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CD8+ T lymphocytes, also known as cytotoxic T lymphocytes, are the most powerful antitumour cells in the human body. Patients
with head and neck squamous cell carcinoma (HNSCC) in whom CD8+ T lymphocyte in�ltration is high have a better prognosis.
However, the clinical signi�cance and prognostic signi�cance of CD8+ Tcell-related regulatory genes in HNSCC remain unclear,
and further research is required. In total, 446 CD8+ Tcell-related genes were obtained using WGCNA. It was discovered that 111
genes included within the TCGA and GSE65858 datasets were intimately linked to the patient’s prognosis. �ese genes were
included in the subsequent analysis. According to consensus clustering analysis, HNSCC samples were classi�ed into 3 subtypes
(IC1, IC2, and IC3). �ere were substantial di�erences between the three subtypes in terms of immunological molecules, immune
function, and the response to drug treatment. In addition, the 8-gene signature, which was generated premised on CD8+ T cell-
related genes, exhibited stable prognostic prediction in the TCGA and GEO datasets and di�erent HNSCC patient subgroups and
independently served as a prognostic indicator for HNSCC. More importantly, the 8-gene signature e�ectively predicted im-
munotherapy response. We �rst constructed a molecular subtype of HNSCC based on CD8+ T cell-related genes. Between the
three subtypes, there were signi�cant di�erences in the prognosis, clinical features, immunological molecules, and drug treatment
response. �e 8-gene signature that was further constructed e�ectively predicted prognosis and immunotherapy response.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) accounts
for roughly 95 percent of all head and neck cancer cases; it
mostly occurs in the oropharynx, hypopharynx, or oral
cavity. �e incidence of HNSCC has been increasing, and its
prognosis is poor [1]. For example, in laryngeal cancer,
except for glottic cancer, the early symptoms of supraglottic
and subglottic types are usually more insidious and over 50%
of patients are in the middle and advanced disease stages
when they consult a doctor [2]. �e comprehensive treat-
ment of HNSCC includes surgery, radiotherapy, and che-
motherapy [3]. Although the treatment of HNSCC has made
great progress in recent years, early lymph node metastasis,

aggressive growth, and other malignant pathological char-
acteristics are important factors for its high postoperative
recurrence and metastasis rate, low survival rate, and poor
long-term e¦cacy [4]. Patients diagnosed with HNSCC have
about a 50% chance of surviving the disease over the period
of 5 years [5], and a stable and e�ective biological index is
urgently required to guide treatment and predict prognosis.

Tumour aggressiveness and treatment resistance are
a�ected by the interaction between tumour cells and their
microenvironment. In�ltration exists in the tumour mi-
croenvironment [6]. �e local tumour microenvironment is
a unique and complex environment of tumour-host in-
teraction that occurs during tumour progression. It is mainly
composed of tumour cells and tumour-in�ltrating
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lymphocytes (TILs), which can inhibit or promote tumour
growth [7, 8]. TILs play a vital role in tumour formation,
growth, invasion, and metastasis and have predictive
prognostic value [9, 10]. In HNSCC, high levels of TILs often
indicate a better prognosis and can be considered in-
dependent predictors of recurrence in patients with HNSCC
[11–13]. TILs include T lymphocytes, macrophages, and
dendritic cells. 0e relationship between these cells and the
prognosis of patients with HNSCC and their influence
mechanisms are not completely understood.

CD8+ T lymphocytes, also known as cytotoxic T lym-
phocytes, are the main components of T lymphocytes. Owing
to the presence of major histocompatibility complex (MHC)
class I molecules and lysis of tumour cells with perforin and
granzyme, CD8+ T lymphocytes are the most powerful
antitumour cells in the human body. Some scholars believe
that the level of TILs can be considered an effective indicator
for predicting prognosis. Among patients with HNSCC in
whom CD8+ T lymphocyte infiltration is high; the level of
TILs also exhibits reliable prognostic value [14–16]. Chen
et al. [14] found that the 3-year overall survival (OS) (63.8%)
of patients with a low ratio of CD8+ T/FOXP3+ T lym-
phocytes was considerably decreased in contrast with that of
patients having a higher ratio. Furthermore, a lower ratio
signifies that the balance shifts from the tumoricidal effects of
CD8+ T lymphocytes to the immunosuppression of FOXP3+
T lymphocytes. 0erefore, a balanced CD8+ T/FOXP3+ T
lymphocyte ratio is an effective prognostic indicator for
patients with HNSCC. Shimizu et al. [15] demonstrated that
high levels of CD8+ T lymphocytes at tumour margins were
significantly associated with a better prognosis. However, the
clinical significance and prognostic value of CD8+ T cell-
associated regulatory genes in HNSCC remain unclear, and
further research is required.

In this study, we first screened CD8+ T cell-related genes
through the immune cell datasets. A molecular subtype of
HNSCC premised on CD8+ T cell-related genes was further
developed, and its relationship with patient prognosis and clinical
characteristics was evaluated. Eventually, the 8-gene signature
was generated premised on CD8+ Tcell-associated genes, which
exhibited stable predictive power in evaluating the prognosis and
immunotherapy response of patients with HNSCC.

2. Materials and Methods

2.1. Downloading and Prerocessing Data. A total of 13
datasets related to immune cell lines, including GSE8059,
GSE6863, GSE59237, GSE49910, GSE42058, GSE39889,
GSE37750, GSE28726, GSE28490, GSE27838, GSE27291,
GSE23371, and GSE13906, were downloaded from the Gene
Expression Omnibus (GEO) database. 0ese datasets in-
cluded the chip expression data of 14 distinct immune cells,
which included natural killer T cells, CD4 T cells, plasma-
cytoid dendritic cells, dendritic cells, natural killer cells,
gamma-delta T cells, monocytes, lymphocytes, immature
dendritic cells, eosinophils, myeloid dendritic cells, CD8
T cells, neutrophils, and B cells (Supplementary Table 1).

For the processing of the immune cell data, the following
processes were carried out:

(1) 0e robust multiarray average (RMA) function of
Affy was employed to process each immune cell
dataset. 0e batch effect that was present between the
different datasets was removed utilizing remov-
eBatchEffect function of the limma package. Finally,
the probe was transformed to a Symbol format
according to the annotation file.

