Clinical Study

Under-the-Flap Crosslinking and LASIK in Early Ectasia with Hyperopic Refractive Error

Sylvain el-Khoury,1,2 Youssef Abdelmassih,1,2 Mazen Amro,1,3 Elias Chelala,1,2 and Elias Jarade1,4

1Beirut Eye Specialist Hospital, P.O. Box 116-5311, Al-Mathaf Square, Beirut, Lebanon
2Saint-Joseph University, Faculty of Medicine, Beirut, Lebanon
3School of Medical Sciences, Lebanese University, Beirut, Lebanon
4Mediclinic Dubai Mall, Dubai, UAE

Correspondence should be addressed to Elias Jarade; ejarade@yahoo.com

Received 21 April 2018; Accepted 15 October 2018; Published 15 November 2018

Academic Editor: Suphi Taneri

Copyright © 2018 Sylvain el-Khoury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. To present safety, efficacy, and early results of a new combinational treatment for early corneal ectasia with hyperopic refractive error aimed to reinstate emmetropia and stabilize cornea. Method. This is a retrospective case series. All surgeries were performed at the Beirut Eye Specialist Hospital, Lebanon. Surgical procedure consisted of (1) lifting flap (post-LASIK ectasia)/creation of corneal flap (keratoconus), (2) application of excimer laser ablation to correct refractive error, (3) loose repositioning of flap, (4) under-the-flap irrigation with riboflavin 0.1% dextran solution, and (5) application of UV light. Results. A total of 7 eyes (4 patients; mean age 24.25 years; all male) were included. 2 patients had early keratoconus, and 2 patients had early post-LASIK ectasia. Pretreatment vs. last postoperative follow-up visit (mean 11.25 months; range 6–15 months) UDVA (logMAR), spherical equivalent (SE) (D), astigmatism (D), and central pachymetry (µm) were 0.35 ± 0.18 vs. 0.05 ± 0.07, p < 0.017; −0.81 ± 0.67 vs. −0.46 ± 0.57, p = 0.078; 2.46 ± 0.53 vs. 0.68 ± 0.28, p = 0.018; and 547 ± 58 vs. 536 ± 49, p = 0.07, respectively. In all eyes, BCVA was 0.1 logMAR or better before and after treatment. No eye showed a decrease in BCVA. Two eyes of one patient had an epithelial ingrowth, which was removed in one case. Follow-up results showed no major complications and no progression of corneal ectasia. Conclusion. Early results showed that under-the-flap CXL with excimer laser correction is an effective treatment for early hyperopic keratectasia, with the advantage of rapid recovery, postoperative corneal stability, and no epithelial healing complications. The procedure seems to bear a risk for postoperative epithelial growth into the flap interface.

1. Introduction

Keratoconus and post-LASIK ectasia are progressive, non-inflammatory corneal diseases that lead to an outward bulging (cone) and to a thinning of the cornea. Both conditions behave similarly and are due to a biomechanically altered cornea that cannot withhold intraocular pressure and hence a cone-shaped outward bulging develops. Post-LASIK ectasia is an iatrogenic condition, where changes of the biomechanical properties are due to a surgical weakening of the cornea, whereas keratoconus is a multifactorial disease with environmental and genetic risk factors [1–3].

Both conditions have a similar clinical presentation: the cone usually leads to a progressive myopic shift in spherical equivalent (SE). In some cases, however, the cone may also lead to a hyperopic shift in SE [4]. It has been shown that the direction of the refractive shift is mainly dependent on the cone location and on the severity of the disease, with a hyperopic SE observed in cases where the cone is located very far from the visual axis and in mild to moderate cone volumes [5].

When it comes to the treatment of hyperopic ectasia, the traditional approach has been the stabilization of the cornea via crosslinking and a secondary external refraction.
correction (spectacles/contact lenses). But this therapy option has its limitations and may lead, e.g., in the case of severe residual anisometropia, to unsatisfactory outcomes. Furthermore, the expectations of patients who wish to remain spectacle-free cannot be met.

