Positive expressions were stained by green fluorescence. (b) F-actin identification of SW-480 cells.
Positive expressions were stained by green fluorescence. (c) Mitochondrial membrane potential of HCT-116 cells. Nondepolarized
membrane potential was stained by green fluorescence; depolarized membrane potential was stained by red fluorescence. (d) Mitochondrial
membrane potential of SW-480 cells. Nondepolarized membrane potential was stained by green fluorescence; depolarized membrane
potential was stained by red fluorescence. (e) WB images of AMPK-α and p-mTOR (Ser 2448). (f ) Relative AMPK-α protein level in HCT-
116 cells. (g) Relative p-mTOR (Ser 2448) protein level in HCT-116 cells. (h) Relative AMPK-α protein level in SW-480 cells. (i) Relative p-
mTOR (Ser 2448) protein level in SW-480 cells.
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Figure 6: Continued.
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Figure 6: Influences of OA on the mRNA expression of HCT-116 and SW-480 cells. NS: nonsignificant versus DMSO group. ∗P< 0.05
versus DMSO group; ∗∗P< 0.01 versus DMSO group. (a) Heatmap of mRNA expression for HCT-116 cells. (b) Heatmap of mRNA
expression for SW-480 cells. (c) mRNA expression of mTOR. (d) mRNA expression of BCL-2. (e) mRNA expression of BAX. (f ) mRNA
expression of caspase-9. (g) mRNA expression of caspase-8. (h) mRNA expression of caspase-3.
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4. Discussion

+is study illustrated the biological functions of the mTOR
and AMPK signaling pathways in CC processes. +e results
revealed that mTOR was highly expressed in CC patients
and acted as an oncogene, which contributed to the poor

prognosis of CC patients. In addition, the anticancer ac-
tivities of OA in human CC cells were identified in this
study. Our results confirmed that OA could promote
autophagy and apoptosis in CC cells. Further exploration
indicated that activation of AMPK and inhibition of mTOR
were involved in autophagy and apoptosis induced by OA.
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Figure 7: (a) Western blotting images of TSC2, p-TSC2 (Ser 1387), BAX, Beclin 1, LC3B-II, ULK1, and p-ULK1 (Ser 317) in HCT-116 cells.
(b) Relative p-TSC2 (Ser 1387) in HCT-116 cells. (c) Relative BAX protein level in HCT-116 cells. (d) Relative Beclin 1 protein level in HCT-
116 cells. (e) Relative LC3B-II protein level in HCT-116 cells. (f ) Relative p-ULK1 (Ser 317) protein level in HCT-116 cells. (g) Western
blotting images of TSC2, p-TSC2 (Ser 1387), BAX, Beclin 1, LC3B-II, ULK1, and p-ULK1 (Ser 317) in SW-480 cells. (h) Relative p-TSC2
protein level in SW-480 cells. (i) Relative BAX protein level in SW-480 cells. (J) Relative Beclin 1 protein level in SW-480 cells. (k) Relative
LC3B-IIprotein level in SW-480 cells. (l) Relative p-ULK1 (Ser 317) protein level in SW-480 cells. NS: nonsignificant versus HCT-116 and
SW-480 group; ∗P< 0.05 versus HCT-116 and SW-480 group; ∗∗P< 0.01 versus HCT-116 and SW-480 group.
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+e anticancer activities of OA are closely related to acti-
vation of the AMPK-mTOR signaling pathway, which is
crucial in apoptosis and autophagy processes. OA induced
autophagy and apoptosis predominantly in CC cells in an
AMPK activation-dependent manner.

