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Objective. Eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) is involved in the occurrence and development of various
tumors. However, the effect of EIF4G2 in gastric cancer (GC) has not been fully explored. The purpose of this study was to explore
the function and mechanism of EIF4G2 in GC. Methods. The Tumor Immune Estimation Resource 2.0 database was used to
analyze EIF4G2 expression in various cancers and the relationship between EIF4G2 expression and tumor-infiltrating immune
cells. Gene Expression Profiling Interactive Analysis was utilized to assess the EIF4G2 expression level and its effect on survival
in GC. UALCAN was conducted to analyze EIF4G2 expression in various subgroups of GC. The Kaplan–Meier plotter was
employed for survival analysis. Receiver operator characteristic (ROC) curve analysis was applied to evaluate the diagnostic
role of EIF4G2 in GC. LinkedOmics was used to identify the co-expressed genes and Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes pathways. The Tumor-Immune System Interaction database was employed to analyze the correlation
between EIF4G2 expression and tumor-infiltrating lymphocytes. The starBase web platform was used to predict the upstream
microRNAs and long noncoding RNAs. Results. EIF4G2 expression was upregulated in GC tissues compared to normal
controls. High expression of EIF4G2 indicated poor prognosis in GC. ROC analysis revealed that EIF4G2 had good diagnostic
ability to distinguish GC from normal tissues. Immune infiltration analysis indicated that EIF4G2 expression may be involved
in the modulation of tumor immune infiltration in GC. Finally, we determined that the Taurine Upregulated 1 (TUG1)/hsa-
miR-26a-5p/EIF4G2 axis was the most likely regulatory pathway involved in GC development. Conclusions. EIF4G2 was
upregulated in GC and elevated expression of EIF4G2 indicated unfavorable prognosis. Moreover, EIF4G2 expression may be
involved in the regulation of tumor immune cell infiltration. The TUG1/hsa-miR-26a-5p axis is a likely upstream regulatory
mechanism of EIF4G2 in GC. EIF4G2 may thus serve as a prognosis biomarker and present a new therapeutic target.

1. Introduction

Gastric cancer (GC) is a serious threat to human health
worldwide, which ranks fifth in incidence and fourth in
mortality among all cancers [1, 2]. Since the early clinical
symptoms are not obvious, most GC patients are already
in the advanced stage when diagnosed [3]. Therapeutic
methods are few and their effectiveness is limited to later-
period tumor patients, when the 5-year survival rate is poor

[4, 5]. Therefore, it is necessary to explore the molecular
mechanisms that regulate GC occurrence and develop novel
biomarkers for early diagnosis.

The function of eukaryotic translation initiation factors
(eIFs) in tumorigenesis has been widely studied. Studies
have shown that eIFs are highly expressed in many malig-
nant tumors [6–8]. Eukaryotic translation initiation factor
4 gamma 2 (EIF4G2) is a member of the eIF family, which
plays a vital role in regulating protein translation [9–11].
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Research has revealed that abnormal expression of EIF4G2 is
closely related to the occurrence and development of
tumors. Some research has suggested EIF4G2 acts as onco-
gene. For example, downregulation of EIF4G2 by microRNA
(miR)-379 inhibits the proliferation, migration and invasion
of osteosarcoma cells [12]. Diffuse large B cell lymphoma
(DLBCL) cell lines and patient samples have shown upregu-
lated EIF4G2 expression, while downregulation of EIF4G2
decreased translation, cell proliferation and cell colony for-
mation, thus inhibiting DLBCL development [13]. However,
another study found that EIF4G2 transcripts were downreg-
ulated in bladder tumors, and this downregulation was asso-
ciated with invasive tumors [14]. In GC, the effect of EIF4G2
has not been fully explored.

In the present study, various public online databases
were utilized to analyze EIF4G2 expression. Firstly, Tumor
Immune Estimation Resource 2.0 (TIMER2.0), Gene
Expression Profiling Interactive Analysis (GEPIA), UAL-
CAN databases, and the Kaplan–Meier plotter were
employed to analyze the expression level and prognosis of
EIF4G2 in GC. Then, the co-expression of genes and their
relationship with immune cells were explored using Linke-
dOmics, TIMER2.0, and the Tumor-Immune System Inter-
action database (TISIDB). Finally, the starBase web
platform was used to predict upstream microRNAs (miR-
NAs) and long non-coding RNAs (lncRNAs). In our study,
we found that EIF4G2 was upregulated in GC, and high
expression of EIF4G2 indicated poor prognosis. Moreover,
EIF4G2 participated in the regulation of tumor immune cell
infiltration in GC. The Taurine Upregulated 1 (TUG1)/hsa-
miR-26a-5p axis was determined to be the most likely
upstream regulatory mechanism for EIF4G2 in GC.