Looking for alternative treatment options that reinstate emmetropia, combined photorefractive keratectomy and crosslinking (PRK-CXL) has to be evaluated, since it has been described to be safe and effective in treating myopic refractive error in early keratoconus [6–8]. However, PRK is not very desirable in hyperopic ablation as it has a risk of peripheral corneal scarring, haze, and hyperopic regression [9, 10]. On the other hand, LASIK has been shown to lead to satisfactory results in hyperopia and hyperopic or mixed astigmatism [11], and when compared to photorefractive keratectomy (PRK) for hyperopia, LASIK was also associated with a faster stabilization of refraction, less pain [12], and less hyperopic regression, but comparable efficacy [13].

To prevent the development of post-LASIK ectasia in eyes at high risk, Kanellopoulos et al. introduced the LASIK Xtra technique (Avedro, Massachusetts, USA) in 2012 [14]. In this technique, prophylactic high irradiation CXL is performed in adjunction to the LASIK procedure and without deepithelisation. Several studies demonstrated this procedure to be safe and effective, to show less regression and to have less discomfort [15–17]. In this retrospective case series, we present the outcomes of a new method for the treatment of early ectasia with hyperopic SE, performed in seven eyes of four patients with a maximum follow-up of 15 months. The new method is a combinational procedure of an under-the-flap excimer laser ablation followed by an under-the-flap CXL in the same session. It stems from the satisfactory results obtained by LASIK for the correction of hyperopia and from the imperativeness of CXL in early and progressive corneal ectasia, irrespective of whether the ectasia is due to keratoconus or to LASIK surgery. For this treatment, there is no need to produce a new flap in post-LASIK ectasia, and the old flap can simply be relifted, but in keratoconus, a new flap has to be created using a femtosecond laser.

2. Methods

All cases included in this study had early corneal ectasia with a major hyperopic component of refractive error (hyperopia, hyperopic astigmatism, and mixed astigmatism), a good corrected distance visual acuity (CDVA), and a clear cornea in a relatively good condition. No other ocular pathologies were present. Diagnosis of keratoconus was based on a combination of computed slit-scanning videokeratography of the anterior and posterior corneal surface, keratometric readings, and corneal pachymetry (Wavelight Allegro Oculyzer, Alcon Laboratories, Inc., Fort Worth, TX) [18, 19]. Keratoconus stage was classified according to the Amsler–Krumeich criteria [20]. Indication for surgery was stabilization of the cornea and the aim to achieve emmetropia. For both keratoconus patients, emmetropia with good UDVA was needed for occupational purposes. Post-LASIK ectasia patients were unhappy with their eyeglasses and were aiming for a spectacle-free lifestyle. Patients were treated between December 2014 and September 2015 at the Beirut Eye Specialist Hospital, Lebanon.

Treatment consisted of flap lifting/creation, excimer stromal laser ablation followed by repositioning of the flap, irrigation of the interface with riboflavin, and UV exposure. All surgeries were performed by the same surgeon (E.J.) under topical anesthesia. All patients had to sign an informed consent for surgery. The study was approved by the institutional review board. In the case of post-LASIK ectasia, the old corneal flap was lifted again. In the case of keratoconus, a new corneal flap was produced at a depth of 90 µm using a femtosecond laser (IntraLase FS600, Abbot, Abbot Park, Illinois, USA). After lifting the flap, the excimer laser (Allegretto Wave, Alcon, Fort Worth, USA) was applied to the midperipheral and, where necessary, to the central corneal stroma. Calculations were made in order not to exceed 20 µm of central excimer laser ablation. After laser ablation, the flap was loosely repositioned and a mixed solution of riboflavin 0.1% dextan was used to irrigate the interface and kept for 10 minutes. The interface was then quickly irrigated with saline solution, the flap was properly readjusted, and fluid was removed using Weck-Cel® (Beaver-Visitec International, USA), a dry cellulose sponge. Subsequently, UV light (radiant energy of 3.0 ± 0.3 mW/cm²; UV-X illumination system, version 1000; IROC AG, Zurich, Switzerland) was focused on the corneal apex from a distance of 5 cm for 30 minutes, while dropping riboflavin 0.1% dextan solution every 2 minutes. Postoperatively, patients received acetaminophen 500 mg twice daily for 3 days and 1 drop of gatifloxicin 0.3% 6 times daily for 7 days with 1 drop of tobramycin 0.3%-dexamethasone 0.1% (Alcon Laboratories Inc., Fort Worth, Texas, USA) 6 times daily for 7 days and lubricating drops as needed. One week postoperatively, loteprednol 0.5% (Bausch and Lomb Inc.) was started 5 times daily, slowly tapered over 5 weeks.