We used 0e Cancer Genome Atlas (TCGA) Genomic
Data Commons (GDC) Application Programming Interface
(API) to retrieve the TCGA–HNSCC RNA-seq data as well
as clinical survival and characteristic information. 0e
TCGA–HNSCC RNA-seq data were processed using the
procedures that are listed as follows: (1) We eliminated the
samples without clinical follow-up data. (2) We eliminated
any samples that did not have survival time. (3) 0e samples
that had no status were eliminated. (4)0e Ensemble format
was transformed to the Gene Symbol format. (5)0e middle
value was used for multiple expressions of Gene Symbols. (6)
Genes that exhibited low expression (less than 1 and con-
stituted more than 50% of the sample) were filtered out.

We downloaded the GSE65858 head and neck cancer
dataset with survival time from the GEO database and
processed it in the following steps: (1) we eliminated samples
of normal tissue; (2) we eliminated the samples containing
no clinical follow-up data; (3) we excluded any samples that
lacked data on the OS rate; (4) the samples that had no status
were eliminated; and (5) in accordance with the annotation
file, the probe was transformed to the Symbol format.

After the two datasets were preprocessed, 499 samples
were obtained from TCGA, and 270 samples were obtained
from the GSE65858 dataset. Table 1 depicts the clinical
statistics of the samples collected.

2.2. Analysis of CD8 T Cell-Related Genes Premised on
WGCNA. We examined the co-expressed coding genes and
co-expression modules depending on the expression pat-
terns of these genes utilizing the weighted gene co-
expression network analysis (WGCNA). We then per-
formed cluster analysis on the samples utilizing hierarchical
clustering. 0e analysis was based on 179 expression pat-
terns that were collected from the immune cell datasets. In
addition to this, the Pearson correlation coefficient was
utilised to determine the distance between each gene. 0e
weighted co-expression network applied for the screening of
co-expressionmodules was established with the help of the R
software platform WGCNA. We demonstrated that the co-
expression network conformed to the scale-free network, in
which the logarithm of a node’s connection degree of k,
called log (k), was inversely linked to the logarithm of the
node’s appearance probability, called log (P (k)), and the
correlation coefficient was >0.85. After that, the expression
matrix was transformed to be an adjacency matrix, and
thereafter, this adjacency matrix was modified to become
a topological matrix. Clustering of genes was achieved
utilizing the average-linkage hierarchical clustering tech-
nique premised on TOM. For each gene network, the least
number of genes was adjusted to 150 as per the guidelines of
the standard hybrid dynamic shearing tree. Following the
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completion of the dynamic shearing method for de-
termining gene modules, we quantified each module’
eigengenes before conducting cluster analysis on these
modules. We created a new module with a height of 0.25,
a deepSplit of 2, and a minModuleSize of 100 by merging the

modules that were located near one another. Additionally,
we adopted the R software function clusterProfiler (version
3.14.0) to analyse CD8 T cell-related genes by Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway analysis
and Gene Ontology (GO) functional enrichment analysis.

2.3. Construction of Molecular Typing on the Basis of CD8 T
Cell-Related Genes. Clustering was performed on 499
HNSCC specimens that were part of the TCGA cohort
utilizing ConsensusClusterPlus, and the cumulative distri-
bution function (CDF) was generated to ascertain the op-
timum number of clusters. After observing the CDF delta
area curve, relatively stable clustering results were selected.
Furthermore, the immune subtype characteristics of various
clusters were analysed. In addition, we used the same
method to analyse the GSE cohort for validating the graft
properties of molecular subtypes in different research
cohorts.

2.4. Chemokines and ImmuneCheckpoint Genes Expression in
CD8 T Cell Typing. Chemokines perform an integral
function in the tumour onset and advancement. 0ey can
mediate various immune cells in the tumour microenvi-
ronment (TME) and help T cells to enter the tumour and
subsequently affect tumour immunity and therapeutic ef-
fects. In this research, we analysed differences in the ex-
pression distribution of chemokines across the 2 subtypes. In
the TCGA cohort, we computed the variations (differences)
in gene expression between each of these genes. Addition-
ally, we computed and contrasted the levels of expression of
chemokine receptor genes in the various immune subtypes.

2.5. Development of a Prognostic Risk Model Premised on
CD8 T Cell-Related Genes

2.5.1. Acquisition of Training and Validation Sets. 0e
TCGA dataset had 499 specimens, which were split at
random into the training and the validation set. All of the
data were first subjected to a random grouping, and then that
grouping was repeated one hundred times with replacement
so that the impact of random allocation bias on the reliability
of subsequent modelling could be reduced. 0e ratio of 7 : 3
between the training set and the validation set served as the
basis for the implementation of group sampling. 0e fol-
lowing criteria were utilised to choose the training and
validation sets that were found to be the most appropriate:
(1) Both groups had a comparable age distribution, patient
death ratio, and time spent on follow-up; (2) Following the
clustering of the gene expression patterns of the two ran-
domized group datasets, the number of binary classification
samples remained relatively unchanged. A total of 349 and
150 samples were eventually obtained in the training and test
datasets, respectively. Table 2 displays some of the in-
formation that was gathered from the training and valida-
tion sets in the TCGA dataset. 0e chi-square test was
performed on both the training and test samples. Our
categorization of the data was validated by the findings,

Table 1: Sample information.

Clinical features TCGA-HNSC GSE65858
OS
0 282 176
1 217 94

T stage
T1 34 35
T2 142 80
T3 132 58
T4 180 97
TX 11

N stage
N0 240 94
N1 81 32
N2 152 132
N3 7 12
NX 19

M stage
M0 474
M1 5
MX 20

Stage
I 25 18
II 80 37
III 90 37
IV 304 178

Gender
Male 366 223
Female 133 47

Age
≤60 244 153
＞60 255 117
NA

Smoking
1 111
2 169
3 72
4 135
5 2
7 10

Alcohol
YES 331
NO 157
NA 11

HPV
Negative 64
Positive 19
NA 416

Grade
G1 61
G2 298
G3 119
G4 2
GX 19
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which showed that there were no significant differences
between the two groups (P> 0.05).

2.6. Development of a Model Leveraging LASSO Regression.
To execute a univariate Cox proportional hazard regression
analysis for T cell-associated genes and survival data from
the training set, the survival coxph program from the R
software was utilised. We identified the potential prognostic
genes by setting the cut-off value atP< 0.05. Tominimize the
overall number of genes included in the risk model, we
implemented LASSO regression and additionally

compressed the prognostic genes. Compression estimation
was achieved with the use of the LASSO model. Constructing
a penalty function that can concurrently compress certain
coefficients and set others to zero led to the creation of a more
sophisticatedmodel than would have otherwise been possible.
As a consequence, the benefit of subset shrinking was
retained, even though it resulted in a skewed estimate when
applied to the processing of data containing multicollinearity.
It has the potential to realise the variable selection while
simultaneously assessing parameters and can better cope with
the multicollinearity issue that arises in regression analysis.