2. Methods

2.1. TIMER2.0 Database. TIMER2.0 (http://timer.cistrome
.org/) is a web server for the systematic analysis of tumor-
infiltrating immune cells (TIICs) across diverse cancer types
[15]. It allows users to compare the expression of a gene
between tumor and normal tissues in multiple cancers. In
this study, the TIMER2.0 website was used to analyze differ-
ential expression of EIF4G2 in tumor and normal tissues in
various cancers. We then predicted the relationship between
EIF4G2 expression in GC and six tumor-infiltrating immune
cells, including B cells, CD4+ T cells, CD8+ T cells, neutro-
phils, macrophages, and dendritic cells (DCs). In addition,
we analyzed the correlation between the molecular markers
of immune cells and expression of EIF4G2.

2.2. GEPIA Database. GEPIA (http://gepia.cancer-pku.cn/)
is an interactive online web tool for the analysis of tissue
samples from the cancer genome atlas (TCGA) and the
genotype-tissue expression (GTEx) projects [16]. In this
study, the website was used to explore mRNA expression
of EIF4G2 in tumor and normal tissues. Also, we determined
the association between EIF4G2 expression and overall sur-
vival of patients with GC.

2.3. UALCAN Database. UALCAN (http://ualcan.path.uab
.edu/) is a comprehensive web portal to perform in-depth
analyses of TCGA gene expression data [17]. In this study,
UALCAN was employed to explore the mRNA expression
of EIF4G2 across tumor and normal samples, as well as in
various tumor subgroups based on patients’ gender, nodal
metastasis status, individual cancer stage, and tumor grade.
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Figure 1: Expression analysis of EIF4G2 in GC using different online tools. (a) The expression of EIF4G2 in different types of tumor and
normal tissues in the TIMER2.0 database. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. (b) EIF4G2 expression in TCGA GC tissues compared with
corresponding TCGA and GTEx normal tissues (GEPIA). ∗P < 0:01. EIF4G2 expression level in GC (UALCAN) based on sample type (c),
patient’s gender (d), nodal metastasis status (e), individual cancer stage (f), and tumor grade (g). N0: no regional lymph node metastasis; N1:
metastases in one to three axillary lymph nodes; N2: metastases in four to nine axillary lymph nodes; N3: metastases in ten or more axillary
lymph nodes. Grade 1: well differentiated (low grade); Grade 2: moderately differentiated (intermediate grade); Grade 3: poorly
differentiated (high grade); Grade 4: undifferentiated (high grade). ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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2.4. Kaplan–Meier Plotter (KM Plotter) Database. The KM
plotter (http://kmplot.com/analysis/index.php?p=
background) is a meta-analysis-based platform for survival
analysis of 54 k genes (mRNA, miRNA, and protein-coding)
in 21 types of cancers, the data sources of which include the
gene expression omnibus (GEO), European Genome-
phenome Archive, and TCGA [18]. In this study, the KM
plotter was applied to evaluate the relationship between clin-
ical outcomes and EIF4G2 expression in GC. The associa-
tion between has-miR-26a expression and cancer survival
was also evaluated using this web database.

2.5. Receiver Operating Characteristic (ROC) Curve. The
diagnostic role of EIF4G2 in GC was evaluated by ROC
curve analysis based on RNA sequencing (RNA-Seq) data
in the transcripts per million (TPM) format of TCGA-GTEx,
which were downloaded from UCSC XENA (https://
xenabrowser.net/datapages/). R software (version 3.6.3) was
used for analysis and visualization.

2.6. LinkedOmics Database. LinkedOmics (http://www
.linkedomics.org/login.php) is a publicly available portal that
includes multiomics data from all 32 TCGA cancer types
and ten clinical proteomics tumor analysis consortium can-
cer cohorts [19]. In this study, the LinkFinder module of
LinkedOmics was used to identify the co-expressed genes
of EIF4G2 in GC and produce volcano plots and related heat
maps. The co-expressed genes were then used for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis in the LinkInterpreter
module.

2.7. TISIDB Database. TISIDB (http://cis.hku.hk/TISIDB/) is
an online web portal for examining tumor and immune sys-

tem interactions [20]. In this study, we use the TISIDB to
analyze the correlation between EIF4G2 expression and
tumor-infiltrating lymphocytes (TILs) across human can-
cers. Based on the gene expression profile, the relative abun-
dance of TILs was inferred by using gene set variation
analysis. The correlations between EIF4G2 and TILs were
measured by Spearman’s test.

