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Polyphenols constitute a family of natural substances distributed widely in plant kingdom. These are produced as secondary
metabolites by plants and so far 8000 representatives of this family have been identified. Recently, there is an increased interest
in the polyphenols because of the evidence of their role in prevention of degenerative diseases such as neurodegenerative diseases,
cancer, and cardiovascular diseases. Although a large number of drugs are available in the market for treatment of these diseases,
however, the emphasis these days is on the exploitation of natural principles derived from plants. Most polyphenols show low in vivo
bioavailability thus limiting their application for oral drug delivery. This low bioavailability could be associated with low aqueous
solubility, first pass effect, metabolism in GIT, or irreversible binding to cellular DNA and proteins. Therefore, there is a need to
devise strategies to improve oral bioavailability of polyphenols. Various approaches like nanosizing, self-microemulsifying drug
delivery systems (SMEDDS), microencapsulation, complexation, and solid dispersion can be used to increase the bioavailability.
This paper will highlight the various methods that have been employed till date for the solubility enhancement of various

polyphenols so that a suitable drug delivery system can be formulated.

1. Introduction

Naturally occurring active moieties have been used in therapy
since ages. Currently 80% of the world’s population uses plant
derived principles either directly or indirectly [1]. Certain
examples of plant derived products employed as therapeutic
agents are tannins, alkaloids, polyphenols, polysaccharides,
essential oils, various extracts, and exudates. Lately, much
research has been envisaged on polyphenols due to two
main reasons. Firstly, these possess high spectrum of bio-
logical activities including antioxidant, anti-inflammatory,
antibacterial, and antiviral and secondly, they are present
in abundance in diet [2]. Polyphenols are found in many
components of the human food including peanuts, dark
chocolate, green and black tea, and turmeric. Extensive
research in the past years and collected data shed light on
certain physiological properties of plant polyphenols. These
can slow the progression of certain cancers, neurodegen-
erative diseases, and diabetes and can reduce the risks of
cardiovascular disease, thus highlighting the importance of
the use of plant polyphenols as potential chemopreventive

and anticancer agents in humans [3]. Many medicinal plants
constitute polyphenols as active substances that modulate the
activity of a wide range of enzymes and cell receptors [4].
However, the concentrations of polyphenols which appear
effective in vitro are often of an order of magnitude lower than
that required to elicit response in vivo, thus indicating their
low bioavailability [5]. The bioavailability of polyphenols
following oral administration is governed by many factors
such as gastric residence time, permeability, and/or solubility
within the gut. Further, the conditions encountered in food
processing and storage (temperature, oxygen, and light) or
in the gastrointestinal tract (pH, enzymes, and presence of
other nutrients) may also influence the stability of polyphe-
nols. Poor aqueous solubility and low dissolution rates of
polyphenols contribute to their insufficient bioavailability [6].
There are two parameters that are useful for identifying a
poorly soluble drug, the aqueous solubility and the dose:
solubility ratio. A drug is classified as poorly soluble if it has
less than 100 pg/mL solubility. Dose: solubility ratio is defined
as volume of gastrointestinal fluids necessary to dissolve
the administered dose [7]. The majority of polyphenols
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FIGURE 1: Chemical structure of polyphenols.
TaBLE 1: Pharmacokinetic properties of polyphenols.
Polyphenol Solubility (ug/mL) Dose (uM) Conax (UM) T oax (h) References
Phenolic acid
Ellagic acid 9.3 44.67 0.036 1.98 (8, 36]
Stilbenes
Resveratrol 30 109.5 0.031 0.5 [9, 85]
Flavonols
Quercetin 0.3 255 0.74 0.7 (10, 44]
Flavones
Apigenin 2.16 65.8 0.12 72 [11, 53]
Flavanones
Hesperetin 1.4 727 1.3 58 [12, 64]
Naringenin 45 166 0.2 5.0 (12, 72]
Anthocyanins
Cyanidin-3-rutinoside — 137 0.05 1.5 [13]
Delphinidin-3-rutinoside — 182 0.07 1.8 [13]
Isoflavones
Genistein 0.81 70 0.75 6.5 [14, 80]
Daidzein 8.215 98 0.79 6.5 [14,15]

