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Background. T cell-mediated antitumor immune response is the basis of colorectal cancer (CRC) immunotherapy. Cholesterol
plays an important role in T cell signal transduction and function. Apolipoprotein E (APOE) plays a major role in cholesterol
metabolism. Objective. To screen and analyze key markers involved in the anticolon cancer response of CD8+ Tcells through the
regulation of cholesterol metabolism.Methods. Based on the median cutoff of the expression value of APOE according to the data
downloaded from 0e Cancer Genome Atlas and Gene Expression Omnibus database, patients were grouped into low and high
expression groups. Differences in clinical factors were assessed, and survival analysis was performed. Differentially expressed
genes (DEGs) in the high and low expression groups were screened, followed by the analysis of differences in tumor-infiltrating
immune cells and weighted gene coexpression network analysis results. 0e closely related genes to APOE were identified,
followed by enrichment analysis, protein–protein interaction (PPI) network analysis, and differential expression analysis. Im-
munohistochemical staining (IHC) was used to detect the expression of CD8 in CRC tissues. Results. 0ere were significant
differences in prognosis and pathologic_N between the APOE low and high expression groups. A total of 2,349 DEGs between the
high and low expression groups were selected. A total of 967 genes were obtained from the blue and brown modules. 0e
probability of distribution of CD8+ T cells differed significantly between the two groups, and 320 closely related DEGs of APOE
were screened. Genes including the HLA gene family, B2M, IRF4, and STAT5A had a higher degree in the PPI network. GEO
datasets verified the prognosis and the related DEGs of APOE. IHC staining verified the relationship between the distribution of
CD8+ Tcells and APOE expression. Conclusion. Genes including theHLA gene family, B2M, IRF4, and STAT5Amight be the key
genes involved in the anticolon cancer response of CD8+ T cells through the regulation of cholesterol metabolism.
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1. Introduction

Colon cancer is a major health problemworldwide because it
is the second leading cause of cancer-related deaths [1]. It is
reported that by 2030, especially in developed countries, the
number of new cases will increase to 2.2 million, and cases of
death will increase to 1.1 million [2]. Although surgical
resection combined with radiation therapy and chemo-
therapy is the main treatment for colon cancer, the 5-year
survival rate is only approximately 28% [3]. Excessive dietary
fat is associated with the induction/exacerbation of various
diseases, including colon cancer [4]. In addition, numerous
studies have illustrated that a “Western” style diet with high-
fat content is an important factor in the increased incidence
of colon cancer [5–7]. A high-fat diet is also widely involved
in various pathological conditions, such as obesity and
metabolic diseases, which may promote the development of
colon cancer [8]. Hyperlipidemia is often divided into four
types: hypercholesterolemia, hypertriglyceridemia, mixed
hyperlipidemia, and low high-density lipoprotein choles-
terol. A previous study indicated that hyperlipidemia is a risk
factor for colon cancer [9].

T cell-mediated antitumor immune response is the basis
of tumor immunotherapy, which is associated with a fa-
vorable prognosis [10]. However, some tumors evolve to
acquire immunosuppressive properties and escape the attack
by T cells through various mechanisms in the tumor mi-
croenvironment [11]. 0us, reactivating the cytotoxicity of
T cells is of great clinical interest in cancer immunotherapy.
Cholesterol plays an important role in T cell signal trans-
duction and function. For instance, Yang et al. found that the
antitumor response of mouse CD8+ Tcells can be enhanced
by regulating cholesterol metabolism [12]. Ma et al. showed
that high cholesterol can facilitate Tcell immune checkpoint
expression, which makes it easier for T cells to lose their
antitumor function [13]. However, these studies only fo-
cused on T cell gene changes and endoplasmic reticulum
stress and did not examine the impact of tumor cells.

It has been reported that high cholesterol levels can
promote the proliferation of stem cells, thereby increasing
the growth rate of intestinal tumors by 100-fold [14]. RORα/
hdac [15], CD36 [16], ACAT1 [17], and so on are involved in
the regulation of the antitumour response of CD8+ Tcells by
modulating cholesterol metabolism. However, the key
markers involved are still unclear. 0us, this study aimed to
screen and analyze the key markers involved in the anticolon
cancer response of CD8+ T cells through the regulation of
cholesterol metabolism.0e workflow of this study is shown
in Figure 1.