2.8. starBase Database Analysis. starBase(https://starbase
.sysu.edu.cn/) is an open-source platform for exploring the
miRNA-RNA, RNA-RNA, and protein-RNA interactions
from UV cross-linking and immunoprecipitation (CLIP)-
seq, degradome-seq, and RNA-RNA interactome data [21].
In this study, the online tool was used to predict miRNAs
binding to EIF4G2. The miRNAs that were identified by
more than two programs (PITA, RNA22, miRmap, microT,
miRanda, PicTar, and TargetScan) were selected for subse-
quent analyses. The candidate lncRNAs were also explored
by using the platform. In addition, starBase was employed
to perform expression correlation analysis for miRNA-
EIF4G2, lncRNA-miRNA, and lncRNA-EIF4G2 interactions
in GC. The expression level of miRNAs and lncRNAs in
tumor and normal samples was also analyzed in GC by
starBase.

2.9. RNA-Seq Data of TUG1 in GC. The RNA-Seq data of
TUG1 for expression level and survival analysis in GC were
obtained from TCGA. For further study, RNA-Seq data with
fragments per kilobase per million type format were con-
verted to TPM format and subjected to log2 transformation.
R software (version 3.6.3) was used for analysis and
visualization.
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Figure 3: Continued.
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2.10. Statistical Analysis. Student’s t-test was used to com-
pare the gene expression level in tumor and normal samples.
Survival analysis was conducted using log-rank tests. ROC
curve analysis was applied to detect the cutoff value of
EIF4G2 using the pROC package (version 1.17.0.1). P <
0:05 was considered statistically significant in this study.

3. Results

3.1. EIF4G2 Was Upregulated in GC. Firstly, we analyzed the
expression levels of EIF4G2 in multiple tumors and normal
tissues based on the TIMER2.0 database. As shown in
Figure 1(a), compared with normal controls, EIF4G2 was
markedly upregulated in a variety of cancers, including
esophageal carcinoma (ESCA), cholangiocarcinoma
(CHOL), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), liver hepatocellular carci-
noma (LIHC), lung squamous cell carcinoma (LUSC), and

stomach adenocarcinoma (STAD). Then, the GEPIA data-
base was used to validate the expression of EIF4G2. The
results showed that EIF4G2 expression was significantly ele-
vated in GC (Figure 1(b), P < 0:01). Subsequently, the asso-
ciation between EIF4G2 expression and clinicopathological
features in GC patients was investigated using the UALCAN
platform. As presented in Figures 1(c)–1(g), we found that
based on the analysis of sample types, patients’ gender, nodal
metastasis status, individual cancer stages, and tumor
grades, the expression of EIF4G2 in GC tissues was signifi-
cantly higher than in normal tissues. All the above suggested
that EIF4G2 was abnormally overexpressed in GC and could
possibly serve as a biomarker of GC.

3.2. High Expression of EIF4G2 Indicated Poor Prognosis in
GC. Next, survival analysis was performed to predict
whether the expression of EIF4G2 affected GC patients’
prognoses. As depicted in Figure 2(a), higher mRNA levels
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Figure 3: The co-expressed genes with EIF4G2 in GC from the LinkedOmics database. (a) All significantly associated genes with EIF4G2
distinguished by Pearson test in the GC cohort. (b–c) Heat maps showing the top 50 genes positively and negatively related to EIF4G2 in
GC. Red represents positively linked genes and blue represents negatively linked genes. (d–g) GO analysis and KEGG pathways of the genes
co-expressed with EIF4G2 in GC showing biological process (d), cellular component (e), molecular function (F) and KEGG pathways (g).
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of EIF4G2 in GC were significantly associated with shorter
overall survival (OS) in GEPIA. Then, the Kaplan–Meier
plotter database was used to evaluate the prognosis associ-
ated with EIF4G2 expression in patients with GC, as well
as the prognosis in different pathological subtypes.
Figures 2(b)–2(d) shows that high expression of EIF4G2
was significantly correlated with poor OS, post progression
survival (PPS) and first progression (FP) in GC. Exploiting
the RNA-Seq data, we further verified the effect of EIF4G2
on the survival of GC patients. The results showed that high
expression of EIF4G2 was negatively correlated with OS in
patients with grade 3, stage 2, and stage 4 cancers
(Figures 2(e)–2(h), P < 0:05). Finally, in view of its prognos-
tic value in GC, we generated ROC curves to further analyze
the diagnostic value of EIF4G2 in GC. As shown in
Figure 2(i), the area under the curve (AUC) value was

0.844, indicating that EIF4G2 had good diagnostic ability
to distinguish GC from normal controls. These results indi-
cate that high expression of EIF4G2 is a biomarker of poor
prognosis in GC, and that EIF4G2 may serve as a diagnostic
biomarker for GC.

