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Background. Prostate cancer (PCa) is one of the most common malignancies in males; we aim to establish a novel angiogenesis-
related gene signature for biochemical recurrence (BCR) prediction in PCa patients following radical therapy. Methods. Gene
expression pro�les and corresponding clinicopathological data were acquired from�e Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) database. We quanti�ed the levels of various cancer hallmarks and identi�ed angiogenesis as the
primary risk factor for BCR. �en machine learning methods combined with Cox regression analysis were used to screen
prognostic genes and construct an angiogenesis-related gene signature, which was further veri�ed in external cohorts. Fur-
thermore, estimation of immune cell abundance and prediction of drug responses were also conducted to detect potential
mechanisms. Results. Angiogenesis was regarded as the leading risk factor for BCR in PCa patients (HR� 1.58, 95% CI: 1.38–1.81),
and a novel prognostic signature based on three genes (NRP1, JAG2, and VCAN) was developed in the training cohort and
successfully validated in another three independent cohorts. In all datasets, this signature was identi�ed as a prognostic factor with
promising and robust predictive values. Moreover, it also predicted higher in�ltration of regulatory T cells and M2-polarized
macrophages and increased drug sensitivity of angiogenesis inhibitors in high-risk patients. Conclusions.�e angiogenesis-related
three-gene signature may serve as an independent prognostic factor for BCR, which would contribute to risk strati�cation and
personalized management of PCa patients after radical therapy in clinical practice.

1. Introduction

As one of the most prevalent malignancies in aging males,
prostate cancer (PCa) ranks second in terms of mortality
rate according to the latest cancer statistics [1]. Most
patients with localized cancer receive standard therapy
such as radical prostatectomy (RP) or radical radiotherapy
(RT) [2]. However, approximately 20%–40% of patients
with RP and 30%–50% of patients with RT will develop
biochemical recurrence (BCR) within ten years [3], which

is de�ned as consecutive rising prostate-speci�c antigen
(PSA) values above 0.2 ng/ml twice following RP or >2 ng/
ml higher than the nadir PSA values following RT [4]. PCa
patients with BCR showed a higher probability of clinical
recurrence and underlying metastasis, and thus, the early
recognition of BCR is of crucial importance for subse-
quent treatments [5]. Currently, clinicopathological pa-
rameters, consisting of Gleason score, TNM stage, and
PSA have been introduced but are insu£cient to predict
BCR [6], and more accurate methods are urgently needed
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to better stratify and earlier identify BCR of PCa patients
after radical therapy.

Angiogenesis, a dynamic process that involves interac-
tions between endothelial cells and the extracellular envi-
ronment, has been proved to play a vital role in the spread
and development of PCa [7, 8]. Besides, higher microvessel
density indicates progression, metastasis, and worse prog-
nosis [9], and therefore, targeting angiogenesis has been the
aim of several clinical investigations and would be a
promising treatment strategy for PCa [10, 11]. Moreover,
measurement of angiogenetic activity holds great potential
in prognostic prediction and markers used to assess anti-
angiogenic treatment response would be beneficial to patient
management in clinical practice [11].

In recent years, molecular markers show outstanding
interpretability and predictive power in improving the di-
agnosis, prognosis, and therapy of urological malignancies
[12]. Particularly, previous studies focused on gene ex-
pression data to develop signatures in discriminating BCR
[13, 14]. However, similar limitations exist in most research.
For example, there are too many genes included in several
signatures, which are technically difficult and too expensive
to perform in clinical settings [5]. Besides, signatures were
independently verified in few validation cohorts and may be
limited by the lack of wide application. In the current re-
search, we firstly explored the association between cancer
hallmarks and BCR, thus identifying the angiogenesis-as-
sociated activities as the primary risk factors leading to
recurrence in PCa patients after radical therapy. Subse-
quently, machine learning methods combined with Cox
regression analysis were performed to construct an angio-
genesis-related signature to predict BCR, which was further
verified in another three independent cohorts. Furthermore,
drug sensitivity prediction, analyses of functional enrich-
ment, and immune cell infiltration would also provide novel
insights into the mechanisms of PCa.