2. Materials and Methods

2.1. Data Sources and Data Preprocessing. Gene expression
RNAseq data [log2(fpkm+1)] and clinical data of colon
adenocarcinoma were obtained from 0e Cancer Genome
Atlas database [18] (https://xenabrowser.net/). After se-
quencing data and clinical information matching, a total of
389 tumor samples were obtained (data version: 07-19-
2019). RNA-Seq was annotated based on the annotation file

of the Gencode database [19] (V23, https://www.
gencodegenes.org/). In the expression profile analysis of
Ensembl_ID, the mapping probe was used to calculate the
gene expression value (obtained from the annotation files of
the chip platform and microarray dataset) to Symbol_ID.
0e average value was taken as the level of Ensembl_ID
expression when multiple probes matched one Symbol_ID.
Genes with “protein_coding” annotations were then
extracted as mRNAs.

2.2. APOE Expression-Related Clinical and Survival Analysis.
Apolipoprotein E (APOE) plays a major role in cholesterol
metabolism [20]. 0us, in this study, to screen the key
markers involved in the anticolon cancer response of CD8+
Tcells via cholesterol metabolism regulation, the expression
level of APOEwas calculated using the Survminer package of
R (version: 0.4.8, https://CRAN.Rproject.org/
package�survminer), followed by the median cutoff of the
expression value. 0en, based on the median cutoff of the
expression value, patients were grouped into low and high
expression groups. In addition, the Kaplan–Meier survival
curve analysis and log-rank test were performed to compare
the prognosis between the two groups based on the survival
information of the samples. Clinical factors (age, sex, TNM
stage, and pathologic_stage) were compared between the low
and high expression groups using the chi-squared test;
differences were considered significant at a threshold of
P< 0.05.

2.3. Differential Expression Analysis. 0e typical Bayesian
method in the limma package [21] (version 3.40.6) was used
to analyze differentially expressed genes (DEGs) between
high and low expression groups. 0e Benjamini and
Hochberg method was used to adjust the P values. Adjusted
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Figure 1: 0e workflow of this study.
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P value< 0.05 and |logFC|> 0.263 were used as the cutoff
criteria for screening DEGs. Finally, the ggscatter function of
the ggpubr package [22] in R (version: 0.2.2) was used to
draw a volcano plot.

2.4. Screening of APOE Expression-Related Modules and
Genes. 0e weighted gene coexpression network analysis
(WGCNA) algorithm was used to screen the modules and
genes related to APOE expression based on the expression
values of DEGs. 0e network construction and module
screening procedures included dataset consistency analysis
and gene coexpression correlationmatrix, adjacent function,
phase difference between nodes, and correlation analyses
between network modules and diseases. A heat map was
used to visualize the correlations of each module.

2.5. Screening of Immune-Related Genes. 0e CIBERSORT
algorithm [23], a useful method for obtaining high-
throughput characteristics of 22 cell types in complex tissues,
was used to analyze the abundance of tumor-infiltrating
immune cells with the parameters of perm� 100 and
QN� F. Subsequently, the abundance of all types of immune
cells was tested in the high and low expression groups. 0en,
the Pearson correlation coefficient between DEGs and CD8+
T cells was calculated, and immune-related genes were
obtained with a cutoff of P< 0.05 and |r| > 0.3. 0e module
genes obtained from WGCNA were intersected with these
immune-related genes, and the overlapping genes were
redefined as closely related genes of APOE.

2.6. Enrichment Analysis. Based on the closely related genes
of APOE, the cluster Profiler package [24] in R was used to
perform Gene Ontology (GO) [25] and Kyoto Encyclopedia
of Genes and Genomes (KEGG) [26] pathway enrichment
analyses with a cutoff value of P< 0.05 and count ≥2.

2.7. Protein-Protein Interaction (PPI) Network Analysis.
0e STRING database [27] was used to evaluate the PPIs
encoded by closely related genes of APOE. 0e PPI score was
set at 0.9. Subsequently, the PPI network of T cell-related
genes was analyzed using Cytoscape software [28].