3. Results

3.1. Determination of the CD8 T Lymphocyte Marker Genes.
We merged 13 immune cell datasets, eliminated the batch
effect, and subsequently removed the influence before and
after the batch effect through PCA analysis (Supplementary
Figures 1(a) and 1(b)).0e results revealed that the samples of
different datasets were scattered before eliminating the batch
effect and were mixed after eliminating the batch effect.

3.2. Analysis of CD8 T Cell-Related Genes Premised on
WGCNA. 0e hierarchical cluster analysis of expression
profiles of 179 immune cell datasets is shown in Figure 1(a).
0e R software program WGCNA was utilised to create
a weighted co-expression network, and 8 was selected as the
soft threshold. To guarantee that the network would be scale
free, we decided to make β equal to 8 (Figure 1(b)). Fol-
lowing the completion of the dynamic shear approach for
discovering gene modules, we then computed each module’s
eigengenes. We subsequently subjected the modules to
cluster analysis and combined the modules located in close
proximity to each other into a new module with a height of
0.25, deepSplit of 2, and minModuleSize of 150. We ended
up obtaining 14 modules (Figure 1(c)). 0e grey module
included a group of genes that cannot be incorporated into
any of the other modules. We subsequently evaluated the
link between each module and immune cells as shown in
Figure 1(d). It was evident that the pink module was the
most significantly positively linked to CD8 T cells; however,
it exhibited less correlation with other immune cells. Fur-
thermore, it included a total of 446 genes.

3.3. Analysis of the Functional Enrichment of CD8 T Cell-
Related Genes. We further adapted the R software function
clusterProfiler (version 3.14.0) to perform GO functional
enrichment and KEGG pathway analyses on CD8 T cell-
related genes. For the GO functional annotations of genes,
284 items were annotated to biological process (BP) with
significant differences (P< 0.05), and the annotation results
of the first 10 items are shown in Supplementary Figure 2(a).
An aggregate of 26 items was annotated to molecular
function (MF) with significant differences (P< 0.05), and the
annotation results are shown in Supplementary Figure 2(b).
In total, 46 items were annotated to cellular component (CC)
with significant differences (P< 0.05), and the annotation

Table 2: 0e clinical information of the TCGA training set and
validation set.

Clinical features TCGA-HNSC train TCGA-HNSC test P

OS
0 192 90 0.3515
1 157 60

T stage
T1 25 9 0.8781
T2 97 45
T3 90 42
T4 128 52

N stage
N0 165 75 0.3787
N1 55 26
N2 110 42
N3 3 4

M stage
M0 330 144 0.9894
M1 4 1

Stage
I 17 8 0.9973
II 56 24
III 63 27
IV 213 91

Gender
Male 248 118 0.0986
Female 101 32

Age
≤60 167 77 0.538
＞60 182 73

Smoking
1 81 30 0.7446
2 115 54
3 48 24
4 94 41
5 2 0

Alcohol
YES 227 104 0.6082
NO 112 45

HPV
Negative 38 26 0.9769
Positive 12 7

Grade
G1 37 24 0.3393
G2 211 87
G3 83 36
G4 2 0
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Figure 1: (a) A representative cluster analysis sample. (b) An examination of the topology of the network for a series of different soft
threshold powers. (c) 0e gene dendrogram and the colours of the modules. (d) Analysis of the relationship between 14 different modules
and each clinical phenotype.
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results of the first 10 items are shown in Supplementary
Figure 2(b).

Premised on the analysis of KEGG pathway enrichment
of the marker gene, 33 pathways were annotated to be
significant (P< 0.05). 0e results of the first 10 annotations
are shown in Supplementary Figure 2(d). 0e findings of the
gene annotation indicated that these genes are strongly
linked to immune pathways and functions.

3.4. Molecular Typing Premised on CD8 T Cell-Related Genes

3.4.1. Construction of Molecular Typing Depending on CD8 T
Cell-Related Genes. 0e TCGA and GSE65858 gene datasets
were used as the basis for our first univariate analysis of
genes associated with CD8 T cells. 0e univariate survival
analysis revealed that a total of 90 genes in the TCGA cohort
and 25 genes in the GSE65858 cohort were related to
prognosis (Supplementary Tables 2 and 3). Only four in-
tersections were found between them, as shown in
Figure 2(a), which indicated that the consistency of CD8 T
cell-related genes among datasets from different platforms
was poor, and a single CD8 T cell-related gene was quite
different in different cohorts. 0erefore, we further used 111
CD8 T cell-related genes associated with prognosis in the 2
datasets for further investigations (P< 0.05).

Within the TCGA cohort, the program Consensu-
sClusterPlus was utilised to cluster 499 HNSCC speci-
mens. CDF was used to arrive at an answer for the
optimum possible number of clusters. Based on the CDF
delta area curve, it was evident that there was relatively
stable clustering when the Cluster was selected as 3
(Figure 2(b)). We eventually selected k as 3 to obtain two
CD8 T cell-related subtypes (immune cluster (IC))
(Figure 2(c)). As a result of our further research into the
prognosis features of these three immunological subtypes,
we discovered that there were considerable differences
between their respective prognostic profiles, as shown in
Figure 2(d). IC1 exhibited a poor prognosis, whereas IC3
exhibited a good prognosis. In addition, we used the same
method to observe the same phenomenon in the GSE
cohort as shown in Figure 2(e). According to these
findings, the three molecular subtypes that were premised
on the genes associated with CD8 T cells were applicable
in different research cohorts.

3.5. Comparison of Clinical Features between Immunotypes.
In the TCGA dataset, we did a comparison of the distri-
bution of various clinical characteristics across the three
distinct subtypes to observe whether there were any dif-
ferences. 0e following findings were discovered as a con-
sequence of these tests: (1) 0ere was a substantial difference
between the 3 subtypes in terms of their survival rates. 0e
IC1 group with a dismal prognosis had a greater number of
fatalities. (2) 0e proportion of T staging in the three
subtypes was significantly different, and the percentage of
T2, T3 and T4 were greater in the IC1 group. (3) 0e
percentage of grades within the three groups varied con-
siderably. (4)0e percentage of smoking varied substantially

among the 3 groups. (5) 0e percentage of HPV in the 3
groups varied considerably (Supplementary Figures 3(a)—
3(f)).