2. Methods

2.1.DataCollectionandPreprocessing. A total of 844 patients
included in four datasets were enrolled in our research based
on the following criteria: (1) patients with primary PCa
followed radical radiotherapy or prostatectomy; (2) patients
with gene expression profiles of tumor biopsies and cor-
responding clinical information (i.e., BCR event, time to
BCR, Gleason score, and total follow-up time); (3) patients
with follow-up timemore than 30 days; and (4) datasets with
over 50 eligible samples. (e RNA-Seq data of 327 PCa
patients was assessed from (e Cancer Genome Atlas
(TCGA) and was utilized as the training cohort to construct
an angiogenesis-related gene signature. In addition, the
microarray data of 223 patients from GSE116918 (Almac
Diagnostics Prostate Disease Specific Array (DSA)) [15] and
221 patients from GSE70770 (Illumina HumanHT-12 V4.0
expression beadchip) [16] and the RNA-seq data of 93
patients from GSE54460 (Illumina HiSeq 2000) were
downloaded from Gene Expression Omnibus (GEO) data-
base [17], all of them were separately used as independent
validation cohorts. Main characteristics of the above datasets

can be seen in Table 1. All RNA-seq and microarray data
included in this study were normalized and log2-
transformed.

2.2. StudyDesign. As illustrated in Figure 1, four stages were
included in this research. By applying single sample gene set
enrichment analysis (ssGSEA), the activities of cancer
hallmarks were initially quantified and then univariate Cox
analysis identified angiogenesis as the primary risk factor for
BCR. After random survival forest analysis, angiogenesis-
related prognostic genes were applied to multivariate Cox
analysis to construct a gene signature, and the signature was
further verified among independent validation cohorts. In
the phases of further investigation, we performed enrich-
ment analysis, immune cell infiltration estimation, and drug
sensitivity prediction to prove its reliability from a functional
perspective.

2.3. Hallmark Selection in BCR. In the training cohort, the
performances of cancer hallmarks were quantified by
ssGSEA algorithm (“GSVA” R package) based on tran-
scriptional profiles and gene signatures derived from the
Molecular Signatures Database (MSigDB) [18, 19]. Subse-
quently, we employed univariate Cox analysis to evaluate the
significance of various cancer hallmarks in BCR of PCa
patients through “survival” R package. Angiogenesis with
the highest hazard ratios (HRs) was included for further
analysis, and based on the angiogenesis-related score, pa-
tients were then divided into high- and low-score groups.
Subsequently, the survival differences, recurrence rate, im-
mune, and stromal scores (“estimate” R package) were
evaluated and compared between groups [20].

2.4. Construction of the Angiogenesis-Related Gene Signature.
(irty-two genes involved in the processes of angiogenesis
were acquired from MSigDB to perform further analyses.
(en we applied two approaches to select potential angio-
genesis-related genes with prognostic values. Univariate Cox
analysis was first used to identify prognostic genes with the
threshold of P< 0.05. Next, random survival forest (RFS)
analysis, an ensemble-tree-based method that adapts ran-
dom forests to survival analysis, was used to select genes by
the minimal depth and variable importance (VIMP) [21].
(e minimal depth suggests the average depth of genes
among all survival trees and smaller values indicate greater
importance, while VIMP measures changes in the predictive
ability of the RSF model when variables are randomly
permuted, higher scores imply increased importance. Since
both of them evaluate the impact of variables from different
perspectives, genes commonly selected by minimal depth,
and VIMP were included for signature construction.
Intersected genes recognized by univariate Cox and RFS
analyses were then employed to multivariate Cox analysis to
construct a gene signature, the angiogenesis-related score
(ARS) was calculated as the expression levels multiplied its
corresponding regression coefficient.
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2.5. Independence and External Validation of ARS. To de-
termine whether the ARS was independent of traditional
clinical features (i.e., age, Gleason score, and pathologic T
stage) in BCR prediction, univariate Cox analysis was
performed in all of the training and validation cohorts. (e
predictive performances of ARS were also measured by
employing time-dependent receiver operating characteristic
(ROC) curves through “timeROC” R package. Besides, PCa
patients were divided into high- and low-risk groups
through X-tile software based on individual ARS, and
survival differences were compared in all cohorts.