2.8. Analysis of DEGs Related to APOE and CD8+ T Cells.
R software ggplot2 (version: 3.2.1, https://CRAN.R-project.
org/package�ggplot2) and GGpubr ggpubr (version 0.2.2, t-
test provided by https://CRAN.R-project.org/
package�ggpubr) were used to analyze the differences of
genes between the two groups. A box diagram was drawn for
display with a threshold of P< 0.05.

2.9. Datasets Validation. Two GEO datasets, GSE71187 and
GSE39582, with prognostic information were selected from
the GEO database to validate the result of APOE expression-
related survival analysis.0e series_matrix.txt data containing
99 tumors and 12 para-cancers was obtained after pretreat-
ment of GSE71187. Furthermore, the series_matrix.txt

containing 566 tumors and 19 para-cancers was obtained after
pretreatment of GSE39582. 0e expression of APOE in the
two datasets was extracted. R Software Survminer (version
0.4.8) package calculated APOE expression to obtain optimal
cutoff. 0e expression value> optimal cutoff was regarded as
high expression, and the expression value≤ optimal cutoff
was regarded as low expression. 0en, the prognosis of pa-
tients in the two groups was obtained. Combined with the
survival information of the samples, the k-M curve was
plotted, and log-rank was used to test its significance.

Patients in GSE71187 and GSE39582 were divided into
two groups according to the median APOE expression. 0e
expressions of transcription 5A (STAT5A), histocompati-
bility leukocyte antigen (HLA) gene family (HLA-E, HLA-C,
HLA-B, etc.), beta-2 microglobulin (B2M), and interferon
regulatory Factor 4 (IRF4) were tested in high and lowAPOE
expression groups. R software GGplot2 (version 3.2.1,
https://CRAN.R-project.org/package�ggplot2) and GGpubr
ggpubr (version 0.2.2, the t-test provided by https://CRAN.
R-project.org/package�ggpubr) were used to analyze the
differences of genes between the two groups. A box diagram
was drawn for display with a threshold of P< 0.05.

2.10. CRC Specimens and IHC Staining. 0e study protocol
was approved by the Human Ethics Committee of Huzhou
Central Hospital (NO: 20210207). Forty CRC patients were
recruited, and the basic information was presented in
Supplementary Table 2. 0e expression of APOE in blood
was detected by using immunoturbidimetry. APOE higher
than 53.0mg/L was included in the APOE-high group, and
APOE lower than 29.0mg/L was included in the APOE-low
group. Further detection of CD8 expression was conducted
by using immunohistochemistry. Immunohistochemistry
test kit, antigen repair solution, and CD8 antibody were all
purchased from Beijing Zhongshan Jinqiao Biotechnology
Co., Ltd. 0e tissue sections were scanned at low magnifi-
cation (X100) to select the areas with high CD8 positive cell
density. 0en, the positive rate of CD8 cells in five fields was
determined at high magnification (X200) to calculate the
average value.0e positive rate of CD8 cells was expressed as
mean± standard deviation. Using SPSS 13.0 statistical
software, the Pearson χ2 test was performed.

3. Results

3.1. Comparison of Clinical Factors and Analysis of DEGs
between the High and Low Expression Groups. 0e
Kaplan–Meier survival curve analysis and log-rank test were
performed to compare the prognosis between the two
groups based on the survival information of the samples.0e
results showed that there were significant differences in
prognosis between the low and high expression groups
(P � 0.018) (Figure 2(a)). In addition, a significant difference
in pathologic N was found between the two groups
(P � 0.029) (Figure 2(b)). In total, 2,349 DEGs, of which
1,949 and 400 were upregulated and downregulated, re-
spectively, between the high and low expression groups were
selected (Figure 2(c)).
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3.2. Disease-Related Modules and Genes. A total of 2,349
DEGs were used for WGCNA analysis. 0e soft threshold
power for matrix transformation was determined to be 8,
with the square of the correlation coefficient between log2k
and log2p (k) being 0.85 (Figure 3(a)). 0e minimum
number of genes was set to 30 for each module, and the
pruning height was cutHeight� 0.2. A total of five different
disease-related modules were screened (Figure 3(b)), in-
cluding blue, brown, green, red, and yellow modules. To
ensure the reliability of the screening results of key network
modules, the disease-related key network modules were
analyzed again by calculating the absolute value of gene
significance (GS) within the module, and the results showed
that the blue and brown modules had a higher GS

(Figure 3(c)) and were significantly correlated with the
disease (Figure D). Finally, a total of 967 genes were obtained
from the blue and brown modules.