3.6. Expression of Chemokines and ImmuneCheckpoint Genes
in CD8 T Cell Typing. Studies have found that chemokines
perform a fundamental function in tumour onset and
progression. Chemokines can mediate various immune cells
in the TME and help T cells to enter the tumour and affect
tumour immunity as well as therapeutic effects. 0erefore,
we analysed the differential expression distribution of
chemokines between the two groups. We examined the
differences in genes within the TCGA cohort as shown in
Figure 3(a). Of the 41 chemokines, 33 (80.5%) exhibited
substantial differences between groups, which illustrated
that the degree of immune cell infiltration among subtypes
was different. Differences were also observed in tumour
progression and immunotherapy effects. Furthermore, we
calculated and contrasted the chemokine receptor gene
expression in immune subtypes as shown in Figure 3(b) and
found that 15 (83.33%) of the 18 chemokine receptor genes
exhibited considerable differences in the expression of im-
mune subtypes.

CD8+ Tcells in the TME may secrete interferon-gamma
(IFN-c), which can upmodulate IDO1 and PD-1/PD-L1
gene expression [17, 18]. Studies have demonstrated that the
up modulation of IDO1 expression is favourably linked to
dismal prognosis, tumour progression as well as metastasis
[19, 20]. We extracted 01/IFN-c gene signatures from
a previous study [21] and computed each patient’s IFN-c
score with the aid of the single-sample Gene Set Enrichment
Analysis (ssGSEA) method. Significant differences were
found in the IFN-c scores across the 3 subtypes, and the IC3
subgroup had a higher IFN-c score, whereas the IC1 sub-
group exhibited the least IFN-c score as shown in
Figure 3(c).

In a study by Rooney [22], the average value of PRF1 and
GZMA expression was used to evaluate the intratumoral
immune T cell lytic function of each patient. Significant
differences were found among the three subgroups as shown
in Figure 3(d). IC3 had the highest immune T cell lytic
activity, whereas IC1 had the lowest activity.

0e angiogenesis-related gene set was retrieved from an
earlier study [23], and the angiogenesis score of each patient
was evaluated. Significant differences were observed among
different subgroups as shown in Figure 3(e); the angio-
genesis scores of IC2 and IC3 were significantly higher than
that of IC1.

Furthermore, we acquired 47 immune checkpoint-
associated genes from an earlier research report [21] and
analysed the differences among these genes in distinct im-
mune subtypes. 0e findings indicated that 44 (93.62%) of
these genes exhibited significant differences as shown in
Figure 3(f ). 0ese findings illustrated that there were vari-
ations in immunotherapy response across the subgroups.
Most immune checkpoint-associated genes were expressed
at a high level in IC3, including the genes LAG3, CTLA4,
PDCD1, PDCD1LG2, and IDO1.
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3.7. Immune Properties and Pathway Features of Various
Immunotypes. 0e CIBERSORT technique was adopted to
determine the scores of 22 distinct immune cells present in
each sample included in the TCGA dataset. Figure 4(a) il-
lustrates the distribution patterns of these immune cell
scores among the four distinct subgroups. Differences be-
tween the subtypes of immune cells are shown in Figure 4(b).
We observed that there were substantial variations in im-
munological features across the various subgroups, which
we determined by comparing the immune cell scores of each
subgroup. Significantly high differences were found in
subtypes such as CD8 T cells; resting memory CD4 T cells
and macrophages M0, M1, and M2; these subtypes might
perform an integral function in HNSCC.

Based on the variations observed between the two
subgroups in the previous 10 oncogenic pathways [24], it
was evident that 8 of these pathways exhibited significant
differences among the subtypes (Figure 4(c)).

Immune infiltration analysis illustrated that IC3 exhibited
the highest immunemicroenvironment infiltration score, and
IC1 had the lowest score as shown in Figure 4(d). As per the
findings from the differential expression analysis of immune
checkpoints in distinct subtypes, the expression level of most
immune checkpoint-related genes was considerably elevated
in IC3 as opposed to that in IC1, which may be attributed to
the better prognosis observed in IC3.

To evaluate the connection between our molecular
subtypes and six previously reported pan-cancer immuno-
types, we acquired the molecular subtype-related data of
these samples from earlier studies [25] for comparison (the
ratio of C1 and C2 subtypes was 98.58%, and the prognosis
of the C2 subgroup was more favourable in contrast with
that of the C1 subgroup). Substantial variations were dis-
covered in the immunophenotyping of the previously re-
ported pan-cancer immunotypes as shown in Figure 4(e).

0e C1 subtype exhibiting a poor prognosis constituted
a remarkably elevated proportion of the IC1 subtype, which
we had defined, than that of IC3, and the proportion of the
C2 subtype with a slightly better prognosis was considerably
elevated in IC3 as opposed to that in IC1, which was
consistent with our definition that IC1 had an unfavourable
prognosis.0is analysis illustrated that the three subtypes we
defined could be used as supplements to the six subtypes
reported in the previous study.

3.8. Differential Analysis of Subtypes Using TIDE. We ana-
lysed the differences in chemotherapy and immunotherapy
across distinct molecular subtypes. We used the TIDE
software (https://tide.dfci.harvard.edu/) to examine the
possible clinical impacts of immunotherapy in our defined
molecular subtypes. When the TIDE prediction score was
greater, it meant that there was a greater chance of
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Figure 2: Immune cluster in HNSCC. (a) A Venn diagram showing the intersection of CD8 T cell-related genes that have a substantial
prognostic link in the two cohorts. (b)0eCDF curve of the samples from the TCGA cohort, as well as the CDF delta area curve of consensus
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relationship among the three subtypes in the TCGA dataset. (e) Kaplan–Meier curve of the prognostic relationship among the three
subtypes in the GSE65858 dataset.
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immunological evasion; this implied that the patients had
a less likelihood of benefiting from immunotherapy. As
shown in Figure 5(a), we found that the TIDE scores of IC1
and IC3 were remarkably elevated in contrast with that of
IC2 in the TCGA dataset, implying that IC1 and IC3 could
benefit from immunotherapy more than IC2 can. Simul-
taneously, we contrasted the variation in the predicted Tcell
rejection and dysfunction scores across distinct molecular
subtypes. 0e findings revealed that IC1 exhibited a lower
T cell dysfunction score, as shown in Figures 5(b) and 5(c),
and IC1 exhibited an elevated Tcell rejection score, whereas
IC3 exhibited a decreased T cell rejection score. 0is may be
attributed to the grim prognosis of IC1 and the favourable
prognosis of IC3.

