
Research Article
Automatic Screening and Grading of Age-Related Macular
Degeneration from Texture Analysis of Fundus Images

Thanh Vân Phan,1,2 Lama Seoud,3 Hadi Chakor,3 and Farida Cheriet4
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Age-relatedmacular degeneration (AMD) is a disease which causes visual deficiency and irreversible blindness to the elderly. In this
paper, an automatic classification method for AMD is proposed to perform robust and reproducible assessments in a telemedicine
context. First, a study was carried out to highlight the most relevant features for AMD characterization based on texture, color,
and visual context in fundus images. A support vector machine and a random forest were used to classify images according to
the different AMD stages following the AREDS protocol and to evaluate the features’ relevance. Experiments were conducted
on a database of 279 fundus images coming from a telemedicine platform. The results demonstrate that local binary patterns in
multiresolution are the most relevant for AMD classification, regardless of the classifier used. Depending on the classification task,
our method achieves promising performances with areas under the ROC curve between 0.739 and 0.874 for screening and between
0.469 and 0.685 for grading. Moreover, the proposed automatic AMD classification system is robust with respect to image quality.

1. Introduction

Age-related macular degeneration (AMD) is the main cause
of visual deficiency and irreversible blindness in the elderly
in Western countries [1]. It combines a variety of disorders
affecting the macula. The early stage of AMD is asymp-
tomatic, but small lesions, called drusen, can be revealed
through examination of the retina. An increase in the size or
number of drusen is a sign of the progression of the disease,
leading eventually to the presence of hemorrhages (wet
AMD) or to the development of geographic atrophy (late
dry AMD). The Age-Related Eye Disease Study (AREDS) [2]
proposed a simplified AMD clinical classification based on
its stages. It comprises four categories which are illustrated in
Figure 1: non-AMD {1}, mild {2}, moderate {3}, and advanced
{4} AMD.

Currently, there is no approved treatment to recover from
AMD. However, treatments to slow its progression exist and

are different depending on the stage of the disease. These
include prevention of oxidative damage, a treatment strategy
based on supplements containing lutein, zeaxanthin, omega-
3, vitamins C and E, and zinc, recommended for early stages
[2, 3], while anti-VEGF therapy or surgical operations are
used for more advanced stages [4].

With an aging population, there is urgent need for routine
retinal examinations for early detection of AMD and for
long-term follow-up strategies. Telescreening using fundus
imaging has been extensively used for conditions like diabetic
retinopathy [5, 6]. However, for AMD, it is still in its infancy.
Combinedwith a telemedicine platform, automatic screening
and grading from fundus images offer many inherent advan-
tages.They allow clinicians tomonitor susceptible individuals
from an early age and to carry out preventive treatment.

Previous works focus mostly on dry AMD screening,
based on the detection and quantification of drusen in
fundus images [7]. The drusen segmentation techniques are
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Figure 1: Images of macula area for different AMD categories: (a) healthy case in category {1}, (b) category {2}with hard drusen, (c) category
{3} with soft drusen, and (d) category {4} with hemorrhages and (e) with geographic atrophy.

categorized into methods based on either texture analysis,
thresholding, clustering, edge detection, or template match-
ing. A number of texture-based methods use Gabor filters
[8], wavelet transform [9, 10], amplitude and frequency
modulation [11, 12], statistical structure information [13], or
gray-level cooccurrence matrix [14]. The segmentation is
based on the response of drusen to the applied texture

method, which is assumed to be different from the response
of the background. Thresholding-based methods aim to
find the appropriate threshold for separating the drusen
from the background. This threshold can be set empiri-
cally [15] or automatically with Otsu’s method [16]. Some
image preprocessing is performed before thresholding using
median or Gaussian filters [17], homomorphic filters [18], or
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morphological operations [19]. Methods based on clustering
are used for AMD phenotype-genotype correlation [20] or
for identifying AMD [21]. Drusen segmentation can also
be achieved through edge detection by identifying abrupt
intensity variations using gradient or Laplacian filters [22].
Finally, template matching methods use circular or Gaussian
templates [23] to model and detect drusen using similarity
measurements.