3.3. CD8+ T Cell-Related DEGs. Immune infiltration in the
high and low expression groups was analyzed based on the
CIBERSORT algorithm. As illustrated in Figures 4(a) and
4(b), 22 tumor-immune cell proportions in the high and low
expression groups were analyzed. To observe the probability
of the distribution of different tumor-immune cells between
the two groups, a violin plot was drawn. As shown in
Figure 4(c), the probability of the distribution of CD8+
T cells was the most significant difference between the two
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groups (P< 0.01). 0e correlation coefficient between DEGs
and CD8+ T cell-related genes was then calculated, and a
total of 612 CD8+ T cell-related DEGs were identified. In
addition, the module genes obtained from WGCNA inter-
sected with these CD8+ T cell-related genes, and a total of
320 closely related DEGs ofAPOEwas obtained (Figure 4(d),
Supplementary Table 1).

3.4. Enrichment Analysis and PPI Network Analysis of Closely
Related DEGs of APOE. Enrichment analysis showed that
the closely related upregulated DEGs were mainly involved
in 544 GO-biological processes (BPs; e.g., T cell activation;
regulation of lymphocyte activation; and regulation of T cell
activation) and 54 KEGG pathways (e.g., hsa05169: Eps-
tein–Barr virus (EBV) infection and hsa04514: cell adhesion
molecules) (Figures 5(a) and 5(b)), whereas the closely

related downregulated DEGs were not involved in the GO-
BP and KEGG pathways. PPI network analysis of 320 closely
related DEGs of APOE revealed 191 nodes and 1,153 in-
teraction pairs (Figure 5(c)). In this PPI network, genes
including the histocompatibility leukocyte antigen (HLA)
gene family (HLA-E, HLA-C, HLA-B, etc.), beta-2-micro-
globulin (B2M), interferon regulatory factor 4 (IRF4), and
STAT5A had a higher degree, which could lead to their
classification as key genes (Table 1).

3.5. Analysis of DEGs Related to APOE and CD8+ T Cells.
As shown in Figure 5(d), histocompatibility leukocyte an-
tigen (HLA) gene family (HLA-E, HLA-C, HLA-B, etc.),
beta-2-microglobulin (B2M), interferon regulatory factor 4
(IRF4), and STAT5A were significantly differentially
expressed in high and low APOE groups (P< 0.001).
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3.6. Validation of APOE-related survival analysis and DEGs
related to APOE and CD8+ T cells. As shown in the K-M
curve in Figures 6(a) and 6(b), the survival analysis results
of GSE3958 and GSE71187 were verified that the high
expression group had a poor prognosis (P< 0.05). More-
over, as shown in the box diagram in Figures 6(c) and 6(d),
most of the concerned genes in the GSE39582 and
GSE71187 datasets were highly expressed (P< 0.05). 0e
results were consistent with the analysis results of the
TCGA database.

3.7. Ee Infiltration of CD8+T Cells Correlated with APOE in
Tissue Specimen Sections. 0e basic information of recruited
CRC patients was present in Supplementary Table 2. IHC
staining detection of CD8 proteins showed that CD8 was
upregulated expression in the APOE-high expression group
(Figure 7(a)), while CD8 was downregulated expression in
the APOE-low expression group (Figure 7(b)) (P � 0.001).
0e statistical results are presented in Table 2.