Preoperatively and at different follow-up visits, all patients received detailed ophthalmic evaluation, including UDVA, CDVA, manifest and cycloplegic refraction, slit-lamp and fundus examination, IOP measurement, full-map pachymetry, and topography (Wavelight Allegro Oculyzer).

The statistical analysis was performed using SPSS software. The Wilcoxon rank test was used to compare the dataset pre- and postoperatively.

3. Results

Seven eyes of 4 consecutive patients (median age 21.5 years: all male) were included in the study. All patients had early ectasia with a hyperopic component of refractive error. In 4 eyes, ectasia was due to a LASIK surgery in the history and in 3 eyes due to keratoconus. All keratoconus eyes had a stage I keratoconus. Pre- and postoperative topographies for all patients are shown in Figures 1–4. Follow-up period ranged from 6 to 15 months (median 12 months). Average preoperative central corneal thickness was 547 µm, which decreased to 536 µm after surgery (difference of 11 µm), corresponding to the average central ablation, which was 11.8 µm. Mean peripheral corneal ablation was 35.15 µm.
Figure 1: Pre- and postoperative topography of the right eye (a) and the left eye (b) of patient 1.

Figure 2: Continued.
Figure 2: Pre- and postoperative topography of the right eye (a) and the left eye (b) of patient 2.

Figure 3: Continued.
Mean UDVA improved significantly from $0.35 \pm 0.18\logMAR$ preoperatively to $0.08 \pm 0.12\logMAR$ at the latest follow-up. Figures 5 and 6 show postoperative UDVA in comparison to preoperative CDVA. Further significant changes were noted for cylinder, which decreased from $2.46 \pm 0.53\text{D}$ to $0.68 \pm 0.28\text{D}$ ($p = 0.018$) (Figure 7), for SE ($0.49 \pm 0.60\text{D}$ to $-0.12 \pm 0.46\text{D}$, $p = 0.041$) and for Kflat ($41.3 \pm 1.9\text{D}$ to $42.3 \pm 1.4\text{D}$, $p = 0.028$). Other parameters did not change significantly and included sphere (from $-0.81 \pm 0.67\text{D}$ to $-0.46 \pm 0.57\text{D}$, $p = 0.78$), Kmax (from $47.1 \pm 1.97\text{D}$ to $46.9 \pm 2.03\text{D}$, $p = 0.67$), and Ksteep (from $44.6 \pm 1.12\text{D}$ to $44.3 \pm 0.91\text{D}$, $p = 0.125$). Mean CDVA preoperative was very good, $0.05\logMAR$, and improved slightly to reach $0.01\logMAR$ ($p = 0.32$) (see Figure 8). No deterioration of CDVA or UDVA was noted in any eye. No complications occurred during surgery; however, in the follow-up, two eyes of one patient developed epithelial growth within the interface, in one eye being clinically significant. For this eye, ingrowth was successfully removed. The safety index (mean postoperative CDVA (decimal)/mean preoperative CDVA (decimal)) was 1.05, as CDVA did not effectively change and the efficacy index (mean postoperative UDVA (decimal)/mean preoperative CDVA (decimal)) was 0.96.

Figure 3: Pre- and postoperative topography of the right eye (a) and the left eye (b) of patient 3.

Figure 4: Pre- and postoperative topography of the left eye of patient 4.
4. Discussion

The present paper introduces a combined procedure of a corneal flap, an excimer laser ablation and an under-the-flap CXL in the same session for the treatment of early ectasia with hyperopic refractive error. Patients treated had either a hyperopic astigmatism or a mixed astigmatism with a distinctive hyperopic component. The aim was to reach a spectacle-free emmetropia and a stable cornea.