Other methods first detect drusen regions and a classi-
fication based on drusen features, using, for example, linear
discriminant analysis, 𝑘-nearest neighbors, gentle boost,
random forest, or support vector machine classifiers, is
then performed for AMD screening or assessing the risk of
progression to the advanced stage [24–26]. The results show
good performance, comparable to trained human observers.
However, drusen segmentation does not provide sufficient
information for a complete AMD grading. In fact, in its
advanced stages, drusen are often not observed, especially
when there are large hemorrhages or atrophies. Moreover,
even if these methods show high accuracy for hard drusen
detection (up to 100%, with the best methods [12, 18]), the
segmentation of soft drusen, which characterize themoderate
cases, is highly challenging because of their diffuse shape
[24, 25].

Other works focus on structures characterizing advanced
stages, such as what is proposed in [27] which used machine
learning for GA detection and segmentation. All these works
on drusen and geographic atrophy detection and classifica-
tion are useful for a deep analysis of specific stage of the
disease. However, a combination of segmentation methods
corresponding to each AMD structure may be computation-
ally complex for screening and grading in a telemedicine
context, where a large number of images must be analyzed.

To address these limitations, automatic AMD classifica-
tion methods were performed based on directly computed
image features, without prior segmentation. Kankanahalli et
al. proposed a method based on visual context using SURF
key points as features and a random forest (RF) for classifica-
tion [28]. Different binary classifications such as {1&2} versus
{3&4} or {1} versus {3} and a trinary classification ({1&2}
versus {3} versus {4}) were considered to discriminate the
moderate cases. Indeed, close attention to moderate cases is
important because even though the patient still has adequate
visual acuity, there is a considerable risk of progression
to a more severe stage. The proposed method achieves a
good accuracy (above 90%) for AMD severity classification.
However, the evaluation was conducted on 2772 images out
of 11344 available in the AREDS database (24.4% of the
database), selected for their good quality. Since it was trained
solely on good quality images, the classifier might not be as
effective on images of lower quality. In a telemedicine context,
in which the acquisition conditions are not always optimal,
poor quality images are often encountered.

Prior preliminary studies [29, 30] conducted by our group
for the evaluation of new features demonstrated promising
results with local binary patterns (LBP) inmultiresolution for
AMD detection. However, the validation was conducted on
small datasets and the different feature subsets were evaluated
individually without considering any combination thereof.

Moreover, these preliminary studies were limited to a binary
classification aimed only at distinguishing images with and
without AMD.

The aim of this paper is to propose and to evaluate
an automatic approach for clinical AMD screening and
grading in a telemedicine framework.Thus, it is important to
develop a system which is robust to variable image quality.
To do so, various features based on texture, color, and
visual context were computed, evaluated for their relevance,
and used to classify the images according to the different
AREDS categories.The validation was performed on a highly
heterogeneous set of 279 fundus images, acquired through an
existing telemedicine platform (CARA for Computer-Aided
Retina Analysis, Diagnos Inc., Canada). Additionally, the
robustness of the classification system to poor quality images
was evaluated.

The organization of the paper is as follows. In Section 2,
the main steps of the proposed AMD classification method
are described in detail. The experimental setup is explained
in Section 3. The results are presented in Section 4, followed
by a discussion in Section 5 and a conclusion in Section 6.

2. Materials and Methods

Fundus images acquired in a real screening context often
show uneven illumination and poor contrast. To address
these issues, a preprocessing step was required. Then, differ-
ent features based on texture, color, and visual context were
extracted to characterize the fundus image. Next, a classifier
modeling step allowed us to measure the relevance of the
features. Finally, two classifiers, SVM and RF, were tested on
a database of 279 fundus images for performance assessment.

2.1. Image Preprocessing. Image normalization is required to
correct the illumination drift introduced by the geometry
of the eye and the bright flash of light used by the fundus
camera. Contrast enhancement is also necessary to improve
the information on details in the fundus images.

To perform these preprocessing steps, we used the same
methodology as proposed in [28] for a fair comparison with
their results. First, the region of interest (ROI) was defined as
the square inscribed in the circle formed by the retina. Then,
the green channel was extracted for preprocessing. A median
filter with a kernel size of one-fourth the size of the ROI was
applied in order to estimate the background illumination.
The filtered image was then subtracted from the green
channel of the original image. Finally, the green values were
multiplied by 2 for contrast enhancement and shifted by
the mean of their intensity range for visualization purposes
(Figure 2).