3.9. Analysis of Variations in Chemotherapy/Immunotherapy
among Immune Subgroups. We examined the differences in
the response of patients belonging to various immune
molecular subtypes to chemotherapy and immunotherapy.
We used subclass mapping to identify similarities among the
subtypes we defined and patients under immunotherapeutic
treatment in the GSE78220 dataset. A greater degree of
similarity exists when the P-value is smaller. As a conse-
quence of this, we discovered that the IC3 subtype, which
was studied using the TCGA dataset, was more responsive to
anti-PD-1. Simultaneously, we also analysed the response of

distinct subtypes to standard chemotherapeutic drugs, such
as cisplatin, erlotinib, sorafenib, paclitaxel, and AKT in-
hibitor VIII, and found that contrasted to subtypes, the IC1
was more sensitive to these five drugs (Figures 6(a)–6(f)).

3.10. Establishment of a Prognostic Risk Model Premised on
CD8 T Cell-Related Genes

3.10.1. Randomization of Training Set Sample Groupings.
0e TCGA dataset contained a sum of 499 samples, which
were split at random into training and validation sets. All of
the data were grouped at random a hundred times with
replacement in the early stages of the modelling process to
avoid variations in the random allotment from affecting the
consistency of the final models. 0e ratio of 7 : 3 in the
training set to the verification set was used as the basis for
group sampling. 0e following criteria were adopted to
choose the training and validation sets that were found to be
the most appropriate: (1) Both groups had a comparable age
distribution, patient death ratio, and time spent on follow-
up; (2) Once the gene expression patterns of the two ran-
domized datasets were clustered, the number of binary
classification samples that were present remained relatively
unchanged. Eventually, in the training set, 349 samples were
collected, whereas the test set contained 150 samples. Table 2
presents the information gathered from the TCGA dataset’s
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training and validation sets. 0e chi-square test was per-
formed on the samples derived from both the training set
and the test set. According to the findings, our method of
classification was appropriate, and there were no discernible
variations across the subgroups (P> 0.05).

3.11. Single-Factor Risk Assessment of the Training Set. R’s
survival coxph program was employed to carry out uni-
variate Cox proportional hazard regression for CD8 T cell-
associated genes and survival data in the training set. 0e
cut-off value used for filtering was determined to be P< 0.05.
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Figure 5: (a)0ere are variations in TIDE score among the various subtypes of TCGA. (b) Tcell dysfunction score variations across a variety
of subtypes as measured from TCGA. (c) 0ere are variations in T cell rejection scores across the various subtypes measured via TCGA.
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Figure 6: (a) TCGA subclass mapping manifested that IC3 was highly responsive to anti-PD-1 (Bonferroni-corrected P< 0.05). (b–f) Box
plots displaying the predicted IC50 values for each specimen included in the TCGA dataset.
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Eventually, 68 genes were found with significant variations.
0e results of the univariate Cox analysis are shown in
Supplementary Table 4.

3.12. Multifactorial Risk Analysis of the Training Set. 0e
TCGA and GSE datasets together yielded a sum of 68 CD8 T
cell-related genes that were associated with the prognosis.
However, because of the high quantity, these genes did not
facilitate clinical detection. We additionally compressed
these 68 genes by using lasso regression to minimize the total
number of genes employed in the risk model. To conduct the
LASSO Cox regression analysis, we used the glmnet software
package in R. Figure 7(a) presents the results of an analysis
conducted on the changing trajectory of each independent
variable. It was noticed that the proportion of independent
variable coefficients that tended toward zero progressively
grew with a steady rise in the value of lambda. We used ten-
fold cross-validation to create the model and analysed the
confidence interval (CI) under each lambda as shown in
Figure 7(b). It was evident from the figure that the model
attained an optimum state at a lambda value of 0.0285.
Hence, we selected 15 target genes when lambda was 0.0285
in the next step.

0e Akaike information criterion (AIC) was utilised in
stepwise regression, which took into account the statistical
appropriateness of the model as well as the number of
parameters that were applied to fit the model. 0e stepAIC
approach that was included in the MASS package com-
menced with the most sophisticated model and then re-
moved a variable in order to lower the AIC value. 0e
smaller the value, the better the model, which implied that
the model used lessor parameters to attain a satisfactory

degree of fit. Eventually, with the help of this algorithm, we
were able to cut the number of genes down from 15 to 8.
0ese genes were ERP44, AKIRIN2, GRAP, KLRC3, FCGBP,
LSR, TNFRSF25, and MT1F. 0e following was the equation
for the signature incorporating 8 genes: RiskScore� 0.441 ∗
ERP44 + 0.283 ∗ AKIRIN2-0.400 ∗ GRAP− 1.038 ∗ KLRC3−

0.082 ∗ FCGBP+ 0.224 ∗ LSR− 0.265 ∗ TNFRSF25 +
0.138 ∗ MT1F.

3.13. Development and Assessment of Risk Models. We de-
termined each sample’s risk score by contrasting it to the
expression level of the samples in the TCGA training dataset,
after which we examined how the risk scores were dis-
tributed across the samples, as shown in Figure 7(c). In
addition, we examined the ROC of risk scores for prognostic
classification with the aid of the timeROC software tool in
the R programming. We examined the effectiveness of the
prognostic categorization over 1, 3, and 5 years. As shown in
Figure 7(d), the value of the area under the curve (AUC) in
the model was high. Lastly, we applied zscore to RiskScore
and subdivided the samples whose risk score was >0 into
high-risk groups and those whose risk score was <0 into low-
risk groups. A Kaplan–Meier (KM) curve was also con-
structed. As shown in Figure 7(e), both the groups exhibited
a remarkable difference with P< 0.0001.