Autophagy is an intracellular catabolism system that
transports proteins and organelles to lysosomes for
degradation and maintains cell homeostasis under stress.
According to the degradation pathway, autophagy can be
divided into three types: microautophagy, giant auto-
phagy, and partner-mediated autophagy. In general,
autophagy is defined as macroscopic autophagy [32]. +e
process of autophagy is roughly divided into four steps:
autophagosome initiation, nucleation, autophagy mem-
brane formation, and degradation of macromolecular
products [33]. In the initial step, rapamycin complex 1
(mTORC1) and adenosine monophosphate- (AMP-) ac-
tivated protein kinase (AMPK) cooperatively activate the
autophagy-related gene UNC-51-like kinase 1 (ULK1).
During the nucleation of autophagosomes, the ULK1
complex activates and phosphorylates the Beclin 1/Vps34
complex. +en, activation and nucleation-related proteins
are involved in the formation of autophagy vesicles
[34, 35]. During the formation of autophagosomes, the
fatty form of LC3 is transformed into a soluble form (LC3-
I) with the degradation of macromolecular contents.
Autophagy is regulated by a variety of pathways and
molecules. It is well known that the AMPK/mTOR
transduction pathway negatively regulates autophagy.
mTORC1 responds to changes in the cellular environment
and nutritional levels through its upstream negative
regulatory molecule (tumor suppressor TSC1/TSC2) [36].
In addition, AMPK, a cellular energy receptor, is activated
at low ATP levels. TSC2 is phosphorylated by activated
AMPK, which upregulates the GAP activity of TSC1/2
[37]. In mammalian cells, mTORC1 phosphorylates ULK1
and blocks the interaction between AMPK and ULK1,
thereby inhibiting autophagy [38]. When the energy
supply is insufficient, AMPK can directly phosphorylate
ULK1 to promote autophagy. As a survival mechanism,
the role of autophagy in maintaining cell homeostasis is
self-evident, and its dysfunction is related to many dis-
eases. Generally, autophagy plays a dual role in tumors.
On the one hand, autophagy can inhibit growth and in-
vasion; on the other hand, it helps tumor cells survive and
escape under stress, especially in the case of apoptosis
deficiency. +erefore, autophagy and apoptosis usually
exist at the same time, and autophagy is accompanied by
apoptosis [39]. In CC, the crosstalk relationships between
autophagy and apoptosis involve a variety of signal
transduction pathways and regulatory factors, and the
AMPK/mTOR signaling transduction pathway is an im-
portant way to regulate autophagy and apoptosis.
Whether autophagy induces or inhibits apoptosis depends
on the cell type, nature and duration of stimulation, or
stress [40]. During autophagy initiation, mTORC1 and
AMPK cooperatively activate ULK1 to cope with changes
in the cellular environment and nutritional levels, and
ULK1 is the central component of autophagy. +erefore,

the relative activity of AMPK/mTOR in cancer cells plays
a critical role in the initiation of autophagy and apoptosis.

Enhanced effects of autophagy could lead to apoptosis of
cancer cells, which is beneficial to the treatment of cancers.
In this study, we demonstrated that OA, a natural penta-
cyclic triterpene carboxylic acid, effectively activated AMPK
and inhibited mTOR, leading to autophagy and apoptosis
activation in CC cells. +e results from this study confirmed
that the antiapoptotic regulators and biomarkers, mTOR
and Bcl-2, were downregulated by AMPK activation and
mTOR inhibition, inducing enhanced apoptosis. Mean-
while, the autophagy and apoptosis regulators in the cell
apoptosis process, BAX, caspase-3, caspase-8, and caspase-9,
were significantly increased under the intervention of OA.
+ese changes suggested that AMPK activation and mTOR
inhibition induced by OA promoted autophagy and apo-
ptosis in a crosstalk-dependent manner. Furthermore, the
phosphorylation level of TSC2 (p-TSC2) and ULK1 (p-
ULK1), a direct supervisor of autophagy, and the down-
stream targets of AMPK, including BAX, Beclin 1, and
LC3B-II, were upregulated followed by activation of AMPK,
instead of inhibition of mTOR. +us, we speculated that
autophagy and apoptosis induced by OA may occur in an
AMPK-dependent manner.

Overall, the conclusions of this study indicate that OA
effectively activates AMPK and inhibits mTOR. OA induces
autophagy and apoptosis in CC cells by initiating the
AMPK/mTOR signaling pathway. +erefore, it is conceiv-
able that OA could be developed into a potent agent for use
against CC in clinical practice.
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