2.2. Feature Extraction. Several features based on color,
texture, and visual context were chosen because they proved
to be effective in fundus image analysis. Color information is
an intuitive feature, since AMD-related structures are char-
acterized by specific colors. The texture and local gradient
information also reflect the state of the retina. The image
features considered in this study and their parameter settings
are presented in the following subsections.
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ROI

Figure 2: Preprocessingmethod: ROI corresponding to the square inscribed in the circle formed by the retina and the result of preprocessing
with illumination normalization and contrast enhancement in green channel.

2.2.1. Color Histograms. Blood vessels and lesions offer the
highest contrast in the green channel. That is why most of
the methods proposed in the literature for fundus image
analysis focus solely on this channel. Still, even though the
red channel is considered as saturated and with low contrast
and the blue channel as very noisy in fundus images [31],
all three color channels should be considered, especially to
discriminate drusen from exudates, which are highly similar
lesions but do not characterize the same disease [32]. In this
study, the RGB and 𝐿∗𝑎∗𝑏∗ spaces were used. In RGB, the
red and blue channels provide additional information to the
green one. The 𝐿∗𝑎∗𝑏∗ space was also chosen because the
luminance (lightness) and chrominance (colors) components
are independent and color differences can be measured by a
Euclidean distance.

We computed the 8-bin histograms for each channel from
both color spaces as image features. The number of bins
was set to 8 because there were no improvements in the
results with a larger number of bins; thus we considered this
sufficient for AMD classification.

2.2.2. Local Binary Patterns (LBP) in Multiresolution. To
obtain the multiresolution information, a Lemarié wavelet
transform was used with four levels of decomposition. For
each level, an approximation coefficient and three detail
coefficients were computed, containing, respectively, the low
resolution image (original size divided by two) and the high
resolution details in the horizontal, vertical, and diagonal
directions. From the original image and the 16 coefficient
images, textural information was extracted using LBP. This
consisted in measuring the occurrence of local texture prim-
itives, such as corners or edges. To do so, the LBP [33] was
computed for each pixel of gray value 𝑔

𝑐
in a neighborhood

of radius 𝑅 and 𝑃 neighbors with gray values 𝑔
𝑝
:

LBP
𝑃,𝑅
=

𝑃−1

∑
𝑝=0

𝑠 (𝑔
𝑝
− 𝑔
𝑐
) 2
𝑃

,

With 𝑠 (𝑥) =
{

{

{

1, if 𝑥 ≥ 0,

0, Otherwise.

(1)

In this study, the parameters were empirically set to𝑅 = 1
and 𝑃 = 8. The magnitude component of the LBP [34] was
also computed from the absolute differences of gray intensity
between the central pixel and its neighbors𝑚

𝑝
= |𝑔
𝑝
− 𝑔
𝑐
|:

LBPM
𝑃,𝑅
=

𝑃−1

∑
𝑝=0

𝑡 (𝑚
𝑝
, 𝑐) 2
𝑃

,

With 𝑡 (𝑥, 𝑐) =
{

{

{

1, if 𝑥 ≥ 𝑐,

0, Otherwise.

(2)

The threshold 𝑐 was set to the image mean value.
From the sign and magnitude components of LBP, two

histograms were computed by measuring the occurrence of
the different patterns in the image. For each RGB color
channel, LBP were computed and generated a vector of 2006
features.

2.2.3. Histograms of Oriented Gradients (HOG). The his-
togram of oriented gradients is a feature generally used for
edge detection [35], but it also contains local directional
information which can be used for classification.

The horizontal and vertical gradients were computed by
applying a 1D point-centered derivative kernel [−1 0 1] to
the color image. Then, local histograms of the four main
directions were constructed by dividing the RGB color image
into 16×16 cells, with 2×2 cells for block normalization.The
constructed vector contained 3600 features.

2.2.4. SURF Key Points. Starting from the hypothesis that
all AMD manifestations (drusen and other lesions) were
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represented in the subset of images presenting AMD, SURF
key points were computed on that subset of images, previ-
ously converted into 𝐿∗𝑎∗𝑏∗. The key points were detected
using ten octaves, three layers per octave, and a Hessian
threshold of 600. Using the SURF features (sign of Laplacian,
orientation, scale of detection, and strength of detected
feature), a 𝐾-means clustering selected centroids on which
the vocabulary was based to construct the features vector. For
binary classifications, 𝐾 was set to 100, while for multiclass
classifications, 𝐾 was set to 300. All parameters used to
compute the SURFkey points and to construct the vocabulary
were set empirically. Once the vocabulary was established,
a histogram was constructed by measuring the occurrence
of key points depending on the nearest centroid. These
features are implemented as proposed in [28]with unchanged
parameters values.