3.3. EIF4G2 Co-Expression Network in GC. To investigate
the mechanism of action for EIF4G2, the co-expression net-
work of EIF4G2 was constructed using the LinkedOmics
database. A volcano plot indicated that 11954 genes (dark
red dots) were positively correlated with EIF4G2 expression,
and 8271 genes (dark green dots) were negatively correlated
(Figure 3(a)). The 50 genes with the strongest positive and
negative correlations are presented in Figures 3(b)–3(c).
Gene set enrichment analysis was then applied to analyze
the GO terms and KEGG pathways of the genes co-
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Figure 4: Correlations of EIF4G2 expression with immune infiltration level. (a) Correlations between expression of EIF4G2 with tumor
purity, and infiltration level of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and DCs in GC (TIMER2.0). (b)
Relationship between the expression of EIF4G2 and 28 types of TILs across human cancers from TISIDB. (c–f) Top four TILs displaying
the greatest Spearman correlation with EIF4G2 expression in GC. P < 0:05 is statistically significant.
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Table 1: Correlation analysis between EIF4G2 and markers of immune cells in GC.

Description Gene marker
None Purity

Cor P Partial. Cor Partial. P

B cell
CD19 0.019 7.04E-01 0.015 7.75E-01

CD38 0.196 6.20E-05 0.201 8.35E-05∗∗∗

CD8 T cell
CD8A 0.081 9.97E-02 0.088 8.57E-02

CD8B 0.03 5.43E-01 0.046 3.69E-01

CD4 T cell CD4 0.169 5.34E-04∗∗∗ 0.179 4.64E-04∗∗∗

M1 macrophage

NOS2 0.086 8.06E-02 0.105 4.17E-02∗

IRF5 0.116 1.86E-02∗ 0.106 3.99E-02∗

PTGS2 0.229 2.60E-06∗∗∗ 0.242 1.91E-06∗∗∗

M2 macrophage

CD163 0.34 1.37E-12∗∗∗ 0.347 3.64E-12∗∗∗

VSIG4 0.169 5.63E-04∗∗∗ 0.178 5.10E-04∗∗∗

MS4A4A 0.213 1.28E-05∗∗∗ 0.223 1.17E-05∗∗∗

ARG1 0.139 4.63E-03∗∗ 0.146 4.28E-03∗∗

MRC1 0.319 3.51E-11∗∗∗ 0.321 1.65E-10∗∗∗

Neutrophil

CEACAM8 0.14 4.16E-03∗∗ 0.155 2.54E-03∗∗

ITGAM 0.251 2.41E-07∗∗∗ 0.252 6.63E-07∗∗∗

CCR7 0.104 3.48E-02∗ 0.12 1.91E-02∗

MPO 0.191 9.35E-05∗∗∗ 0.225 9.71E-06∗∗∗

DC

HLA-DRA 0.052 2.90E-01 0.057 2.67E-01

HLA-DPA1 0.034 4.89E-01 0.034 5.05E-01

NRP1 0.34 1.40E-12∗∗∗ 0.342 7.89E-12∗∗∗

ITGAX 0.232 2.00E-06∗∗∗ 0.247 1.09E-06∗∗∗

CD141 0.169 5.34E-04∗∗∗ 0.165 1.23E-03∗∗

Monocyte
CSF1R 0.23 2.43E-06∗∗∗ 0.231 5.47E-06∗∗∗

CD86 0.194 6.68E-05∗∗∗ 0.214 2.69E-05∗∗∗

NK cell

KIR2DS4 0.114 2.06E-02∗ 0.12 1.96E-02∗

KIR3DL3 0.032 5.11E-01 0.045 3.86E-01

KIR3DL2 0.114 2.04E-02∗ 0.132 1.03E-02∗

KIR3DL1 0.147 2.74E-03∗∗ 0.151 3.24E-03∗∗

KIR2DL4 0.102 3.75E-02∗ 0.112 2.91E-02∗

KIR2DL3 0.163 8.89E-04∗∗∗ 0.173 7.43E-04∗∗∗

KIR2DL1 0.164 7.83E-04∗∗∗ 0.189 2.12E-04∗∗∗

T cell
CD3D 0.022 6.51E-01 0.035 5.00E-01

CD2 0.128 9.19E-03∗∗ 0.145 4.73E-03∗∗

T cell exhaustion

CTLA4 0.209 1.91E-05∗∗∗ 0.229 6.48E-06∗∗∗

LAG3 0.063 2.02E-01 0.061 2.38E-01

HAVCR2 0.211 1.53E-05∗∗∗ 0.22 1.62E-05∗∗∗

GZMB 0.057 2.43E-01 0.057 2.66E-01

PDCD1 0.076 1.22E-01 0.093 7.16E-02

TAM
IL10 0.234 1.50E-06∗∗∗ 0.246 1.24E-06∗∗∗

CD68 0.109 2.67E-02∗ 0.1 5.11E-02

Tfh
BCL6 0.238 9.36E-07∗∗∗ 0.237 3.01E-06∗∗∗

IL21 0.151 2.00E-03∗∗ 0.155 2.46E-03∗∗
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expressed with EIF4G2. The results showed that at the GO-
BP (biological process) level, these genes were mainly
enriched in cargo loading into vesicle (Figure 3(d)). GO:CC
(cellular component) was mainly involved in endoplasmic
reticulum exit site, coated membrane and chromosomal
region, among others (Figure 3(e)). GO:MF (molecular func-
tion) was mainly related to ubiquitinyl hydrolase activity,
helicase activity, structural constituent of nuclear pore and
regulatory RNA binding, among others (Figure 3(f)). KEGG
pathway analysis indicated that the genes joined mainly in

ubiquitin-mediated proteolysis, circadian rhythm, inositol
phosphate metabolism, TGF-beta signaling pathway, and
phosphatidylinositol signaling system (Figure 3(g)).