2.6. Gene Set Enrichment Analysis. Before analysis, a GEO-
meta cohort was created as the whole validation cohort for
further investigation by merging three GEO datasets
through “SVA” R package. Subsequently, we performed gene
set enrichment analysis (GSEA) to compare the enriched
pathways between high- and low-risk groups, and the GO,
KEGG, hallmark gene sets taken from MSigDB were used as
a reference [19].

2.7. Immune Cell Infiltration Estimation by Deconvolution
Algorithm. CIBERSORT (Cell-type Identification by Esti-
mating Relative Subsets of RNA Transcripts) is a decon-
volution algorithm using gene expression profiles to
characterize immune cell composition [22]. In this way, the
abundance of 22 immune cell subpopulations in the tumor

microenvironment of PCa biopsies was evaluated and
compared between high- and low-risk groups.

2.8. Prediction of Antiangiogenic:erapy Response. Based on
“oncoPredict” R package, a useful tool to estimate the half-
maximal inhibitory concentration (IC50) thus predicting ther-
apeutic responses for each sample through ridge regression,
antiangiogenic responses of PCa patients to three angiogenesis
inhibitors (cabozantinib, lenalidomide, and cediranib) were
individually predicted [23]. Genomic expression profiles of
considerable cell lines and corresponding drug response data
measured with IC50 in the Genomics of Drug Sensitivity in
Cancer (GDSC) database were utilized as references [24].

3. Results

3.1. AngiogenesisWas the Primary Risk Factor for BCR inPCa.
In the training cohort, based on recurrence survival infor-
mation and ssGSEA scores of cancer hallmarks, the HR value
of each hallmark was calculated and ranked (Supplementary
Table S1). Intriguingly, cancer hallmarks belonging to de-
velopment, immune, metabolism, and proliferation cate-
gories were significantly associated with BCR (Figures 2(a)
and 2(b)). In comparison with other hallmarks, such as IFN-
α response and epithelial-mesenchymal transition (EMT),
angiogenesis exhibited the most powerful effect on recur-
rence survival (Figure 2(b)). Similar results were also

Table 1: Clinical characteristics of PCa patients in four independent cohorts.

Characteristics TCGA GSE116918 GSE70770 GSE54460
Total 327 223 201 93
Application Training Validation I Validation II Validation III
Age (%)
<60 126 (38.5) 26 (11.7) 43 (21.4) 38 (40.9)
≥60 201 (61.5) 197 (88.3) 68 (33.8) 55 (59.1)
Unknown 90 (44.8)

Gleason score (%)
5 2 (1.0) 1 (1.1)
6 17 (5.2) 39 (17.5) 35 (17.4) 10 (10.8)
7 165 (50.5) 88 (39.5) 139 (69.2) 73 (78.5)
8 41 (12.5) 47 (21.1) 12 (6.0) 6 (6.5)
9 101 (30.9) 49 (22.0) 10 (5.0) 3 (3.2)
10 3 (0.9) 1 (0.5)
Unknown 2 (1)

pT stage (%)
T1 51 (22.9) 13 (14.0)
T2 113 (34.6) 76 (34.1) 80 (39.8) 61 (65.6)
T3 208 (63.6) 92 (41.3) 116 (57.7) 11 (11.8)
T4 6 (1.8) 4 (1.8) 1 (0.5) 1 (1.1)
Unknown 4 (2.0) 7 (7.5)

Clinical outcomes
BCR (%)
No 272 (83.2) 172 (77.1) 139 (69.2) 51 (54.8)
Yes 55 (16.8) 51 (22.9) 62 (30.8) 42 (45.2)

Metastasis (%)
No 201 (90.1)
Yes 22 (9.9)