2.3. Dimensionality Reduction and Features Importance. On
one hand, a dimensionality reduction is necessary to avoid
overfitting. Indeed, we have 6018 LBP features (2006 on
each channel), 96 color histograms features, 3600 HOG
features, and 100 or 300 SURF features. Considering the size
of our dataset, a dimensionality reduction step is required
before training a classifier. On the other hand, we believe
that some of the features used might be more relevant
than others in the discrimination between AMD stages.
Thus, in order to evaluate features relevance and to select
optimal subsets of features for classification, we used two
approaches.

2.3.1. Fisher’s Criterion. We determined the feature’s rele-
vance using the approach based on the Fisher criterion,
which must be maximized [36]. This criterion measures the
divergence between two classes 𝑖 and 𝑗 based on the estimate
of their means 𝜇 and standard deviations 𝜎 when they are
projected on the feature axis 𝐹:

𝐷 (𝐹) =
(𝜇
𝑖
− 𝜇
𝑗
)
2

𝜎2
𝑖
+ 𝜎2
𝑗

. (3)

Themaximumnumber of features for classifier modeling was
set to one-tenth the number of training samples [37]. The
final number of features retained was determined based on
the best SVM performance obtained by varying the number
of features and testing on validation samples.

2.3.2. Features Importance Using Gini Index. We also used the
features’ relevance assessment performed in random forest
training [38].We considered themean decrease in Gini index
to measure the features’ relevance. This parameter measures
the loss in Gini index on the out-of-bag samples when the
feature is removed or permuted. The larger the decrease is,
the more relevant the feature is. In this experiment, we used
3000 trees and we set the number of features to be selected at
each node to 25 to ensure that all features are considered in
the model to evaluate its importance.

2.4. ClassifierModeling. Two different classifiers were used in
this study to verify if the choice of classifier has a significant

impact on the results: a support vector machine (SVM) and a
random forest (RF).

2.4.1. Support Vector Machine (SVM). The training of an
SVM consists in finding the decision boundary that max-
imizes the margin that is the space between the elements
nearest to the boundary [39].

In this study, a Gaussian kernel was chosen for the
SVM because it is more efficient for systems with complex
separations than a linear classifier. In addition, SVMs are
useful for systems with a small number of samples because
only the elements near the boundary, that is, the support
vectors, contribute to the SVM modeling. For classifier
modeling, the parameters to be set are 𝛾, the parameter of
the Gaussian kernel, and𝐶, the number of elements accepted
in the margin. These parameters were set according to a
performance assessment using a grid search strategy with
10-fold cross-validation to find the best pair of values in
gamma = [0.001, 0.01, 0.1, 1, 10] and 𝐶 = [1, 10, 50, 100].

To consider more than two classes, we used the one-
against-all approach. In the training phase, one SVM per
class is constructed to discriminate the samples of that class
from all the others. The label of a new observation is then
determined by the SVM classifier that returns the highest
value.

2.4.2. Random Forest (RF). The training of an RF consists in
constructing decision trees, using randomly selected training
samples and features. Then, the classification of new samples
is determined by aggregating the votes of the different trees
[40]. This method is quite simple to use since only two
parameters need to be set: the number of features in the
random subset at each tree node and the number of trees
in the forest [41]. The first parameter was set to the square
root of the total number of features. The second parameter
was set to 1,000 decision trees for binary classification and
2,500 decision trees for multiclass classification, such as what
is proposed in [28].

3. Experimental Setup

3.1. Materials. The validation was conducted on a database
of 279 images, all provided by Diagnos Inc. (Brossard,
QC, Canada) using their telemedicine platform. The images
were collected from clients in the United Arab Emirates,
Mexico, Poland, India, and Canada. The devices used for
the acquisitions are different models of Zeiss, DRS, Topcon,
and Canon retinal cameras. All the images are in JPEG
compressed 10 : 1 format and acquiredwith a 45∘ field-of-view.
Depending on the camera used, the size of the images varies
between 1,400, 2,200, and 3,240 pixels along the diameter of
the retinal images (circular imaged region excluding black
background).