3.4. Correlation Analysis between EIF4G2 Expression and
Immune Cell Infiltration in GC. Using TIMER 2.0, we ana-
lyzed the correlation between EIF4G2 expression and the
six types of TIICs. As shown in Figure 4(a), EIF4G2 expres-
sion was significantly and positively associated with CD8+T
cells ðr = 0:257, P = 3:74e − 07Þ, neutrophils (r = 0:283, P =
1:99e − 08), macrophages (r = 0:288, P = 1:19e − 08) and
DCs (r = 0:138, P = 7:00e − 03) in GC. However, the results
showed a negative correlation with infiltrating levels of B
cells (r = −0:114, P = 2:68e − 02) and no correlation with
CD4+ T cells (r = 0:026, P = 6:10e − 01). Then, we further
evaluated the correlation between EIF4G2 expression and
28 types of TILs in the TISIDB database. Figure 4(b) shows
the relationship between expression of EIF4G2 and 28 types
of TILs across human cancers. As presented in Figures 4(c)–
4(f), the expression of EIF4G2 was correlated with abun-
dance of Type 2T helper cells (Th2;r = 0:196, P = 6:17e −
05), activated CD4 T cells (Act _CD4; r = 0:163, P =
0:00086), effector memory CD4 T cells (Tem _CD4; r =
0:164, P = 0:000832), and immature DCs (iDCs; r = 0:122,
P = 0:013). These data indicated that EIF4G2 may play a
specific role in immune infiltration in GC.

3.5. Correlation between EIF4G2 Expression and Immune
Cell Markers in GC. Next, we further explored the relation-
ship between EIF4G2 expression and TIIC markers in GC
using the TIMER database. As shown in Table 1, we found
that EIF4G2 was positively correlated with B cell markers
(CD38), CD4 T Cell markers (CD4), M1 macrophage
markers (NOS2, IRF5, PTGS2), M2 macrophage markers
(CD163, VSIG4, MS4A4A, ARG1, MRC1), neutrophil
markers (CEACAM8, ITGAM, CCR7, MPO), DC markers
(NRP1, ITGAX, CD141), monocyte markers (CSF1R,

Table 1: Continued.

Description Gene marker
None Purity

Cor P Partial. Cor Partial. P

Th1

TBX21 0.097 4.83E-02∗ 0.114 2.71E-02∗

STAT4 0.249 3.14E-07∗∗∗ 0.274 6.20E-08∗∗∗

IFNG 0.163 8.73E-04∗∗∗ 0.172 7.76E-04∗∗∗

IL13 0.017 7.29E-01 0.024 6.48E-01

Th2

GATA3 -0.002 9.74E-01 0.024 6.48E-01

STAT6 0.356 7.27E-14∗∗∗ 0.353 1.35E-12∗∗∗

STAT5A 0.321 2.10E-11∗∗∗ 0.329 5.00E-11∗∗∗

Th17
STAT3 0.52 0.00E+00∗∗∗ 0.517 2.68E-27∗∗∗

IL17A 0.085 8.50E-02 0.084 1.03E-01

Treg

FOXP3 0.172 4.56E-04∗∗∗ 0.185 2.85E-04∗∗∗

CCR8 0.268 2.93E-08∗∗∗ 0.284 1.73E-08∗∗∗

STAT5B 0.447 0.00E+00∗∗∗ 0.442 1.46E-19∗∗∗

TGFB1 0.115 1.93E-02∗ 0.113 2.76E-02∗

Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.

Table 2: The predicted 15 miRNAs negatively correlated with
EIF4G2 expression.