belong to class II (low solubility and high permeability)
and class IV (low solubility and low permeability) BCS
classes thus limiting activity and potential health benefits
of polyphenols. The bioavailability of class IT and class IV
substances may be enhanced by increasing the solubility
and dissolution rate of the drug in the gastrointestinal fluid.
Table1 depicts solubility and pharmacokinetic properties
of some commonly used polyphenols [8-15]. The solubility
of polyphenols can be enhanced by various techniques.
Techniques used for improving solubility include inclusion
complexes, micronization, solid dispersion, nanosuspension,
solid lipid nanoparticles, nanostructured lipid carrier, lipo-
somes, self- emulsifying drug delivery systems (SEDDS),
and gel based systems. Table 2 depicts some of commonly
employed methods for increasing the solubility [16-23]. The
present review discusses the various methods used till date to

improve the bioavailability of polyphenols by enhancing their
solubility.

2. Polyphenols: Types and Method for
Solubility Enhancement

Several higher plants and some edible plants comprehend
thousand molecules having a polyphenol structure (i.e., sev-
eral hydroxyl groups on aromatic rings). These molecules are
released as defense against ultraviolet radiation or aggression
by pathogens and are a kind of secondary metabolites. The
polyphenols are classified on the basis of the number of
phenol rings that they contain and of the structural elements
that bind these rings to one another. These are hence catego-
rized into phenolic acids, flavonoids, stilbenes, and lignans.
Figure 1 depicts the chemical structure of polyphenols.
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TaBLE 3: Different methods for solid dispersions of ellagic acid [37].

Method Composition

Procedure

Acetone: ethanol (1:4 v/v) solution, ellagic acid,
Spray-dried
solid dispersion acetate butyrate (CMCAB), hydroxypropyl methyl

cellulose acetate succinate (HPMCAS)

polyvinylpyrrolidone (PVP), carboxymethyl cellulose

Acetone : ethanol solution was used to dissolve mixtures of
EA/polymer followed by spray drying of the resultant
dispersion under operating conditions of 90°C inlet
temperature, 57-60°C outlet temperature, 9 mL/min feed
rate, and 350 L/h nitrogen flow.

Coprecipitated

solid dispersion adipate propionate (CAAdP)

Ellagic acid, tetrahydrofuran (THF), cellulose acetate

A mixture of EA/CAAdP was dissolved in THF followed
by dropwise addition of the solution in deionized water
with stirring.

Solid dispersion
by rotary

. acetonitrile : ethanol (1:1v/v) solution (40 mL)
evaporation

Ellagic acid (20 mg), PVP (90 mg), CAAdP (90 mg),

EA, PVP, and CAAdP were dissolved in
acetonitrile : ethanol solution followed by concentrating
the solution with rotary evaporation

2.1. Phenolic Acids. They are plant derived phenolic com-
pounds which are produced via shikimic acid through
phenylpropanoid pathway and have a unique chemical struc-
ture of C4,—C;. Some phenolic acids are also of microbial
origin containing C¢—C, linkage. These are further classified
into two categories: derivatives of cinnamic acid (hydroxycin-
namic acids) and derivatives of benzoic acid (hydroxybenzoic
acids).

2.1.1. The Hydroxycinnamic Acids (Figure1(b)). They are
more common than the hydroxybenzoic acids and consist
mainly of p-coumaric acid, caffeic acid, ferulic acid, and
sinapic acid. These acids are found in glycosylated forms as
derivatives of shikimic acid, quinic acid, and tartaric acid.
Caffeic acid combines with quinic acid to form chlorogenic
acid (Figure1(c)). It is found in high concentrations in
coffee: a single cup may contain 70-350 mg chlorogenic acid
[24]. Caffeic acid is the most abundant phenolic acid and
represents between 75 and 100% of the total hydroxycinnamic
acid content of most of the fruit. All parts of the fruit
contain hydrocinnamic acid but the highest concentrations
are seen in the outer parts of ripe fruit. Cereal grains are
dietary source of ferulic acid. Wheat grains may contain 0.8-
2 g/kg dry weight of ferulic acid, which represents up to 90%
of total polyphenols [25, 26]. Since, hydroxybenzoic acids
possess sufficient aqueous solubility their absorption is not
dissolution limited.