Depending on the acquisition conditions, the images vary
in terms of resolution and illumination both of which affect
the image quality [42]. Different artefacts, illustrated in Fig-
ure 3, can be encountered in fundus photography: shadows,
intense reflections, specular reflections, blur, haze, or arcs. In
this study, we used an automatic image quality assessment
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Figure 3: Examples of poor quality images: (a) shadows and intense reflections, (b) haze, (c) arc and specular reflections, and (d) blur.

Table 1: Number of images in each AREDS category and for each
image quality level.

Category {1}

Non-AMD
{2}

Early
{3}

Moderate
{4}

Advanced
Good quality 50 43 24 22
Poor quality 29 36 41 34

method described in [43]. The algorithm determined if an
image is of good or poor quality based on its measured color
distribution and sharpness.

Two human graders were instructed to label the images
into one of the four AREDS categories. The first grader
(Grader A) is an ophthalmologist with 10 years of experience
working on fundus images. He has expertise in AREDS
classification. The second grader (Grader B) has 2 years of
experience working on fundus images and was trained to
classify fundus images following the simplified AMD classi-
fication proposed by the AREDS.

The number of images in each AREDS category (as
labeled by Grader B) and their distribution according to
quality level are shown in Table 1.

3.2. Experiments

3.2.1. Dimensionality Reduction and Features Relevance. To
reduce the feature space dimension, we used, on one hand,
the feature selection based on Fisher’s criterion and, on the

other hand, the features’ relevance assessment based onmean
decrease of Gini index for each classification task. Then,
we counted the number of selected features in each feature
category to highlight the most relevant features for AMD
classification.

3.2.2. Performance Assessment for Screening. To assess the
performance of our method for AMD screening, we evalu-
ated several binary classification tasks, using a 10-fold cross-
validation approach.This consisted in taking one-tenth of the
dataset as a testing set, and the rest was used to train the clas-
sifier. The prediction result from this classification was kept
and the process was repeated for all the elements. Receiver
Operating Characteristic (ROC) curves were obtained by
varying the threshold on the probabilities given by both
classifiers (SVM and RF) and by reporting the sensitivity
and specificity corresponding to this threshold. The corre-
sponding areas under the ROC curves (AUC) were then
computed. We also tested statistically how the results are
significantly different from a random classifier [44].

3.2.3. Performance Assessment for Grading. In the same way
as for screening, the performance for AMD grading was
assessed using a 10-fold cross-validation approach for mul-
ticlass classifications using SVM and RF. The results were
then compared to the intergrader variability. These results
are reported using the confusion matrix, the classification
accuracy (number of elements that are well classified), and
the weighted Kappa coefficient [45].
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Table 2: Number of selected features per category.

Classifications Features selection Features categories
LBP red LBP green LBP blue RGB hist. Lab hist. HoG SURF

All None 2006 2006 2006 48 48 3600 100

1 234 Fisher 4 4 0 0 0 0 0
RF Gini 92 114 27 1 1 31 0

12 34 Fisher 2 6 0 0 0 0 0
RF Gini 63 79 18 0 0 17 0

12 3 4 Fisher 0 8 0 0 0 0 0
RF Gini 74 94 23 1 1 23 0

1 23 4 Fisher 0 5 0 0 0 0 0
RF Gini 82 106 25 1 1 29 0

1 2 3 4 Fisher 0 7 0 0 0 0 0
RF Gini 92 114 29 1 1 31 0

3.2.4. Robustness to Image Quality. Selecting good quality
images to train a classification system does not guarantee its
efficiency for processing images of variable quality, for exam-
ple, in a telemedicine context. To evaluate and to compare
the robustness to variations in image quality, an assessment
using only good quality images for training and poor quality
images for testing was performed. In this experiment, we also
performed SVM and RF training and testing using only the
SURF features as proposed in [28] for ends of comparison.

Our overall approach for performance assessment aimed
at determining the best solution for robust AMD classifica-
tion.

4. Results

4.1. Features Relevance. The features relevance was evaluated
for screening and grading to highlight the most relevant
features for an automatic classification following the AREDS
criteria. Table 2 shows the number of features selected
according to Fisher’s criterion and Gini index. For both
features selectionmethods, LBP features are themost selected
for any classification tasks, especially LBP features computed
in green channel. These features are the most relevant for
AMD classification.

It is also to be noted that SURF features are never selected
by neither the Fisher based method nor the RF Gini method.
It appears that these features are not the most relevant to
discriminate between the different AMD stages.