Gene miRNA R value P value

EIF4G2 Hsa-let-7a-5p -0.117 2.43E-02∗

EIF4G2 Hsa-let-7f-5p -0.225 1.22E-05∗∗∗

EIF4G2 Hsa-miR-26a-5p -0.266 2.00E-07∗∗∗

EIF4G2 Hsa-miR-26b-5p -0.137 8.35E-03∗∗

EIF4G2 Hsa-miR-32-5p -0.113 2.95E-02∗

EIF4G2 Hsa-miR-101-3p -0.118 2.32E-02∗

EIF4G2 Hsa-let-7 g-5p -0.156 2.60E-03∗∗

EIF4G2 Hsa-miR-30b-5p -0.12 2.10E-02∗

EIF4G2 Hsa-miR-106b-5p -0.102 4.99E-02∗

EIF4G2 Hsa-miR-374a-5p -0.116 2.49E-02∗

EIF4G2 Hsa-miR-493-3p -0.115 2.69E-02∗

EIF4G2 Hsa-miR-411-5p -0.138 7.67E-03∗∗

EIF4G2 Hsa-miR-758-3p -0.119 2.20E-02∗

EIF4G2 Hsa-miR-340-5p -0.164 1.47E-03∗∗

EIF4G2 Hsa-miR-374b-5p -0.181 4.43E-04∗∗∗

∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001.
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CD86), natural killer cell markers (KIR2DS4, KIR3DL2,
KIR3DL1, KIR2DL4, KIR2DL3, KIR2DL1), T cell markers
(CD2), T cell exhaustion markers (CTLA4, HAVCR2),
tumor-associated macrophage (TAM) markers (IL10), T fol-
licular helper (Tfh) markers (BCL6, IL21), Th1 markers
(TBX21, STAT4, IFNG), Th2 markers (STAT6, STAT5A),
Th17 markers (STAT3) and T regulatory (Treg) markers
(FOXP3, CCR8, STAT5B, TGFB1). The results showed that
EIF4G2 could be involved in the regulation of tumor
immune infiltration in GC.

3.6. Prediction and Analysis of Upstream miRNAs of EIF4G2.
It has been widely acknowledged that noncoding (nc) RNAs

participate in the regulation of gene expression. To ascertain
whether EIF4G2 was modulated by some ncRNAs, we first
predicted upstream miRNAs that could potentially bind to
EIF4G2. Considering the underlying mechanisms of miR-
NAs in the regulation of target gene expression, we predicted
a negative correlation between miRNAs and EIF4G2.
Finally, we found 15 negatively correlated miRNAs
(Table 2, P < 0:05) by starBase. Then, the expression level
of these 15 miRNAs in GC and normal samples was exam-
ined. The miRNAs with low and statistically significant
expression levels in GC patients were considered for analy-
sis. Eventually, hsa-miR-26a-5p was identified. As shown
in Figure 5(a), EIF4G2 was negatively correlated with hsa-
miR-26a-5p, and only hsa-miR-26a-5p was significantly
downregulated in GC (Figure 5(b), P < 0:001). Subsequently,
the prognostic value of hsa-miR-26a-5p in GC was investi-
gated. As described in Figures 5(c)–5(f), upregulation of
hsa-miR-26a-5p was positively correlated with OS and with
favorable OS in patients with stage 2, stage 4, and grade 3
cancers. These findings all suggested that hsa-miR-26a-5p
may be the most likely regulatory miRNA of EIF4G2 in GC.

3.7. Prediction and Analysis of Upstream lncRNAs of EIF4G2.
Next, the upstream lncRNAs of hsa-miR-26a-5p were pre-
dicted using the starBase database. According to the compet-
ing endogenous RNA (ceRNA) hypothesis, lncRNAs can
increase mRNA expression by competitively binding to
shared inhibitory miRNAs. Therefore, there should be nega-
tive correlation between lncRNAs and miRNAs and a posi-
tive correlation between lncRNAs and mRNAs. A total of
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Figure 5: Identification of hsa-miR-26a-5p as a potential upstream miRNA of EIF4G2 in GC. (a) The expression correlation between hsa-
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Table 3: The predicted nine lncRNAs negatively correlated with
hsa-miR-26a-5p.

miRNA lncRNA R value P value

Hsa-miR-26a-5p NORAD -0.2 1.04E-04∗∗∗

Hsa-miR-26a-5p AC068768.1 -0.156 2.56E-03∗∗

Hsa-miR-26a-5p TUG1 -0.186 3.03E-04∗∗∗

Hsa-miR-26a-5p AC005261.1 -0.138 7.61E-03∗∗

Hsa-miR-26a-5p OIP5-AS1 -0.146 4.64E-03∗∗

Hsa-miR-26a-5p AC000120.1 -0.124 1.71E-02∗

Hsa-miR-26a-5p AL139407.1 -0.194 1.72E-04∗∗∗

Hsa-miR-26a-5p AC093297.2 -0.169 1.10E-03∗∗

Hsa-miR-26a-5p EBLN3P -0.172 8.82E-04∗∗∗
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nine possible lncRNAs were predicted (Tables 3–4, P < 0:05
). Then, the expression levels and prognostic values of these
lncRNAs in GC were assessed. The lncRNAs with high and
statistically significant expression levels and unfavorable
prognosis in GC patients were further analyzed. Ultimately,
only TUG1 met the requirements. Figures 6(a)–6(b) shows
the negative correlation between hsa-miR-26a-5p and
TUG1 and the positive correlation between TUG1 and
EIF4G2. As shown in Figures 6(c)–6(d), TUG1 was signifi-
cantly upregulated in GC compared with normal controls.
As described in Figures 6(e)–6(i), overexpressed TUG1 indi-
cated poor OS or shorter disease-specific survival (DSS) of
GC patients with different clinicopathological parameters.
Taking expression analysis, survival analysis and correlation
analysis into consideration, TUG1 appears to be the most
likely upstream lncRNA regulating the hsa-miR-26a-5p/
EIF4G2 axis in GC.