3.14. Validation of the Risk Model. We computed each
sample’s risk score depending on the expression level of the
samples in the TCGA validation dataset and analysed the
risk score distribution of the samples as shown in Supple-
mentary Figure 4(a). Additionally, we examined the ROC
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Figure 7: (a) 0e trajectories of change for each independent variable; 0e log value of the independent variable lambda is represented on
the horizontal axis, whereas the coefficient of the independent variable is depicted on the vertical axis. (b) Illustration of each lambda’s
confidence interval. (c) Eight genes’ expression levels, survival time, risk score, and survival conditions in the TCGA training set. (d) AUC
values of ROC curves of the eight-gene signature. (e) Distribution of the KM survival curve for the eight-gene signature in the training set.
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values of risk scores for prognostic classification by
employing the timeROC software tool in the R pro-
gramming language. We evaluated the accuracy of the
prognostic prediction over 1, 3, and 5 years. As shown in
Supplementary Figure 4(b), the model had a high AUC
value. Eventually, we applied zscore to Riskscore and clas-
sified the samples whose risk score was >0 into high-risk
groups and those whose risk score was <0 into low-risk
groups. A KM curve was also constructed. As shown in
Supplementary Figure 4(c), both the groups exhibited
a significant variation with P< 0.0001.

We determined each sample’s risk score by comparing
the expression levels of the samples across all of the TCGA
datasets, and thereafter, we analysed how the risk scores
were distributed, as shown in Supplementary Figure 5(a).
Moreover, we assessed the ROC of risk scores for prognostic
classification with the aid of the timeROC program that is
included in R. We evaluated its prognostic accuracy over 1,
3, and 5 years. As shown in Supplementary Figure 5(b), the
model exhibited an elevated AUC value. Eventually, we
applied zscore to Riskscore and classified the samples whose
risk score was larger than 0 into high-risk groups and those
whose risk score was <0 into low-risk groups. A KM curve
was also constructed. As shown in Supplementary
Figure 5(c), both the groups exhibited a significant variation
with P< 0.0001.

Supplementary Figure 6(a) displays the distribution of
the risk score of the independent verification dataset
GSE65858. In addition, we carried out the ROC analysis of
the prognostic categorization of risk scores by using the
timeROC package as shown in Supplementary Figure 6(b),
we analysed to determine the prognostic predictive accuracy
over 1, 3, and 5 years. Eventually, we applied scores to
Riskscore and subdivided the samples whose risk score was
larger than 0 into high-risk groups and those whose risk

score was smaller than 0 into low-risk groups. A KM curve
was also constructed. As shown in Supplementary
Figure 6(c), both the groups exhibited a significant variation
with P< 0.0001.

3.15. +e Performance of Risk Scores in Various Clinical Pa-
rameters and Molecular Subtypes. We examined the dis-
tribution of risk scores from the TCGA dataset across the
different clinical characteristic groups, and we deduced
that remarkable variations were found in T stage, grade,
subtype grouping, and HPV (Figures 8(a)–8(e); P< 0.05).
0e IC1 group that exhibited the most unsatisfactory
prognosis also had the greatest risk score, whereas the IC1
group had the most favourable prognosis and the least
risk score.

3.16. Relationship of Risk Scores with Channels. 0e ssGSEA
analysis was done by selecting the gene expression patterns
that correspond to the various samples and we employed the
R software program GSVA to perform the analysis. 0is
allowed us to examine the link between the risk scores of the
various samples and the biological functions. After calcu-
lating the scores that each sample generated on the various
functions, we determined the ssGSEA score that corre-
sponded to each function for each sample. Further analysis
was done to ascertain the association that exists between
these functions and risk scores. Features with a correlation
larger than 0.3 were chosen. As shown in Figure 9(a), we
found that 19 of them were inversely linked to the sample
risk scores. In total, 19 KEGG pathways were chosen as the
most relevant. An analysis of clustering was carried out
premised on the enrichment scores of the groups, as shown
in Figure 9(b). 0ese 19 pathways, including KEGG_E-
THER_LIPID_METABOLISM, KEGG_ARACHIDONIC_

−2

0

2

Negative Positive
HPV

Ri
sk

Sc
or

e

wilcox.tests p=0.029

Group
Negative
Positive

(e)

Figure 8: Comparison of the distribution of the risk scores of the CGA dataset across clinical feature groups.
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ACID_METABOLISM, KEGG_B_CELL_RECEPTOR_
SIGNALING_PATHWAY, and KEGG_T_CELL_RE-
CEPTOR_SIGNALING_PATHWAY, were related to im-
mune function and metabolism and decreased with an
increase in risk scores.

3.17. Univariate and Multivariate Analyses of the 8-Gene
Signature. To discover independent clinical applications of
the 8-gene signature model, each variable was included for
univariate and multivariate Cox analyses. 0e findings il-
lustrated that risk scores were always substantially linked to
survival (hazard ratio [HR]� 2.6, 95% CI� 1.93–3.52,
P< 1e − 5) regardless of univariate or multivariate Cox
analysis (Figures 10(a) and 10(b)). According to the findings,

our 8-gene signature model displayed good prediction
performance when used in clinical settings.

3.18. Construction of Nomograms and Forest Diagrams with
Risk Scores and Clinical Parameters. 0e findings of a risk
model can be displayed in a nomogram in a manner that is
both more intuitive and effective. It is more convenient to
predict the outcome using a nomogram. 0e length of
a straight line in a nomogram is used to denote the extent to
which distinct factors contributed to the outcome, and it also
demonstrates how the contribution of distinct values to
those variables affected the final outcomes. We built a no-
mogram model by combining stage and risk scores. We
employed all TCGA datasets to build a nomogram for the
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Figure 9: (a) Correlation coefficients between KEGG pathways and risk scores larger than 0.3 are clustered. (b)0e KEGG pathway that had
a risk score above 0.3 exhibited a distinct ssGSEA score, and this score changed as the risk level grew. 0e samples are shown along the
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Journal of Oncology 19



Names

Age

Gender

T.Stage

N.Stage

Grade

Stage

RiskType

p.value

0.119

0.051

0.147

0.093

0.727

0.002

<1e-5

(95% CI)
Hazard Ratio

1.24 (0.95, 1.62)

0.75 (0.56, 1)

1.24 (0.93, 1.65)

1.26 (0.96, 1.65)

0.95 (0.69, 1.29)

1.76 (1.22, 2.55)

2.67 (2, 3.54)

0.50 0.71 1.0 1.41 3.54
HR

(a)

(95% CI)
Hazard RatioNames

Age

Gender

T.Stage

N.Stage

Grade

Stage

RiskType

p.value

0.033

0.145

0.269

0.577

0.536

0.010

<1e-5

1.36 (1.02, 1.82)