2.1.2. Hydroxybenzoic Acids (Figure 1(a)). Salient examples
of hydroxybenzoic acids are gallic acid, protocatechuic acid,
ellagic acid (EA), and vanillic acid. Edible plants for example,
red fruits, black radish, onions, and green tea are rich
in hydroxybenzoic acid content [27]. Tea is an important
source of gallic acid and tea leaves may contain up to
4.5g/kg fresh wt of leaves [24, 28]. Dietary sources of
EA include walnuts, pomegranates, and berries [29]. EA
possesses several health benefits against many diseases such
as breast cancer [30], prostate cancer [31], lung cancer
[32], colon cancer [33], cardiovascular disease [34], and
neurodegenerative diseases [35]. EA was found to possess
maximum solubility of 9.3 ug/mL [36]. This low solubility
was attributed to high crystallinity of EA due to its planar
and symmetrical structure and extensive hydrogen-bonding

resulting in low bioavailability of EA. Solid dispersions of EA
have been employed to enhance the solubility of EA. Li et al.
[37] formulated solid dispersions of EA by three different
methods. Table 3 depicted the methods and compositions
of these investigational formulations. Fourier transform
infrared spectroscopy (FTIR) studies confirmed the presence
of H-bonding between EA and polymers. Scanning electron
microscope (SEM) studies indicated that EA was present in
amorphous form in the solid dispersions. The in vitro dis-
solution studies revealed that the nature of polymer directly
influences the solubility of EA. The polymer with more
hydrophilic character resulted in higher swelling and faster
release of EA. Thus, the release profile of EA from EA/PVP
matrix was 92% (1h) followed by EA/HPMCAS (35%, 0.5h),
EA/CMCAB (18%, 1h), and EA/CAAdP (15-17%, 1 h). Incor-
poration of CAAdP in EA/PVP solid dispersion led to a
decrease in release of EA (62%, 0.5h). EA has been reported
to deteriorate in the solution form due to crystallization and
chemical degradation. The amount of EA remaining after
24 h in solution is only 18% and 80% due to crystallization
and chemical degradation, respectively. However, the solid
dispersions were found to significantly enhance the stability
of EA against crystallization and chemical degradation. Fur-
ther, it was found that HPMCAS amorphous solid dispersion
provided maximum stability to EA [37].

2.2. Flavonoids. These are benzo-y-pyrone derivatives of
phenolic and pyran rings [38]. On the basis of substitutions
on three rings, flavonoids are classified as flavonols, flavones,
isoflavones, flavanones, flavanols, and anthocyanidins which
are biotransformed in body by methylation, sulfation, and
glucuronidation of hydroxyl groups. Flavonoids predomi-
nantly exist as 3-O-glycosides and polymers [39]. Chemical
structure of flavonoids is illustrated in Figure 2.

2.2.1. Flavonols. Among flavonoids, flavonols are the most
ubiquitous in foods. The main representatives of flavonols
are quercetin and kaempferol (Figure 2(f1)). The flavonols are
primarily found in onions (up to 1.2g/kg fresh wt), curly
kale, leeks, broccoli, and blueberries. Red wine and tea also
contain up to 45mg/L flavonols. In nature, flavonols are
present in glycosylated forms in plants. The sugar moiety
associated with flavonols is mainly glucose or rhamnose,
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F1GURE 2: Classification and chemical structure of flavonoids.

but other sugars like galactose, arabinose, and xylose may
also be involved. Each fruit contains around 5-10 different
flavonol glycosides [40]. The biosynthesis of flavonols is
stimulated by light, so these tend to accumulate in the
outer and aerial tissues. Depending on exposure to sunlight,
differences in concentration exist between fruits on the
same tree and even between different sides of a single fruit
[41].