4. Discussion

In this study, there were significant differences in prognosis
and pathologic_N between the low and high expression
groups. A total of 2,349 DEGs between the high and low
expression groups were selected. In addition, the probability
of CD8+ T cell distribution was the most significant dif-
ference between the two groups. A total of 320 closely related
DEGs of APOE were identified. Genes including the HLA
gene family, B2M, and IRF4 had a higher degree in the PPI
network, and STAT5A was regulated by numerous miRNAs
in the ceRNA network.

Cholesterol has been reported to be associated with
colon cancer. Eggs low in fat contain large amounts of
cholesterol, and egg consumption has been associated with
an increased risk of colon cancer [29]. In addition, Jacobs
et al. showed that high cholesterol levels seem to increase the
risk of colon cancer [30]. In line with our data, in this study,
the survival analysis results showed that the high cholesterol
group was related to poor survival, which suggested that

100

High Immune Cell Subset Proportions

75

50

Re
la

tiv
e P

er
ce

nt
 (%

)
25

0

B cells naive

B cells memory

Plasma cells

T cells CD8

T cells CD4 naive

T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

T cells regulatory (Tregs)

T cells gamma delta

NK cells resting

NK cells activated

Monocytes

Macrophages M0

Macrophages M1

Macrophages M2

Dendritic cells resting

Dendritic cells activated

Mast cells resting

Mast cells activated

Eosinophils

Neutrophils

(a)

Low Immune Cell Subset Proportions

100

75

50

Re
la

tiv
e P

er
ce

nt
 (%

)

25

0

B cells naive

B cells memory

Plasma cells

T cells CD8

T cells CD4 naive

T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

T cells regulatory (Tregs)

T cells gamma delta

NK cells resting

NK cells activated

Monocytes

Macrophages M0

Macrophages M1

Macrophages M2

Dendritic cells resting

Dendritic cells activated

Mast cells resting

Mast cells activated

Eosinophils

Neutrophils

(b)

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 re

gu
la

to
ry

 (T
re

gs
)

T 
ce

lls
 g

am
m

a d
el

ta

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

B 
ce

lls
 n

ai
ve

Fr
ac

tio
n

0.6

0.4

p=0.642

p=0.673

p=0.73

p=0.438

p=0.002

p=0.461

p=0.002

p=0.018

p=0.2
p=0.19 p=0.138

p=0.769

p=0.269
p=0.049

p=0.868

p=0.924

p=0.427

p=0.242

p=0.221

p=0.369

p=0.256

p<0.001

0.2

0.0

(c)

647

moduleGenes
cibersortGenes

292320

(d)

Figure 4: Screening of CD8+ Tcell-related DEGs. (a) 0e 22 tumor-immune cell proportions of high expression groups. (b)0e 22 tumor-
immune cell proportions of low expression groups. (c) 0e violin plot of different tumor-immune cells between high and low expression
groups; blue represents the high expression group, and red represents the control group. (d) 0e Venn diagram of closely related DEGs of
APOE. WGCNA: weighted gene coexpression network analysis; APOE: apolipoprotein E.

6 Journal of Oncology



T cell activation

Gene ontology

Count
40
50
60

p.adjust
2.740085e–38
4.843938e–23
9.687876e–23
1.453181e–22
1.937575e–22

regulation of lymphocyte activation

regulation of T cell activation

response to interferon–gamma

 cellular response to interferon–gamma

leukocyte cell–cell adhesion

response to virus

defense response to virus

regulation of leukocyte proliferation

interferon–gamma–mediated signaling pathway

0.125 0.150 0.175 0.200

GeneRatio

(a)

KEGG

Count

25
20

30
35

p.adjust
3.572471e–22
2.790342e–17
5.580649e–17
8.370956e–17
1.116126e–16

Epstein–Barr virus infection

Cell adhesion molecules

�17 cell differentiation

Antigen processing and presentation

�1 and �2 cell differentiation

Autoimmune thyroid disease

Viral myocarditis

Allogra� rejection

Gra�–versus–host disease

Type I diabetes mellitus

0.10 0.12 0.14 0.16 0.18

GeneRatio

(b)

(c)