0.8 (0.59, 1.08)

0.82 (0.58, 1.17)

1.09 (0.81, 1.46)

1.1 (0.8, 1.52)

1.89 (1.17, 3.05)

2.6 (1.93, 3.52)

0.50 0.71 1.0 1.41 3.52
HR

(b)

I+II

III+IV

Stage*
−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5

RiskScore***
0 20 40 60 80 100Points

Total points

60 80 100 120 140 160

0.650.50.40.30.20.10.060.04
Pr (time < 365)

0.960.880.70.50.30.160.120.08
Pr (time < 1095)

0.990.9650.90.80.60.40.2
Pr (time < 1825)

Nomogram

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram-prediced OS (%)

O
bs

er
ve

d 
O

S 
(%

)

3-Year
1-Year

5-Year

(d)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

St
an

da
rd

iz
ed

 N
et

 B
en

efi
t

1:100 1:4 2:3 3:2 4:1 100:1

High Risk �reshold

Cost:Benefit Ratio
Nomogram
Stage
RiskScore

All
None

(e)

Figure 10: (a) Univariate analysis of all TCGA datasets. (b) Multivariate analysis of all TCGA datasets. (c) Construction of a multivariate
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combination of stage and risk scores (Figure 10(c)). 0e
findings showed that risk scores had the largest influence on
the rate of survival prediction, which suggested that the risk
model incorporating eight genes could more accurately
anticipate the outcome of the patient’s condition. 0e
correction curve demonstrated that the model exhibited
adequate accuracy (Figure 10(d)). Furthermore, wemade the
DCA diagrams of the stage, risk score, and nomogram.
According to the findings, the nomogram exhibited a higher
degree of clinical applicability (Figure 10(e)).

3.19. Model for the Prediction of Risks Associated with
Immunotherapy. 0ere are not a lot of reliable prognostic
indicators available for immunotherapy at the moment. 0e
discovery of novel prognostic indicators is necessary for the
further development of sophisticated immunotherapy. We
discovered an immunotherapy dataset that had tran-
scriptome data so that we might investigate whether the 8-
gene model may accurately anticipate the advantages of
immunotherapy. Imvigor210 collected expression data from
human mUC specimens taken from patients responsive or
unresponsive to anti-PD-L1 immunotherapeutic treatment.
According to the KM curve, it was determined that patients
with mUC undergoing immunotherapy with a higher risk
score experienced a worse chance of survival (Figure 11(a)).
0e ROC curve demonstrated that the model combined with
the risk score had a higher AUC value (Figure 11(b)). 0ere
were statistically significant variations discovered between
the immunotherapy response and nonresponse scores in the
high- and low-risk groups (Figure 11(c)). We utilised
MCPcounter to calculate the immune cell score of Imvi-
gor210 specimens and analyse the link between risk scores
and TMB, NEO, and immune cell scores. 0e results
revealed that risk scores exhibited an inverse link to NEO
and TMB, and there was not much correlation with immune
cell scores (Figure 11(d)).

We examined the variations in risk scores that existed
between these groups. 0e results revealed significant var-
iations in the effectiveness of risk scores and immunotherapy
(Figure 12(a)). Significant differences were observed among
the risk scores of immune cell groups (Figure 12(b)). Dif-
ferences were found among risk scores of tumour cell groups
(Figure 12(c)). Significant differences were found among the
risk scores of immunophenotype groups (Figure 12(d)).

4. Discussion

In this study, based on 179 expression profiles from 13
immune cell datasets, we first applied the WGCNA algo-
rithm to filter out gene modules that were substantially
linked to CD8+ T cells and obtained 446 genes. Pathway
enrichment analysis revealed that 446 genes were intimately
linked to immune function as well as associated pathways.
Of the 446 genes, 111 genes were strongly linked to prog-
nosis in the TCGA and GSE65858 datasets and were in-
cluded in subsequent analysis. Based on 111 prognosis-
related genes, we divided 499 HNSCC specimens into
three subtypes (IC1, IC2, and IC3) in the TCGA dataset. 0e

prognostic analysis of TCGA and GSE65858 revealed that
the prognosis of patients was poor in the IC1 group and
better in the IC3 group. In terms of immune molecules and
functions among molecular subgroups, considerable varia-
tions were observed in the expression of chemokines, im-
mune checkpoint genes, immune T cell lysis, and immune
cell scores. It was noteworthy that the IFN-c score, immune
T cell lytic activity, immune checkpoint genes, and immune
microenvironment infiltration levels of the IC3 group were
remarkably elevated in contrast with those of the IC1 and
IC2 groups; therefore, patients in the IC3 group exhibited
a better prognosis. Lastly, we analysed the differences in drug
treatment response among the three subtypes. 0e IC3
subtype was more sensitive to anti-PD-1. Simultaneously, we
also analysed the response degree of different subtypes to
traditional chemotherapy drugs such as cisplatin, erlotinib,
sorafenib, paclitaxel, and AKT inhibitor VIII and found that,
as opposed to other subtypes, the IC1 was exhibited greater
sensitivity to the above-mentioned traditional drugs.
According to these findings, the molecular subtypes of
HNSCC premised on CD8+ T cell-related genes distin-
guished patients at low or high risk and those with different
clinical characteristics and exhibited a reliable clinical ap-
plication prospect.