4. Discussion

GC is a malignant tumor with high incidence and poor
prognosis worldwide. As we know, helicobacter pylori
(HP) are closely associated with GC. Eradication of HP
was suggested to be an effective method to reduce the risk
of gastric carcinogenesis and treatment for GC. However,
patient compliance, drug reactions, and resistance were con-
sidered as difficulties in the eradication therapy for HP infec-
tion [22]. Allium vegetables and their constituents were
found to suppress gastric tumorigenesis and, thus, could as
a therapeutic option for patients with GC. Additionally,
Allium constituents were reported to prevent excessive HP
growth and ultimately lower the risk of GC. Nevertheless,
the results were controversial and required further validation
[23]. Despite with a great progresses have been made in
aspects of diagnosis, treatment, and prognosis, the outcome
of GC patients remains unsatisfactory. Exploring the molec-
ular mechanism of GC tumorigenesis may provide a new
direction for identifying potential therapeutic targets and
prognostic biomarkers. EIF4F is known as a protein complex
which functions to regulate translation, composed of the
cap-binding protein EIF4E, scaffolding protein EIF4G, and

ATP-dependent RNA helicase EIF4A [24]. EIF4G2 (alias:
death associated protein 5, DAP5; p97) is a subtype of EIF4G
[25]. Many studies have reported that EIF4G2 is abnormally
expressed in different cancers and has great influence on the
progression of tumors. For instance, miR-139-5p suppresses
aberrant protein translation by downregulating EIF4G2
expression in myeloid leukemia [26]. Leukemia/lym-
phoma-related factor interacts with DAP5 to inhibit p53
expression, resulting in tumor cell growth in colon cancer
[27]. A recent study found that LINC01579 promotes cell
proliferation by competitively binding with miR-139-5p to
upregulate EIF4G2 in glioblastoma [28]. Another discovery
confirmed that EIF4G2 is upregulated in HCC tissues, and
high expression of EIF4G2 has been strongly correlated with
worse prognosis in tumor patients [29]. However, the
expression level and effect of EIF4G2 in GC are still
unknown and deserve further investigation.

In our research, we first used multiple databases to ana-
lyze the expression level, survival, and prognosis of EIF4G2
in GC. The analysis showed that EIF4G2 was markedly
upregulated in GC compared with normal controls. EIF4G2
expression in GC patients with different clinicopathological
features revealed that the expression level was higher in
patients with advanced tumors. Further survival analysis
found that a high expression level of EIF4G2 was signifi-
cantly correlated with poor OS, PPS, and FP in GC. More-
over, the increasing expression of EIF4G2 in higher tumor
stages and grades also indicated shorter OS. ROC curves
indicated that EIF4G2 had good diagnostic ability to distin-
guish GC from normal controls. Taken together, the results
demonstrated that EIF4G2 may play a key role in the carci-
nogenesis and progression of GC and should be regarded as
a prognostic and diagnostic biomarker.

We then developed a co-expression network for EIF4G2
in GC to explore its underlying mechanisms of action. The
genes that positively or negatively correlated with EIF4G2
expression are shown in Figure 3. Some of these genes have
been reported to be involved in the development and prog-
nosis of GC. For example, a study suggested that COPI coat
complex subunit beta 1 (COPB1) mRNA level was upregu-
lated in GC and indicated poor OS, while COPB1 expression
in GC was positively correlated with TILs, PD-L1 and
CTLA4 [30]. Another study revealed that miR-204-5p inhib-
ited GC cell proliferation via downregulation of USP47 and
RAB22A [31]. Histone deacetylase 10, a gene negatively
associated with EIF4G2 expression, was found to be down-
regulated in GC and was associated with an unfavorable
prognosis [32]. Therefore, these findings further validated
that the function of EIF4G2 in GC might partly involve
interactions with these genes.