Quercetin. It is a naturally occurring polyphenol which
belongs to a group of plant pigments known as flavonoids,
responsible for the colour of vegetables, fruits, and flowers
[42]. Quercetin is a flavonol whose chemical structure is
derived from flavone. Chemically quercetin is known as
3,3,4',5,7-pentahydroxyflavone. Quercetin exhibits various
properties such as anti-inflammatory, antioxidant, antihis-
tamine, and antiarthritis [42]. The primary dietary sources
of quercetin are citrus fruits, apple, onions, parsley, sage, tea,
and red wine [43]. However, despite having all these beneficial
activities, poor water solubility (0.3 yg/mL) restricts its use
thus highlighting the importance of increasing the solubility
of quercetin [44]. Gao et al. [45] reported the formation
of nanosuspension of quercetin by two techniques. The
first technique is comprised of evaporative precipitation
of quercetin into aqueous solution (EPAS). The organic
solution of quercetin in ethanol was poured slowly into an
aqueous solution containing Pluronic F68 (0.75% w/v) and
lecithin (0.25% w/v) stabilizers. The solution was contin-
uously stirred under vacuum. Finally, ethanol was evapo-
rated and EPAS nanosuspension was collected. The second
technique involved high pressure homogenization (HPH)
of quercetin dispersion in Pluronic F68 (0.75% w/v) and

lecithin (0.25% w/v). A piston gap high pressure homogenizer
was used to circulate the suspension for two cycles at the
pressure of 200 bar and five cycles at 500 bar followed by
20 more cycles at 1500 bar resulting in HPH suspension.
The mean particle size, polydispersity index (PI), and solu-
bility profile of quercetin nanosuspension produced by EPAS
method and HPH method were found to be 282.6 + 50.3 nm,
0.23 + 0.08, 422.4 ug/mL and 213.6 + 29.3nm, 0.21 + 0.10,
278.6 pg/mL, respectively. X-ray powder diftraction (XRPD)
measurements revealed a crystalline to amorphous phase
transition in EPAS process, which was not observed in HPH.
This formed the basis for higher increase in solubility of
quercetin in case of EPAS [46].

A solid dispersion of quercetin employing CMCAB,
HPMCAS, and CAAdP as polymers has been reported by Li
etal. [47]. Quercetin and polymer mixtures were prepared in
different ratios of 1: 9,1:3,1:1,3:1,and 9: 1. Acetone : ethanol
(1:4) solution was used to dissolve the above mixtures to
form 2% w/v solution. The solutions were spray-dried using
inlet temperature 90°C, outlet temperature 57-60°C, feed rate
9mL/min, and nitrogen flow rate 350 L/h. XRPD studies
of the formulations revealed that while quercetin/CMCAB
had identical crystallinity, quercetin/CAAdp showed amor-
phous character and quercetin/HPMCAS displayed par-
tial crystalline character with respect to crude quercetin.
FTIR spectra of the formulations showed broadening of
peak at 3300-3500 cm ™" which was attributed to the pres-
ence of intermolecular H-bonding between quercetin and
matrix polymer, further decreasing crystalline structure of
quercetin. A comparison of release profiles of quercetin
solid dispersion with quercetin powder indicated that the
solid dispersions quercetin/HPMCA, quercetin/CMCAB,
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FIGURE 3: Steps involved in SAS method for preparation of nanoparticles [55].

and quercetin/CAAdp showed 14% release after 0.5 h whereas
the dissolution of quercetin powder was found to be 0.7%
even after 1 h.

Inclusion complexes of quercetin have also been reported
for increasing solubility of quercetin [48]. An inclusion
complex of quercetin was made with -cyclodextrin (SCD),
hydroxypropyl--cyclodextrin (HP-SCD), and sulfobutyl
ether-f3-cyclodextrin (SBE-BCD) (ranging from 0 to 0.01 M).
The 1:1 complex between quercetin and cyclodextrins led to
increased solubility of quercetin in the order of SCD < HP-
BCD < SBE-BCD [49].