The present procedure is similar to the LASIK Xtra technique. The energy that was used, however, was higher, equivalent to the standard CXL protocol, since corneas were already ectatic.

The results obtained in our study were successful. In all eyes treated, ectasia showed no progression over the follow-up period, which ranged from 6 to 15 months (mean 11.25 months), and UDVA improved substantially, changing significantly from 0.35 ± 0.18 logMAR to 0.05 ± 0.07 logMAR (p = 0.017), while CDVA remained relatively stable. Average manifest refraction error improved from -0.81D sphere +2.46D cylinder (+0.49D SE) to -0.46D sphere +0.68D cylinder (-0.13D SE), while only changes in cylinder and SE were significant (p = 0.018 and p = 0.047, respectively).

In accordance with the correction of hyperopia, we observed a significant steepening of Kflat from 41.3D to
Table 1: Pre- and postoperative parameters for all eyes separately and averaged.

<table>
<thead>
<tr>
<th>Preoperative</th>
<th>Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient (age), pathology</td>
<td></td>
</tr>
<tr>
<td>Eye</td>
<td>UDVA (logMAR)</td>
</tr>
<tr>
<td>OD</td>
<td>0.2</td>
</tr>
<tr>
<td>OS</td>
<td>0.3</td>
</tr>
<tr>
<td>OD</td>
<td>0.7</td>
</tr>
<tr>
<td>OS</td>
<td>0.5</td>
</tr>
<tr>
<td>OD</td>
<td>0.18</td>
</tr>
<tr>
<td>OS</td>
<td>0.30</td>
</tr>
<tr>
<td>OD</td>
<td>0.30</td>
</tr>
<tr>
<td>OS</td>
<td>0.35 ± 0.18</td>
</tr>
</tbody>
</table>

Average

CCT: central corneal thickness; CDVA: corrected distance visual acuity; c: central; D: diopters; KC: keratoconus; LASIK: laser-assisted in situ keratomileusis; m: male; max: maximum; μm: micrometers; OD: oculus dexter; OS: oculus sinister; p_S: p-value for sphere; p_C: p-value for cylinder; p_{SE}: p-value for spherical equivalence; SE: spherical equivalence; UDVA: uncorrected distance visual acuity.
Despite crosslinking and keeping the flap very thin, the risk of a keratoconus progression due to a corneal weakening after flap creation and stromal ablation has to be taken into consideration. Our results did not reveal this risk, but nevertheless patients have to be counseled about it and be committed to a regular follow-up with topography. It is planned to reassess complications and outcome at 24 months following procedure.

Last, but not least, in case of post-LASIK ectasia, the use of an existing flap is an easy and intuitive approach, broadening the applicability of this procedure.

A possible complication of this method seems to be the formation of epithelial growth into the flap interface, as it was the case in both eyes of patient 4. It has been reported, with highly varying incidence (0–20% [31]), as a complication of LASIK surgery with an increasing risk when correcting hyperopia [32]. The interface manipulation while irrigating with riboflavin and the increased time of an open flap in our surgical procedure may be suggested as possible risk factors for the postoperative growth of epithelial cells into the flap [32]. To minimize epithelial growth, we have, subsequent to the interface-application of riboflavin, irrigated the interface with saline solution.

5. Conclusion

The treatment of keratectasia with hyperopia and hyperopic or mixed astigmatism constitutes a challenge to the refractive surgeon. Conventional approach involves corneal stabilization with CXL followed by adjustment of spectacles. In this study, we present a new treatment modality that aims to stabilize and correct refractive error in the same session, while combining the advantages of a corneal flap and of keeping corneal epithelium intact.

Postoperative corneal stability and significant improvement in UDVA were observed in our patients and indicate a careful appreciation of satisfactory early results. A longer follow-up and larger number of patients are needed to quantify outcome success and to evaluate long-term corneal response and the actual risk of epithelial ingrowth and recurrence of ectasia.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Disclosure

The results of this study were presented as a free paper at the XXXIV Congress of the European Society of Cataract and Refractive Surgeons, Copenhagen, Denmark, in September 2016.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
References

Submit your manuscripts at
www.hindawi.com