Follow-up time (months, mean± SD) 33.94 (26.39) 78.46 (25.64) 55.09 (28.82) 71.40 (38.83)
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Identification of angiogenesis as the primary risk factor
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Figure 1: Flowchart of this study. Four stages are included in our study. Firstly, angiogenesis was identified as the primary risk factor for
BCR by single sample gene set enrichment analysis and survival analysis. Secondly, random survival forest and cox regression analyses
screened prognostic genes and constructed an angiogenesis-related gene signature. (irdly, the predictive ability of the novel signature was
further verified in another three validation cohorts. Moreover, functional enrichment and immune cell infiltration analyses and drug
sensitivity prediction were also conducted to perform further investigation.
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Figure 2: Continued.
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obtained in other validation cohorts, and meta-analysis il-
lustrated a pooled HR of 1.58 for the angiogenesis hallmark
(Figure 2(c)). In the training cohort, 327 patients were
categorized into high- and low-score groups according to the
median angiogenesis-related ssGSEA score, and the high-
score group exhibited worse recurrence survival with
HR� 1.566 and P< 0.001 (Figure 2(d)). Besides, more BCR
occurred in patients of the high-score group and the Z-
scores of angiogenesis were significantly elevated in patients
with BCR during follow-up (Figures 2(e) and 2(g)), and
higher estimate, immune, and stromal scores were also seen
in the high-score group (Figure 2(f)).

3.2. Establishment of an Angiogenesis-Related Gene Signature
for BCR. Among thirty-two angiogenesis-related genes, the
expression levels of almost all genes were upregulated in bi-
opsies of PCa patients who underwent BCR (Figure 3(a)),
while 12 prognostic genes were all risk factors and they
exhibited tight associations with each other (Figure 3(b)). In
the following RSF analysis, eleven genes selected by both
minimal depth and VIMP were included for subsequent an-
alyses (Figure 3(c)).(rough univariate Cox and RSF analyses,
six intersected genes (COL3A1, VCAN, COL5A2, POSTN,
JAG2, and NRP1) were eligible for multivariate Cox regression
analysis (Figure 3(d)). As a result, an angiogenesis-related gene
signature involving only three genes (NRP1, JAG2, andVCAN)
was constructed (Figure 3(e)). ARS was established by the gene
signature and calculated as follows:
ARS� (0.290715 ∗ expression level of
VCAN) + (0.495663 ∗ expression level of
JAG2) + (0.208562 ∗ expression level of NRP1). (e expres-
sion levels of each gene were normalized and log2-transformed.

3.3. ARS Served as an Independent Prognostic Factor for BCR
in Each Cohort. To verify the independency of ARS in

recurrence survival prediction, univariate Cox analysis was
performed for ARS and other three clinicopathological
factors (age, pathologic T stage, and Gleason score), results
illustrated that ARS was consistently a risk factor for BCR in
all cohorts (Figures 4(a), 4(d), 4(g), and 4(j)). Besides, the
Kaplan–Meier (K-M) survival analysis also indicated that
high-risk group had significantly unfavorable prognoses
than low-risk group (Figures 4(b), 4(e), 4(h), and 4(k)), while
the time-dependent ROC curves demonstrated that ARS had
reliable predictive abilities across cohorts (Figures 4(c), 4(f),
4(i), and 4(l)). Clinically, early BCR was an essential indi-
cator for distant metastasis of PCa; therefore, the predictive
ability of ARS was also evaluated in the Validation I cohort
with metastasis-survival information. Results showed that
ARS was a primary risk factor with promising performance
in prediction for metastasis of PCa (Figures 4(m), 4(n), and
4(o)).

3.4. Gene Set Enrichment Analysis. Gene sets in GO and
KEGG were utilized to identify pathways or processes that
were differentially enriched in high- and low-risk groups.
Results illustrated that angiogenesis-related processes in-
cluding “platelet activation,” “VEGF receptor signaling
pathway,” and “aortic development” were enriched in the
high-risk group of both training and whole validation co-
horts (Figure 5(a)), indicating that the novel gene signature
was of angiogenesis-related characteristics. Besides, cancer
hallmarks consisting of “epithelial-mesenchymal transition”
and “TGF-β signaling” were also significantly enriched in the
high-risk group (Figures 5(b) and 5(c)), further confirming
that ARS would be an effective tool in screening patients
with poor prognosis from the functional perspective.