**** ****12

9

6

Ex
pr

es
sio

n

3

0

B2
M

H
LA

–B

H
LA

–C

H
LA

–D
M

A

H
LA

–D
M

B

H
LA

–D
O

A

H
LA

–D
O

B

H
LA

–D
PA

1

H
LA

–D
PB

1

H
LA

–D
Q

A
1

Gene

H
LA

–D
Q

B1

H
LA

–D
Q

B2

H
LA

–D
RA

H
LA

–D
RB

1

H
LA

–D
RB

5

H
LA

–E

H
LA

–F

IR
F4

ST
A

T5
A

**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

Group

Low

High

(d)

Figure 5: Enrichment analysis, PPI network analysis, and DEGs related to APOE and CD8+ Tcells. (a) GO-BP. (b) KEGG pathway.0e size
of the ball represents the number of genes enriched in each term. 0e color of the ball represents the value of the P value. (c) PPI network;
blue nodes represent the genes in the blue module, and brown nodes represent genes in the brown module. (d) Analyses of DEGs related to
APOE and CD8+ T cells.

Table 1: 0e degree of top 20 nodes in protein-protein interaction (PPI) network.

Gene Degree
HLA-E 52
HLA-C 51
HLA-B 51
HLA-F 47
HLA-DRB1 45
HLA-DRA 45
B2M 44
HLA-DQA1 42
HLA-DQB1 42
HLA-DRB5 42
HLA-DQB2 42
HLA-DPA1 42
HLA-DPB1 42
IRF4 40
IRF1 39
OASL 38
OAS2 38
OAS3 37
GBP2 37
TRIM21 35
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high cholesterol was a risk factor for colon cancer. In ad-
dition, a significant difference in pathologic_N was found
between the low and high expression groups, and the
proportion of pathologic_N3 in the high expression group
was higher than that in the low expression group, which
further indicated that high cholesterol was a risk factor for
colon cancer.

CD8+ Tcells play an extremely crucial role in antitumor
immunity; however, tumor-infiltrating T cells often lose
their effector functions. Ma et al. reported that cholesterol
induced CD8+ Tcell exhaustion bymodulating endoplasmic
reticulum stress pathways (IRE1/XBP1) in the tumor mi-
croenvironment [13]. What is more, CD8+ T cells were
polarized into IL-9-secreting (Tc9) cells to exert antitumor
responses, while cholesterol or its derivatives inhibited IL-9
expression by activating liverX receptors (LXRs) and leading

to LXR SUMOylation and reduced p65 binding to IL-9
promoter [31]. 0e characteristics of exhausted CD8+ Tcells
were attenuating antitumor responses and decreasing in-
filtrating density. 0erefore, high cholesterol decreased the
infiltration of CD8+ T cells. In this study, we also analyzed
the key markers involved in the anticolon cancer response of
CD8+ T cells through cholesterol metabolism regulation
using bioinformatics analysis. 0e results showed that genes
including the HLA gene family, B2M, and IRF4 had a higher
degree in the PPI network, and STAT5A was regulated by
numerous miRNAs in the ceRNA network. 0e HLA gene
family plays a major role in regulating immune responses in
cancers. For instance, Tsai et al. revealed that HLA-DQA1
and HLA-DQB1 may participate in the development of oral
cancer [32]. Bianchini et al. showed that the HLA-E gene
strongly supports a potential tumor-evading immune
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Figure 6: Validation of survival analysis and DEGs related to APOE and CD8+ Tcells. A-B: survival analysis between APOE low and high
expression groups in GSE39582 and GSE71187. C-D: analysis of DEGs related to APOE and CD8+ T cells in GSE39582 and GSE71187.
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surveillance strategy in colon cancer tissues [33]. Moreover,
Benevolo et al. found that the HLA-A, HLA-B, and HLA-C
expression in colon cancer is associated with prognosis [34].
Blum et al. suggested that, in patients with stage II colon
cancer, theMap7/B2M expression ratio is a prognostic factor
for survival [35]. IRF4 is considered an oncogene in lym-
phoid malignancy and multiple myeloma [36], and Zhang
et al. showed that overexpression of circPIP5K1A attenuated
the expression of IRF4 in the progression of colon cancer
development [37]. As a transcription factor, the activation or
phosphorylation of STAT is associated with many cancers.
Slattery et al. showed that STAT5A was associated with
colon cancer progression [38]. In addition, nucleotide
analysis showed that the upregulated closely related genes
were involved in EBV infection and cell adhesion molecule
KEGG pathways. EBV is associated with several malignant
tumors. Guan et al. reported a positive association between
EBV infection and colon cancer [39]. It has been reported
that a variety of cell adhesion molecules are involved in
cell–cell and cell–matrix interactions in colon cancer, and
some cell–cell and cell–matrix interactions determine colon
cancer behavior [40]. Based on these results, we speculate
that genes including the HLA gene family, B2M, IRF4, and
STAT5A that may be involved in EBV infection and cell
adhesion molecule pathways play important roles in the