2.2.2. Flavones. They are much less prevalent than flavonols
in fruit and vegetables. Flavones primarily contain glycosides
of luteolin and apigenin (Figure 2(f2)). The important savory
sources of flavones are parsley and celery. C-glycosides of
flavones are encompassed in cereals such as millet and wheat
(50, 51].

Apigenin (AP). It is a naturally occurring flavone chemically
known as 4',5,7—trihydroxyﬂavone. The most prevalent nat-
ural sources of AP are parsley, celery, and chamomile tea
[52]. AP belongs to BCS class IIwith poor aqueous solubility
and high permeability in intestine. AP was found to possess
maximum solubility 2.16 yug/mL at pH 7.5 resulting in low
dissolution and poor bioavailability [53]. Various formulation
strategies have been devised to overcome this problem. High
shear mixing for preparation of AP smart crystals has been
reported by Al Shaal et al. [54] for solubility enhancement of
AP.

Smart crystal technology comprehends combination of
different processes, pretreatment of poorly soluble drug fol-
lowed by high pressure homogenization. A macrosuspension
of AP powder and surfactant solution (Plantacare 2000 UP,
1% w/w) was formed by high shear mixing (Ultra-Turrax T25,
10,000 rpm). This was followed by seven passages through

bead milling (Buhler PML-2). The formed nanosuspension
was then subjected to high pressure homogenization (Avestin
C50, 300 bar/cycle). The pretreatment step was included to
accelerate nanocrystals production by reducing homogeniza-
tion cycles and to decrease particle size. Milling medium used
was zirkonia and yttria was employed as a stabilizer. The mean
particle size of AP was found to be 439 + 20 nm with a low
PI of 0.283 + 0.040. Light microscopy studies also presented
evidence supporting the use of surfactant by showing an
image with uniform crystal distribution with no signs of
large crystals and aggregates in the presence of surfactant.
A zeta potential of —38 mV was reported which indicated a
well charged surface and related stability. AP coarse powder
and nanoparticles showed identical X-ray diffraction (XRD)
pattern indicating no decrease in crystallinity. DPPH (2,2-
diphenyl-1-picrylhydrazyl) radical scavenging test showed a
2-fold increase in antioxidant activity of AP nanoparticles as
compared to AP macrosuspension.

Another method for improvement in solubility of AP has
been reported by Zhang et al. [55]. The study incorporated
preparation of AP nanocrystals via supercritical antisolvent
method (SAS). Figure 3 depicts a schematic representation
of preparation of nanoparticles. Photon correlation spec-
troscopy (PCS) studies revealed the particle size to be 562.5 +
56 nm with a PI value of 0.92 + 0.21. Reduced degree of
crystallinity was represented in XRPD diagram. Differential
scanning calorimetry (DSC) curves of AP coarse powder and
AP nanocrystals were studied and compared. A decrease in
melting point of AP was observed with nanoparticles which
could be attributed to particle size reduction to nanometer
range. FTIR patterns were identical for both coarse powder
and nanoparticles thus indicating the chemical stability of AP
during SAS process. AP nanocrystals exhibited more rapid
dissolution rate with much higher cumulative amount of
dissolved AP than AP coarse powder. The higher dissolution
of AP nanocrystals could be due to the enhanced saturated
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solubility resulting from a significant decrease of particle size
[56]. In vivo studies showed 3.6 and 3.4 fold enhancement in
Crax and AUC of AP, respectively, after oral administration
of AP nanocrystals. The absolute bioavailability of AP coarse
powder was found to be 2.0% whereas nanoparticles exhib-
ited 6.9% absolute bioavailability. Thus improved solubility,
dissolution rate, and bioavailability depict the usefulness
of these methods for delivery of such BCS class second
compounds.