4.2. Performance Assessment for Screening. The AMD clas-
sification for screening {1} versus {2&3&4} was assessed for
both classifiers, with and without a features selection step
(see Table 3). The best results were obtained with the features
selected based on Gini index, with an AUC of 87.7% for SVM
and an AUC of 86.9% for RF. In Figure 4, the specificity
and sensitivity corresponding to mild {3}, moderate {3}, and
severe {4} are presented along with the ROC curve. It shows
that cases in categories {3} and {4} are better detected as AMD
than category {2}.

In light of these results, we decided to assess the clas-
sification {1&2} versus {3&4}, since a large proportion of

Table 3: Performance assessment (AUC) for screening.

Classifier SVM RF
Features selection None Fisher Gini None Fisher Gini
1 234 AUC 0.494 0.743∗ 0.877∗ 0.791∗ 0.812∗ 0.869∗

12 34 AUC 0.491 0.879∗ 0.899∗ 0.867∗ 0.843∗ 0.898∗

∗: statistically different from random classifier (0.5 not included in 95% CI
of AUC).

Proportion of {2}, {3}, and {4} detected as AMD
Proportion of {2} detected as AMD
Proportion of {3} detected as AMD
Proportion of {4} detected as AMD
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Figure 4: Screening performance for {1} versus {2&3&4} using
SVM classifier and features selected using RF Gini.

cases in category {2} were considered as non-AMD. This
classification task corresponds to distinguishing cases that
require treatment (moderate and advanced cases) from cases
that are not at risk (healthy andmild cases).The performance
is better than previouslymentionedwith anAUCof 89.9% for
SVM and an AUC of 89.8% for RF.
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Table 4: Performance assessment (accuracy) for grading.

Classifier SVM RF
Features selection None Fisher Gini None Fisher Gini
12 3 4 Acc. 0.563 0.667 0.756 0.688 0.695 0.742
1 23 4 Acc. 0.516 0.581 0.724 0.642 0.613 0.699
1 2 3 4 Acc. 0.280 0.477 62.7 0.513 0.484 0.617

4.3. Performance Assessment for Grading. The results of
performance assessment for grading are shown inTable 4. For
each classification task, the best results were obtainedwith the
features selected based on Gini index and the SVM classifier.
For the automatic classification according toAREDS protocol
({1} versus {2} versus {3} versus {4}), the method achieved
an accuracy of 62.7%. Accuracies of 75.6% and 72.4% were
obtained, respectively, for {1&2} versus {3} versus {4} and for
{1} versus {2&3} versus {4}. The results demonstrate that the
classification gives better performance when the number of
categories to classify is lower.

Table 5 presents the confusion for {1} versus {2} versus
{3} versus {4} using features selected by Gini index. Most
of the misclassifications happen between categories {1} and
{2}. That explains why the performance was better when we
considered {1&2} as one category. We also compared the
results with intergrader variability. The latter was assessed on
a subset of 176 images annotated by bothGraders A and B and
measured with weighted Kappa coefficient. The results (see
Table 5) showed aweighted Kappa coefficient of 73,6%, which
corresponds to a substantial agreement between graders [45].
The automatic method does not reach a performance on the
same order as the intergrader variability.

However, we can notice that, even for graders, most dis-
agreements happen between classes {1} and {2} and between
{2} and {3}.

From these results, we also tested a classification in two
steps. First, we classified all images into three categories
{1&2}, {3}, and {4}, since trinary classification gives better
results.Then, the cases in {1&2} are classified into {1} and {2}.
The results are shown in Table 6 and, indeed, improved with a
weighted Kappa of 66.2% for SVM and of 61.0% for RF, which
corresponds to a substantial agreement. For the SVM clas-
sifier, the weighted Kappa is in the 95% confidence interval
of the intergrader Kappa which means that there is no sig-
nificant difference between the performance of the automatic
SVM classifier and Grader B, when compared to Grader A.

4.4. Robustness toVariable ImageQuality. Therobustnesswas
assessed by measuring the performance of the system when
trained with only good quality images and tested on poor
quality images. We compared our results with the method
proposed in [28] which is based solely on the SURF features
as described in Section 2.2.4. Table 7 shows the robustness
assessment for AMD screening. The resulting AUCs are in
the same range as in the 10-fold cross-validation on the whole
dataset (Table 4). Table 8 shows the robustness assessment
for AMD grading. Here, the classification accuracy decreases
compared to the assessment by 10-fold cross-validation on
thewhole dataset (Table 5), yielding accuracies of 0.207–0.557
with SVM and 0.393–0.693 with RF.