3.5. Inference of Immune Cell Infiltration. (e abundance of
22 subtypes of immune cells was estimated through
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Figure 2: Identification of angiogenesis as the leading risk factor in BCR of PCa patients. (a) Heatmap shows the ssGSEA score of prognostic
hallmark activities in four datasets. Angiogenesis ranks first among prognostic factors leading to BCR (b) and its influence on BCR was
further validated through meta-analysis (c). (d) Kaplan–Meier (K-M) survival curves of BCR survival between high- and low-score groups
stratified by the angiogenesis score. (e) Percentile chart of BCR distribution between high- and low-score groups. (f ) Violin plot illustrated
different stromal, immune, and estimate scores between groups. (g) Box plot of normalized angiogenesis-related score in BCR or non-BCR
patients. BCR: biochemical recurrence. ∗∗P< 0.01; ∗∗∗P< 0.001.
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Cibersort in the training (Figure 5(d)) and whole validation
cohorts (Figure 5(e)). Several immune cells were differen-
tially infiltrated between low- and high-risk groups, while
three of them showed consistent alterations in both training
and whole validation cohorts. To be specific, the amounts of
plasma cells in the high-risk group were lower than that in
low-risk group, while M2-polarized macrophages and reg-
ulatory T cells (Tregs) were highly infiltrated in high-risk
groups.

3.6. Antiangiogenic Response Prediction. Based on the
“oncoPredict” package, the IC50 values of 3 antiangiogenic

drugs (cabozantinib, lenalidomide, and cediranib) were
calculated for each patient. Results revealed that the IC50
values of high-risk group were significantly lower than that
in low-risk patients in both training and whole validation
cohorts (Figures 5(f) and 5(g)), further indicating that they
were more sensitive to antiangiogenic treatments and were
suitable for such therapies.

4. Discussion

Due to the heterogeneous nature of PCa, satisfactory as-
sessment and management of patients after radical therapy
are difficult to accomplish [25, 26]. (erefore, the
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establishment of effective biomarkers to stratify high-risk
patients that easily developed into BCR becomes a critical
clinical challenge, thus helping determine whether further
therapies are warranted [5]. To address this task, here we
identified an angiogenesis-related three-gene signature that
precisely and robustly predicts BCR.

Angiogenesis, the process whereby blood vessels develop
from a preexisting vascular network, establishes a blood
supply to satisfy nutrients and oxygen demands and ac-
complish other metabolic functions [27]. In growing cancer,
the constant production of angiogenesis inducers and cor-
respondingly reduced antiangiogenic factors lead to in-
creased activities of endothelial cells [28]. It has emerged as a
hallmark of carcinogenesis and was essential for tumor
growth and invasion, leading to metastasis [29, 30]. In this
study, by applying ssGSEA, activities of 50 hallmark activ-
ities were quantified. Among them, angiogenesis, IFN-α
response, and EMTwere essential risk factors for BCR, while
angiogenesis ranks first. PCa patients with high angiogen-
esis-related scores bear a poor prognosis than low-score
patients. Consistently, the same results can be seen in an-
other three independent validation cohorts. As previously
reported, indicators of intratumor angiogenic activity, in-
cludingmicrovessel density and expression level of VEGF-A,
were tightly associated with higher tumor stage and grade,
and worse prognosis in PCa [31, 32]. Increased angiogenic
activities and higher expression levels of angiogenesis-re-
lated genes in BCR in comparison with non-BCR patients
revealed that it served as a vital factor in the recurrence and
progression of PCa.