2.2.3. Flavanones. They are natural compounds of restricted
occurrence and are sometimes termed as minor flavonoids.
The cardinal aglycones are naringenin, hesperetin, and erio-
dictyol (Figure 2(f4)). Glycosylation of flavanones is generally
attained by a disaccharide at position 7, which is either
a neohesperidose, that imparts a bitter taste (such as to
naringin in grapefruit), or a rutinose, which is flavorless.
Citrus fruits contain considerable amount of flavanones.
Tomatoes and certain aromatic plants such as mint also
constitute flavanones. Hesperidin and narirutin are present
in orange juice at a concentration of 200-600 mg/L and 15—
85mg/L, respectively. A single glass of orange juice may
contain between 40 and 140 mg of flavanone glycosides [57].
However, very high flavanone content is found to be present
in the solid parts of orange fruit, particularly the albedo (the
white spongy portion), and the membranes separating the
segments. Thus an orange fruit may comprise up to 5 times
as much as a glass of orange juice.

(1) Hesperetin. It is a naturally occurring flavonoid chemically
known as 3',5,7-trihydroxy-4-methoxyflavanone. Hesperetin
is found almost exclusively in citrus fruits [58]. Studies
revealed that hesperetin can avert colon [59], urinary bladder
[60], and chemically induced mammary carcinogenesis [61].
Other biological activities of hesperetin include antioxidant
[62] and anti-inflammatory [63]. Aqueous solubility of hes-
peretin was found to be 1.4 ug/mL [64]. Nanoparticles of
hesperetin by two different methods namely APSP and EPN
have been have been reported to enhance the solubility and
dissolution rate [65].

APSP. The solvent and antisolvent used in this method
were ethanol and deionized water, respectively. The method
comprised of dissolution of hesperetin in solvent followed by
injection of drug solution into an antisolvent with the help of
syringe. The solution was constantly stirred using magnetic
stirrer (200-1000 rpm) and the flow rate was varied from 2 to
10 mL/min.

EPN. Nanoparticles in this method were formed by quick
addition of drug solution containing hesperetin and ethanol
into antisolvent. Hexane was used as antisolvent. Vacuum
drying was carried out for quick evaporation of solvent
leading to formation of nanosuspension.

Figures 4(a) and 4(b) depict the effect of various param-
eters on particle size and solubility of hesperetin by APSP
and EPN methods. The formulation containing 5mg/mL
drug concentration, 10 mL/min flow rate, stirring speed of
1000 rpm, and solvent: antisolvent ratio of 1:20 depicted

highest solubility (9.88 ug/mL). This was attributed to a
decrease in particle size from 34 ym to 0.75 ym (revealed by
SEM). In case of EPN highest solubility (11.17 yug/mL) was
seen in formulation containing 5 ug/mL drug concentration
and 1: 20 solvent : antisolvent ratio. The DSC studies revealed
that the melting point of nanoparticles prepared by both
methods was identical to crude hesperetin but enthalpy
of fusion was reduced due to reduction in crystallinity of
nanoparticles of hesperetin.

(2) Naringenin (NRG). It is a kind of flavanone (4' 5,7
trihydroxyflvanone), found extremely in tomatoes [66],
cherries [67], grape fruit, and citrus fruits [58]. In addi-
tion to antioxidant property [68], NRG also possess anti-
inflammatory [69], antitumour [70], and hepatoprotective
effects [71]. However, clinical applicability of NRG is limited
by its low solubility and bioavailability. NRG possesses low
aqueous solubility (45 pg/mL) [72], therefore measures were
taken to investigate methods for enhancing solubility of
NRG. Transglycosylation of hesperetin leads to an increase
in solubility of hesperetin [73]. This formed the basis for
preparing spray-dried particles of NRG with «-Glucosyl
hesperidin (Hsp-G) in order to enhance its solubility [72].
Different loading ratios of NRG/Hsp-G (1:1 to 1:20 w/w)
were dissolved in ethanol:water (8:2 v/v) solution. The
resultant suspension was then subjected to spray drying at
the rate of 10 mL/min employing a spray nozzle of diameter
406 ym and pressure of 0.13 MPa. The inlet and outlet tem-
peratures of drying chamber were 120°C and 70°C, respec-
tively. SEM images of NRG/Hsp-G samples showed spherical
shaped aggregates with average particle size of 3-4 ym.
The resultant spray-dried particles of NRG showed 60-fold
improvement in solubility when loading ratio of NRG/Hsp-G
was 1:20.