Next, through the database analysis, we observed that
EIF4G2 expression was involved in tumor immune infiltra-
tion, and was positively associated with CD8+ T cell, neutro-
phil, macrophage, and dendritic cell infiltration levels.
Additionally, the expression of EIF4G2 exhibited positive
correlations with most biomarkers of TIICs, including those
for macrophages, neutrophils, DCs, TAMs, and different T
cell subsets. High infiltration of macrophages or TAMs has
been reported to be associated with invasion and metastasis

Table 4: The predicted nine lncRNAs positively correlated with
EIF4G2.

lncRNA mRNA R value P value

NORAD EIF4G2 0.178 5.35E-04∗∗∗

AC068768.1 EIF4G2 0.237 3.46E-06∗∗∗

TUG1 EIF4G2 0.396 1.46E-15∗∗∗

AC005261.1 EIF4G2 0.133 9.78E-03∗∗

OIP5-AS1 EIF4G2 0.19 2.14E-04∗∗∗

AC000120.1 EIF4G2 0.178 5.27E-04∗∗∗

AL139407.1 EIF4G2 0.214 3.02E-05∗∗∗

AC093297.2 EIF4G2 0.129 1.26E-02∗

EBLN3P EIF4G2 0.33 5.98E-11∗∗∗

∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001.
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of GC, causing poor prognosis [33, 34]. Also, studies sug-
gested that neutrophils could promote GC cell migration
[35, 36]. Numerous reports about different functional T cell
subsets have revealed that these immune cells contribute to
tumor development and worse clinical outcomes [37–39].
These findings further confirm that EIF4G2 expression
may be involved in the modulation of tumor immune infil-
tration in GC and influence the progression and prognosis
of tumors.

An increasing number of studies have confirmed that
ncRNAs such as miRNAs and lncRNAs are involved in the
regulation of gene expression according to the ceRNA mech-
anism, in which lncRNA is regarded as an “miRNA sponge”
that binds to inhibitory miRNAs targeting potential mRNAs
and prevents their interaction with the mRNA, thus elevat-
ing the expression level of the targeted gene and in this
way participate in the development of tumors [40–44]. In
this study, we searched for upstream miRNAs of EIF4G2
by using starBase. Ultimately, hsa-miR-26a-5p was identi-
fied as a potential regulatory miRNA for EIF4G2 in GC.
Our study found that hsa-miR-26a-5p was negatively corre-
lated with EIF4G2 and was significantly downregulated in
GC, and its low expression predicted unfavorable OS. In
addition, patients with advanced cancer have a worse prog-
nosis when hsa-miR-26a-5p expression is reduced. Several
previous studies have demonstrated that the expression level
of hsa-miR-26a-5p was decreased in multiple cancers,
including colorectal cancer, bladder cancer, intrahepatic
cholangiocarcinoma, and hepatocellular carcinoma, and also
showed that low expression of hsa-miR-26a-5p was associ-
ated with tumor metastasis, leading to poor prognosis

[45–49]. Based on the above studies we hypothesized that
hsa-miR-26a-5p may be the most likely upstream miRNA
of EIF4G2, modulating the functions of EIF4G2 in GC.

Next, the potential upstream lncRNAs of the hsa-miR-
26a-5p/EIF4G2 axis were further investigated based on the
ceRNA mechanism. The results showed that TUG1 was
markedly upregulated in GC compared with normal con-
trols, and the high expression level predicted poor prognosis,
especially in higher cancer stages and grades. There have
been many studies on the effect of TUG1 in tumors. For
instance, a study reported that TUG1 was overexpressed in
prostate cancer and promoted tumor cell migration, inva-
sion, and proliferation by negatively modulating miR-26a
expression [50]. Similarly, TUG1 was found to be highly
expressed in colorectal cancer and facilitated the progression
of cancer [51]. A positive role for TUG1 has also been dis-
covered in pancreatic cancer, esophageal cancer, and ovarian
cancer [52–54]. In recent years, TUG1 had been reported to
act as a carcinogen in GC. Studies have pointed out that
TUG1 was significantly overexpressed in GC and accelerated
cell metastasis, invasion, and proliferation, resulting in poor
prognosis [55–58]. These results indicate that the TUG1/
hsa-miR-26a-5p/EIF4G2 axis is a novel regulatory pathway
involved GC development.

5. Conclusion

In conclusion, we elucidated that EIF4G2 was upregulated in
GC and showed that elevated expression of EIF4G2 indi-
cated an unfavorable prognosis. Moreover, our findings
showed that EIF4G2 expression may be involved in the
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Figure 6: Analysis of TUG1 as the most likely upstream lncRNA of EIF4G2 in GC. (a) The expression correlation between hsa-miR-26a-5p
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modulation of tumor immune cell infiltration. In addition,
we also assessed the potential upstream regulatory mecha-
nisms of EIF4G2 in GC and found that the TUG1/hsa-
miR-26a-5p/EIF4G2 axis was the most likely regulatory
pathway. However, large-scale basic experiments and clini-
cal trials are needed to validate these results. EIF4G2 is pos-
itively associated with the occurrence and development of
GC and should be considered a prognosis biomarker and
potential new therapeutic target.
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