In the process of gene signature establishment, besides
univariate Cox regression analysis, a random survival forest
algorithm was also applied for gene selection [33]; common
angiogenesis-related genes selected by both approaches were
further put into multivariate Cox regression analysis to

develop ARS. In contrast with other clinicopathological
factors, higher ARS consistently indicated poor prognosis of
PCa patients, and it also has a promising ability in BCR
prediction. Previous studies also provided several gene
signatures for BCR prediction; however, too many genes
included or the lack of multicenter validation limited their
application [5]. For example, Abou-Ouf et al. constructed a
10-gene signature for BCR prediction with an AUC of 0.65
[34], while only one cohort was utilized to validate gene
signatures in other studies [13, 35]. (e AUC values of our
signature with only three genes were more than 0.7 in the
training cohort and higher than 0.65 in most validation
cohorts for BCR. Clinically, BCR indicates a major disease
progression and is closely correlated with an increased risk
of metastasis for PCa patients [5].(erefore, we evaluated its
performance in metastasis prediction, and results also in-
dicated a higher risk in high ARS patients with an AUC of
more than 0.7. (e above results were trained and validated
in four independent cohorts, which strongly verified the
robustness of ARS. Furthermore, it is of great significance to
use tumor-risk stratification tools for personalized medicine
and thus to choose an optimal management strategy [36],
and the ARS allowed us to classify PCa patients after radical
therapy into high- and low-risk of early BCR. Given its stable
performance and comprehensive validation in multiple
cohorts, we trust that this novel angiogenesis-related sig-
nature would serve as a potential tool for clinical application.

In the present study, GSEA recognized that the high-risk
group divided by ARS was mainly enriched in direct or
indirect angiogenesis-related processes, such as “positive
regulation of endothelial cell proliferation,” “VEGF receptor
signaling pathway,” and “aortic development” [37]. (ese
results further highlighted that more angiogenesis-related
activities occurred in the tumors of PCa patients with higher
ARS, and it was tightly associated with BCR. As for hallmark
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Figure 3: Construction of the angiogenesis-related gene signature. (a) Box plot shows the aberrant expression levels of angiogenesis-related
genes in BCR in comparison with non-BCR patients. (b) (e interaction of 12 angiogenesis-related prognostic genes in PCa. Expression
differences between BCR and non-BCR tissues were depicted in different colors. Genes upregulated in BCR: red; genes with no significant
alterations: green. Risk factors are colored in blue while protective factors are depicted in yellow. (e lines connecting genes represented
their interaction with each other. (e size of each circle represents the prognosis effect of each gene scaled by P value. (c) Variable
importance plot of the random survival forest analysis comparing rankings betweenminimal depth and variable of importance (VIMP).(e
VIMP rank is reported on the x-axis. (e minimal depth (rank order) is on the y-axis. (e vertical line divides variables with positive VIMP
(left) from those with negative VIMP (right; unimportant). (e horizontal line indicates the minimal depth threshold: important variables
are below the line. (e variables on the diagonal red line are those ranked equally by the two methods. (d) Venn diagram shows commonly
selected six genes by univariate cox regression and random survival forest analyses. (e) Bar graph displays coefficients of each gene included
in the signature.
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Figure 4: Continued.

Journal of Oncology 9



Variable

Age

T stage
T3-4 vs T1-2

Gleason score

Risk score

Hazard ratio
0 1 2 3 4 5

1.589
(1.112, 2.269)

1.561
1.031, 2.363)

2.268
(0.951, 5.408)

0.999
(0.936, 1.068)

HR (95%CI)

(m)

High-score
Low-score

Risk

HR = 1.589
P < 0.006

0 2 4 6 8 10
Time (years)

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

(n)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity

AUC at 1 years: 0.759
AUC at 3 years: 0.621
AUC at 5 years: 0.786

(o)