anticolon cancer response of CD8+ T cells by regulating
cholesterol metabolism.

However, there are some limitations to this study. We
need to conduct related experiments such as cell biology
experiments and animal studies to validate the multiple
candidate targets and signaling pathways obtained in this
bioinformatics analysis.

5. Conclusion

In summary, genes including the HLA gene family, B2M,
IRF4, and STAT5A might be the key genes involved in the
anticolon cancer response of CD8+ T cells via regulation of
cholesterol metabolism. 0ese findings can guide clinical
decision-making for colon cancer treatment as well as future
research on colon cancer.

Abbreviation

KEGG: Kyoto Encyclopedia of Genes and Genomes
GO: Gene Ontology
GEO: Gene Expression Omnibus
PPI: Protein–protein interaction
BP: Biological process
ceRNA: Competing endogenous RNA
WGCNA: Weighted gene coexpression network analysis
DEGs: Differentially expressed genes
APOE: Apolipoprotein E
HLA: Histocompatibility leukocyte antigen
STAT5A: Signal transducer and activator of transcription

5A
IRF4: Interferon regulatory factor 4
B2M: Beta-2-microglobulin.
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Figure 7: IHC staining of CD8. (a). IHC staining for CD8 in the high-APOE expression group. (b). IHC staining for CD8 in the low-APOE
expression group. 0e magnification was X200. 0e red arrows represented positive CD8.

Table 2: Immunohistochemical evaluation.

CRC High-APOE Low-APOE Total X2 P value
CD8 ++/+++ 18 8 26 — —
CD8−/+ 2 12 14 — —
Total 20 20 40 10.989 0.001
Criterion: —: 0–10%; +: 11–30%; ++: 31–70%; +++: 70–100%.
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Additional Points

1. 0e prognosis of colon cancer differed between the high and
low cholesterol groups. 2. 0e probability of CD8+ T cell dis-
tribution differed significantly between the high and low cho-
lesterol groups. 3. Genes including the HLA gene family, B2M,
and IRF4might be the key genes involved in the anticolon cancer
response of CD8+ T cells by regulating cholesterol metabolism.
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[18] K. Tomczak, P. Czerwińska, and M. Wiznerowicz, “0e
Cancer Genome Atlas (TCGA): an immeasurable source of
knowledge,” Contemporary Oncology, vol. 19, no. 1A,
pp. A68–77, 2015.

10 Journal of Oncology

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://downloads.hindawi.com/journals/jo/2021/9398661.f1.zip


[19] J. Harrow, A. Frankish, J. M. Gonzalez et al., “GENCODE: the
reference human genome annotation for the ENCODE
Project,”Genome Research, vol. 22, no. 9, pp. 1760–1774, 2012.

[20] R. W. Mahley, “Central nervous system lipoproteins,” Arte-
riosclerosis, Erombosis, and Vascular Biology, vol. 36, no. 7,
pp. 1305–1315, 2016.

[21] G. K. Smyth, “LIMMA: linear models for microarray data in
bioinformatics and computational biology solutions using r
and bioconductor,” Statistics for Biology and Health, vol. 43,
2005.

[22] A. Kassambara, “ggpubr:“ggplot2” based publication ready
plots,” R package version 0.1, vol. 6, 2017.

[23] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enu-
meration of cell subsets from tissue expression profiles,”
Nature Methods, vol. 12, no. 5, pp. 453–457, 2015.