We constructed the 8-gene signature of HNSCC patients
premised on CD8+ T cell-related genes, which exhibited
significant prognostic value in the TCGA and GEO vali-
dation datasets and independently served as a predictor of
HNSCC patients’ prognoses. 0e 8-gene signature we
constructed included the genes ERP44, AKIRIN2, GRAP,
KLRC3, FCGBP, LSR, TNFRSF25, and MT1F. ERP44 is
a molecular chaperone protein regulated by pH and belongs
to the disulfide isomerase family [26]. ERP44 can not only
regulate protein maturation and secretion but also partici-
pate in the modulation of calcium as well as redox ho-
meostasis in the endoplasmic reticulum [26, 27]. In
nasopharyngeal carcinoma, the interaction between ERP44
and ACLY promotes the malignant phenotype of naso-
pharyngeal carcinoma cells [28]. In addition, ERP44 inhibits
the migratory ability of lung cancer cells through IP3R2 [29].
More importantly, honokiol can promote the apoptosis of
oral squamous cell carcinoma cells and exert anti-cancer
effects by inhibiting the expression of ERP44 in oral
squamous cell carcinoma cells [30]. It further promotes the
therapeutic potential of ERP44 as a drug target. AKIRIN2
encodes a new member of the innate immune system [31].
AKIRIN2 and nuclear factor kappa B (NF-kB) work together
to participate in the transcription of immune response genes
downstream of the toll-like receptor (TLR) signalling
pathway [32]. AKIRIN2 is necessary for the growth and
metastasis of lung cancer [33] and liver cancer [34] and
promotes the angiogenesis of gallbladder cancer through
interleukin-6 (IL-6)/signal transducer and activator of
transcription 3 (STAT3)/vascular endothelial growth factor
A (VEGFA) [35]. In addition, AKIRIN2 participates in the
regulation of chemotherapy sensitivity of glioma [36],
chronic myelogenous leukaemia [37], and ovarian cancer
[38]. GRAP encodes members of the GRB2/Sem5/Drk
family [39] and functions as a cytoplasmic signalling protein
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in the inner ear and hearing [40]. 0e high expression of
GRAP is strongly linked to HNSCC patients’ better prog-
noses. 0e malignant phenotype of oral squamous cell
carcinoma cells is inhibited through the Ras/Erk pathway
[41]. KLRC3, which is identified as a natural killer receptor
gene, performs an instrumental function in tumorigenesis
and aggressiveness of glioblastoma [42]. FCGBP is the Fc
fragment connexin of immunoglobulin G. Recent studies
have demonstrated that FCGBP has a similar mucin-like
structure, and its expression is reduced in many solid

tumours such as gallbladder cancer [43], thyroid cancer [44],
and colon cancer [45], suggesting that it is associated with
tumour incidence and progression. LSR encodes lipolytically
activated lipoprotein receptors, which bind to chylo parti-
cles, very-low-density lipoprotein (VLDL), and low-density
lipoprotein (LDL) in the presence of free fatty acids and
promote uptake by cells [46]. Studies have suggested that
LSR enhances the invasive and metastatic capacities of lung
cancer cells [47]. In addition, antibody therapy targeting LSR
inhibits the growth of epithelial ovarian tumours by
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Figure 11: (a) Imvigor210 dataset’ KM curve. (b) 0e Imvigor210 dataset’s ROC curve. (c) Corresponding stacked graphs of immu-
notherapy among different groups of the Imvigor210 dataset. (d) Correlation between risk scores of the Imvigor210 dataset and immune
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inhibiting lipid absorption [48], further indicating the po-
tential of LSR as a therapeutic target.0e protein encoded by
TNFRSF25 is the TNFSF12/APO3L/TWEAK receptor,
which directly interacts with the adaptor TRADD tomediate
the activation of NF-κB and induce cell apoptosis [49].
MT1F belongs to the metallothionein family of proteins,
which can bind to different heavy metals. Both glucocor-
ticoids and heavy metals are responsible for the transcrip-
tional regulation of these proteins. MT1F acts as a tumour
suppressor in colon cancer [50], gastric cancer [51], and liver

cancer [52] and as an oncogene in lung cancer [53] and
breast cancer [54]. In conclusion, this research identified for
the first time ERP44, AKIRIN2, KLRC3, FCGBP, LSR,
TNFRSF25, andMT1F as prognostic biomarkers for patients
with HNSCC; however, their selective impacts and possible
modulatory processes warrant additional research. Fur-
thermore, some pathways related to immune function and
metabolism were decreased with an increase in risk scores.
0e same results were verified in other articles, for example,
the molecular mechanism of prostate cancer and its
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Figure 12: (a) Risk score differences among immunotherapy effectiveness groups. (b) Risk score differences among immune cell groups.
(c) Risk score differences among tumour cell groups. (d) Difference in risk scores among immunophenotype groups (IP: Immune
phenotype; TC: tumour cell; IC: immune cell).
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relationship with immune cell infiltration has been found
that the progression of hormone-sensitive prostate cancer to
castration-resistant prostate cancer may be related to ara-
chidonic acid metabolism [55].

HNSCC is a malignant tumour with a high risk of re-
currence and limited treatment options. However, the
quality of a patient’s life after treatment deteriorates sharply
[56]. Patients who have HNSCC that has recurred or me-
tastasized have fewer treatment choices available, and their
prognoses are dismal, with amedianOS time of less than one
year [57]. With continuous research and the development of
immune checkpoint inhibitors in cancer treatment, the
prognosis of patients with recurrent or metastatic HNSCC
has been improved to some extent. However, some patients
cannot benefit from these inhibitors. Some studies have
found that the disease may progress after PD-1/PD-L1 in-
hibitor treatment [58]. PD-1/PD-L1 inhibitor immuno-
therapy is expensive and has a certain risk of toxicity.
Individualised medication can effectively reduce the oc-
currence of adverse events. 0erefore, it is crucial to identify
stable and efficient biomarkers. In this study, we constructed
the 8-gene signature depending on CD8+ T cells-related
genes in HNSCC patients undergoing immunotherapeutic
treatments. 0ere was a correlation between a greater risk
score and a lower chance of survival. 0e ROC curve
demonstrated that risk score had a higher AUC value, and
a combination of risk score, TMB, and NEO predicted the
immunotherapy response. 0ese results indicate that the 8-
gene signature can predict the response to immunotherapy
and the efficacy of immunotherapy in HNSCC patients.

0is quality study has certain shortcomings. First, our
study employed retrospective samples, and prospective
samples require to be verified. Furthermore, we only
compared changes in the mRNA levels of the 8-gene sig-
nature in HNSCC tissues, and changes in the protein levels
remain unclear. Lastly, we only analysed the prognostic
significance of the 8-gene signature, and we expect to carry
out the further cell and animal experiments to investigate the
functions of related genes and their regulatory effects on
CD8+ T cells. Besides, the 8-gene signature needs to be
further validated in multicenter clinical trials and larger
prospective studies, which would provide a better index for
immunotherapy of HNSCC patients.

Using genes associated with CD8+ T cells, we generated
a molecular subtype of HNSCC in this research. Between the
three subtypes, there were significant variations in the pa-
tient prognosis, clinical features, immunological molecules,
and therapy responsiveness. In addition, the 8-gene signa-
ture we constructed exhibited optimal performance in an-
ticipating the prognosis and immunotherapy responsiveness
of HNSCC patients and had potential clinical
application value.
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