5. Discussion

Themain purpose of this paper was to propose an automatic
system for clinical AMD screening and grading in a tele-
medicine framework and to evaluate its performance. This
was achieved through a comparative study of different image
features mainly based on texture, color, and visual context.

The experiments revealed that the best results for AMD
screening and grading were obtained with LBP in multires-
olution applied to the green channel. These features were
considered as the most relevant for AMD classification and
were favored by the Fisher criterion and Gini index. The
present work confirms that these features are robust with
respect to image quality, as suggested in our prior studies [29,
30], and extends those results from AMD detection to AMD
severity classification. Even with small learning samples, the
systems using SVM classifier and features selected by Gini
index achieved AUCs between 0.877 and 0.899 for AMD
screening, which is especially good considering the large
proportion of poor quality images (50.2% of the database).
Our best result for AMD grading was an accuracy of 75.6%
for the trinary classification task {1&2} versus {3} versus {4}.
The automatic grading following AREDS protocol was in the
same order as intergrader variability while using SVM and
features selected based on Gini index.

LBP is a powerful tool for characterizing the texture
and that is why these features are the most suitable for this
application. First, a local characterization of the texture is
more effective than a global feature such as color histograms.
Then, LBPmeasures the proportions of the different uniform
patterns contained in the image (such as edges, borders,
or points), which seem to be more informative than the
local gradients computed in HOG or the SURF key point
features. In fact, these latter features seem to be less robust
to poor quality images, since they are based on detecting
local maxima which can be sensitive to noise. Thus, LBP are
the most reliable features taking into account the types of
structures characterizing AMD images at different severity
degrees. Finally, the multiresolution approach helps us to
characterize the stage of the disease by identifying lesions at
different scales. Indeed, a lesion detected at high resolution
could correspond to large drusen or an atrophy, both being
related to more advanced AMD stages.

We have proposed a method that is adapted to a real
telemedicine context. This means that we processed images
from variable quality levels, coming from different locations
and different cameras, whereas major studies on AMD in
the literature have used homogeneous datasets. Furthermore,
our results compare well against those of other methods.
For AMD screening, a study carried out in [24] aimed to
evaluate if cases were at low or high risk to progress to
an advanced stage, based on drusen segmentation. Their
system achieved a Kappa coefficient of 0.760–0.765. This is
similar to our classification performance for {1&2} versus
{3&4}, which obtained AUCs of 0.899. Nevertheless, it is
difficult to compare these different methods one on one
since there is no publicly available database for AMD grad-
ing containing fundus images labeled according to AREDS
protocol.
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Table 5: Confusion matrix in percentage for grading ({1} versus {2} versus {3} versus {4}).

% SVM (Gini) RF (Gini) Grader B
Nb img 279 279 176
Grader A 1 2 3 4 1 2 3 4 1 2 3 4
1 20.1 6.8 1.1 0.4 19.7 6.5 1.4 0.7 31.2 9.5 0.6 0.0
2 6.5 15.8 4.7 1.4 7.2 16.5 2.9 1.8 4.5 19.3 6.2 0.6
3 1.4 4.7 13.3 3.9 2.2 5.7 13.3 2.1 0.0 3.4 7.4 2.8
4 0.7 0.7 5.0 13.6 0.7 2.2 5.0 12.2 0.0 1.1 1.1 13.1
Accuracy 62.7 61.6 71.5

Weighted 𝐾 (95% CI) 63.7 (57.3–70.2) 59.4 (52.3–66.5) 73.6 (66.1–80.2)
Substantial Moderate Substantial

Table 6: Confusion matrix in percentage for grading in two steps ({1&2} versus {3} versus {4} and then {1} versus {2}).

% SVM (Gini) RF (Gini) Grader B
Nb img 279 279 176
Grader A 1 2 3 4 1 2 3 4 1 2 3 4
1 22.6 4.3 1.1 0.3 21.9 5.0 0.7 0.7 31.2 9.5 0.6 0.0
2 4.3 18.3 4.3 1.4 4.7 19.7 2.5 1.4 4.5 19.3 6.2 0.6
3 1.8 4.7 12.2 4.6 3.6 7.1 10.0 2.5 0.0 3.4 7.4 2.8
4 0.7 1.1 5.0 13.3 1.1 1.8 4.7 12.5 0.0 1.1 1.1 13.1
Accuracy 66.3 64.2 71.5

Weighted 𝐾 (95% CI) 66.2 (59.7–72.6) 61.0 (53.8–68.1) 73.6 (66.1–80.2)
Substantial Substantial Substantial

Table 7: Quality robustness assessment (AUC) for screening.