Figure 4: Angiogenesis-related gene signature serves as an independent prognostic factor with promising and robust predictive values.
Forest plot illustrates the risk score calculated by angiogenesis-related gene signature is an independent risk factor for BCR in the training
(a), validation I (d), validation II (g), and validation III (j) cohorts, respectively. K-M survival curves show poor prognosis in high-risk
patients divided by the gene signature in four cohorts (b), (e), (h), and (k). ROC curves illustrate the promising and stable predictive ability
of the gene signature in four cohorts (c), (f ), (i), and (l). (is novel signature can also be a prognostic factor for metastasis (m), and it is
suitable for risk stratification and metastasis prediction in the validation I cohort (n), (o).
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activities, EMT and TGF-β signaling were significantly
enriched in the high-risk group. Several studies have re-
ported that the TGF-β signaling pathway contributed to
EMT, angiogenesis, migration, and metastases in several
malignancies including PCa, while EMT was widely regar-
ded as a certain cancer hallmark [30, 38, 39]. Above results of
functional enrichment analyses indicated angiogenesis-re-
lated pathways were highly enriched in high-risk patients
and further proved the predictive ability from a functional
perspective.

(e immune microenvironment that includes several
subtypes of coexisting immune cells may influence PCa
recurrence [40]. In this study, the infiltration of plasma cells
was lower in high-risk PCa patients. Similarly, previous
studies identified that reduced or nonenriched plasma cell
environment independently characterized an aggressive
phenotype in localized PCa, which was in agreement with
our findings [41]. Additionally, increased infiltration of
Tregs and M2-polarized macrophages were found in high-
risk patients. It has been widely established that Tregs play
critical roles in aggravating cancer development and M2-
polarized macrophages are related to immune suppression
and cancer metastasis [42]. In the immunological landscape
of PCa, Tregs may contribute to adverse clinical courses as
they are associated with advanced diseases [43], while higher

numbers of M2 macrophages increased the mortality rate
[44]. (e above three categories of immune cells may
contribute to the higher rate of occurrence and poor
prognosis of high-risk patients.

Although high levels of angiogenesis-related activities
indicated tumor progression in PCa, antiangiogenic thera-
pies failed to provide essential treatment benefits in current
clinical trials [10, 11]. One possible explanation is that
biomarkers assessing response to antiangiogenic treatment
and screening patients who are more likely to take the
advantage of antiangiogenic therapies are currently absent
[45]. In this research, we evaluated the therapeutic responses
to three available angiogenesis inhibitors of each patient
based on GDSC database. Our results demonstrated that
patients with high ARS or in the high-risk group had lower
IC50 values in all cohorts, which demonstrated that those
patients would be more likely to benefit from antiangiogenic
treatments. (is novel signature showed potential in iden-
tifying specific subgroups of patients whomight benefit from
antiangiogenic therapies.

Despite promising and robust performance in BCR
prediction, there are still some limitations to this study.
Firstly, restricted by its retrospective proposal, there are high
demands for further prospective studies with larger cohorts
to verify the reproducibility and prognostic accuracy of this
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Figure 5: Functional enrichment analysis, immune cell estimation, and drug sensitivity prediction in high- and low-risk groups. Lollipop
plot shows pathways significantly enriched in high-risk groups in both training and whole validation cohorts (a). GSEA plots of enriched
hallmark activities in the training (b) and whole validation cohorts (c). Box plots show the abundance of immune cells between high- and
low-risk groups in the training (d) and whole validation cohorts (e). Bee graph of the predictive IC50 values for three anti-angiogenesis
agents in the training (f) and whole validation cohorts (g). IC50: half-maximal inhibitory concentration. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001.
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novel gene signature. Moreover, biological mechanisms and
tumor microenvironments occurring in high-risk groups are
still unclear and required to be further emphasized in
functional research. Although an intriguing phenomenon
was observed in drug responses, laboratory and clinical
evidence to support this conclusion is worthy of further
assessment.

5. Conclusion

In summary, we successfully established and validated a
novel angiogenesis-related three-gene signature, which
could accurately and robustly predict clinical outcomes
(BCR and metastasis) and Tregs/M2-polarized macrophages
infiltration of PCa patients. Moreover, high-risk patients
showed better antiangiogenic responses, which may be
suitable for such treatments and thus be benefited. (ere-
fore, our gene signature promises to improve prognosis
prediction and offer proper management plans for PCa
patients after radical therapy.
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