[24] G. Yu, L.-G. Wang, Y. Han, and Q.-Y. He, “clusterProfiler: an
R package for comparing biological themes among gene
clusters,” OMICS: A Journal of Integrative Biology, vol. 16,
no. 5, pp. 284–287, 2012.

[25] M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology:
tool for the unification of biology,” Nature Genetics, vol. 25,
no. 1, pp. 25–29, 2000.

[26] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of
genes and genomes,” Nucleic Acids Research, vol. 28, no. 1,
pp. 27–30, 2000.

[27] D. Szklarczyk, “0e string database in 2017: quality-controlled
protein–protein association networks, made broadly acces-
sible,” Nucleic acids research, vol. 15, Article ID gkw937, 2016.

[28] P. Shannon, “Cytoscape: a software environment for inte-
gratedmodels of biomolecular interaction networks,”Genome
Research, vol. 13, no. 11, pp. 2498–2504, 2003.

[29] K. A. Steinmetz and J. D. Potter, “Egg consumption and
cancer of the colon and rectum,” European Journal of Cancer
Prevention, vol. 3, no. 3, pp. 237–246, 1994.

[30] R. J. Jacobs, P. W. Voorneveld, L. L. Kodach, and
J. C. Hardwick, “Cholesterol metabolism and colorectal
cancers,” Current Opinion in Pharmacology, vol. 12, no. 6,
pp. 690–695, 2012.

[31] X. Ma, E. Bi, C. Huang et al., “Cholesterol negatively regulates
IL-9-producing CD8+ T cell differentiation and antitumor
activity,” Journal of Experimental Medicine, vol. 215, no. 6,
pp. 1555–1569, 2018.

[32] S.-C. Tsai, M.-C. Sheen, and B.-H. Chen, “Association be-
tween HLA-DQA1, HLA-DQB1 and oral cancer,” Ee
Kaohsiung Journal of Medical Sciences, vol. 27, no. 10,
pp. 441–445, 2011.

[33] M. Bianchini, E. Levy, C. Zucchini et al., “Comparative study
of gene expression by cDNA microarray in human colorectal
cancer tissues and normal mucosa,” International Journal of
Oncology, vol. 29, no. 1, pp. 83–94, 2006.

[34] M. Benevolo, M. Mottolese, G. Piperno et al., “HLA-A, -B, -C
expression in colon carcinoma mimics that of the normal
colonic mucosa and is prognostically relevant,”Ee American
Journal of Surgical Pathology, vol. 31, no. 1, pp. 76–84, 2007.

[35] C. Blum, A. Graham, M. Yousefzadeh et al., “0e expression
ratio of Map7/B2M is prognostic for survival in patients with
stage II colon cancer,” International Journal of Oncology,
vol. 33, no. 3, pp. 579–584, 2008.

[36] G. Gualco, L. M. Weiss, and C. E. Bacchi, “Mum1/Irf4,”
Applied Immunohistochemistry & Molecular Morphology,
vol. 18, no. 4, pp. 301–310, 2010.

[37] Q. Zhang, C. Zhang, J.-X. Ma, H. Ren, Y. Sun, and J.-Z. Xu,
“Circular RNA PIP5K1A promotes colon cancer development

through inhibiting miR-1273a,” World Journal of Gastroen-
terology, vol. 25, no. 35, pp. 5300–5309, 2019.

[38] M. L. Slattery, A. Lundgreen, S. A. Kadlubar, K. L. Bondurant,
and R. K. Wolff, “JAK/STAT/SOCS-signaling pathway and
colon and rectal cancer,” Molecular Carcinogenesis, vol. 52,
no. 2, pp. 155–166, 2013.

[39] X. Guan, Y. Yi, Y. Huang et al., “Revealing potential molecular
targets bridging colitis and colorectal cancer based on mul-
tidimensional integration strategy,” Oncotarget, vol. 6, no. 35,
pp. 37600–37612, 2015.

[40] M. V. Agrez, “Cell adhesion molecules and colon cancer,”
ANZ Journal of Surgery, vol. 66, no. 12, pp. 791–798, 1996.

Journal of Oncology 11