Classifier SVM RF
Features selection None SURF [28] Fisher RF Gini None SURF [28] Fisher RF Gini

1 234 AUC 0.500 0.500 0.588 0.874∗ 0.797∗ 0.436 0.807∗ 0.889∗

12 34 AUC 0.500 0.530 0.882∗ 0.812∗ 0.819∗ 0.472 0.875∗ 0.816∗

∗: statistically different from random classifier (0.5 not included in 95% CI of AUC).

Table 8: Quality robustness assessment (accuracy) for grading.

Classifier SVM RF
Features selection None SURF [28] Fisher RF Gini None SURF [28] Fisher RF Gini

12 3 4 Acc. 0.466 0.464 0.529 0.557 0.607 0.493 0.571 0.586
1 23 4 Acc. 0.550 0.550 0.550 0.550 0.643 0.329 0.557 0.693
1 2 3 4 Acc. 0.207 0.300 0.450 0.507 0.486 0.350 0.393 0.521

For AMD grading, the method proposed in [28] reports
an accuracy of 91.5% for classifying {1&2} versus {3} versus
{4} on selected images of good quality. Our method achieved
an accuracy of 75.6%, which is significantly lower; however
all images were processed including images of poor quality.
To support that furthermore, the experiment on robustness
to image quality clearly demonstrates that AMD screening
and grading using SURF features as proposed in [28] is not
applicable in a telemedicine settingwhere image quality is not
always guaranteed.

Our method demonstrates considerable robustness with
respect to image quality. In a telemedicine context, where

acquisition conditions are not strictly controlled, to only
select good quality images is not adequate for AMD evalu-
ation because we want a maximum of cases to be handled. To
demonstrate the robustness to image quality, we assessed the
classification systems performance by training them on good
quality images and testing them on poor quality ones. Our
system still performed well, presenting results of the same
order as the ones obtained in the leave-one-out cross-
validation.

In regard to the classification tasks, it is recommended to
use the classification {1&2} versus {3&4} for AMD screening,
which presented a better result using ourmethod.The clinical
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rationale for this classification is to distinguish cases that need
to be treated from those that are not at risk.We can notice that
ourmethod tends to consider a certain proportion of category
{2} cases as non-AMD. For grading, a better classification
performance is obtained for a two-step classification, starting
with {1&2} versus {3} versus {4} classification and then
performing a {1} versus {2} classification.

Our database contained a relatively small number of
samples in each category. This may be the reason why a good
performance for grading could not be demonstrated in this
study. Moreover, even the human graders had some difficulty
agreeing on the database’s labeling, with an intergrader
weighted Kappa of 0.736. A validation on a larger database
could improve the grading results.

Future work will focus on the preprocessing step. In
fact, in this study, we used a preprocessing procedure intro-
duced in [28] for ends of comparison. Nevertheless, several
improvements could bemade to it.The background illumina-
tion was estimated with a median filter, but the convolution
with a high resolution image has a large computational cost.
This aspect could be improved by using spectral filtering
instead. Also, our previous work demonstrated that a local
analysis focused on the macular area can improve the system
performance. Indeed, features of AMD are mainly located
in this area. This idea could be further explored by using
an automatic detection of the macular region based on the
detection of the fovea and the radius of the optic disc.

6. Conclusion

Wehave developed and validated an automatic clinical classi-
fication system for AMD screening and grading in a telemed-
icine context.The validation of ourmethod reveals promising
results in terms of robustness to image quality and accuracy
for different AMD severity classification tasks. Our experi-
mental results highlight the discriminating strength of LBP
features over other tested features, whether the classifier is an
RF or an SVM. Further validation must be conducted on a
database containing more samples in each category in order
to confirm these results. Nevertheless, the proposed approach
represents an important step toward providing a reliable
AMD diagnostic tool for patient monitoring and for clinical
trials. Early AMD detection can facilitate timely access to treat-
ment and consequently improve the therapeutic outcome.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to acknowledge the contribution of
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