2.2.4. Isoflavones. They have structural similarities to estro-
gens as they have hydroxyl groups in positions 7 and 4’ in
a configuration analogous to that of the hydroxyls in the
estradiol molecule (Figure 2(f3)). Although isoflavones are
not steroids, they have potential estrogenic activity. This illus-
trates their ability to bind to estrogen receptors. They possess
pseudohormonal properties and are consequently classified
as phytoestrogens [2]. Leguminous plants are the exclusive
source of isoflavones. The main source of isoflavones in the
human diet is soya and its processed products. Isoflavones
principally contain 3 compounds: genistein, daidzein, and
glycitein (concentration ratio of 1:1:0.2). Factors such as
geographic zone, growing conditions, and processing of soya
and its manufactured products greatly affect their isoflavone
content. Isoflavone content of soybeans is 580-3800 mg/kg
and of soymilk is 30-175 mg/L [74, 75].

Genistein. It is a naturally occurring plant flavonoid. Soy
products are the richest sources of genistein [76]. Chemical
structure of genistein (4',5,7-trihydroxyisoflavone) contains
an isoflavone backbone. Genistein has beneficial effects in
areas of cancer [77], cardiovascular diseases [78], and post-
menopausal symptoms [79]. Aqueous solubility of genistein
is very poor, approximately 0.81 yg/mL [80], which leads to
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FIGURE 4: (a) Depicting the effect of various parameters on particle size and solubility of hesperetin by APSP method [65]. (b) Depicting the
effect of various parameters on particle size and solubility of hesperetin by EPN method [65].

low bioavailability of the drug. A solid dispersion of genistein
in Pluronic F127 polymeric micelles has been reported for
solubility enhancement by Kwon et al. [80]. An ethanolic
solution of Pluronic F127 was used to dissolve genistein
by constant stirring at 37°C for 30 min. The solution when
evaporated led to formation of clear gel-like matrix. Addition
of water and constant stirring resulted in formation of poly-
meric micelles containing genistein. The resulting solution
was filtered employing 0.45 ym pore size membrane filter to
remove any undissolved genistein followed by lyophilization
at —80°C. Average particle size of genistein loaded polymeric
micelles was found to be 27.76 + 0.46 nm with PI of 0.26. In
vitro drug release showed genistein release 48-58% in pH 1.2
medium and 44-82% in pH 6.8 medium which was attributed
to higher solubilizing ability of polymeric micelles. The in
vivo pharmacokinetic characterization showed an increase
in C,, from 1.22 to 5.68 ug/mL and decrease in ¢, from
0.55 to 0.20h. The polymeric micelles also demonstrated
enhanced bioavailability thus confirming enhanced genistein
solubility and release in gastrointestinal tract.

2.3. Stilbenes. Stilbenes encompass a group of biologically
active compounds; however, human diet comprises only few

of these (Figure 1(e)). Examples may include trans-resveratrol
and trans-piceid (its natural glycoside).

2.3.1. Resveratrol. It belongs to a class of naturally occurring
polyphenols known as stilbenes. It is mainly present in
the form of trans-resveratrol (3,5,4'-trihydroxystilbene) in
human diet. The dietary sources of resveratrol include peanut
butter, dark chocolate, blueberries, and red wine. About
2.3mg/L of trans-resveratrol is present in red wine [81].
Resveratrol exhibits antiangiogenesis [82], cardioprotective
[83], anticarcinogenic, and anti-inflammatory activities [84].
Aqueous solubility of resveratrol was found to be 30 ug/mL,
thereby, limiting pharmaceutical potential of resveratrol [85].
Zhang et al. [86] reported a method for enhancing solubility
of resveratrol by formulating nanoparticles of resveratrol
using antisolvent precipitation method. The ethanolic solu-
tion of resveratrol (solvent) was poured with vigorous stirring
(9000 rpm) into aqueous solution of polymer (antisolvent)
resulting into precipitation of resveratrol after 30s. Four
different polymers that is, HPMC, PVP, PEG 400, and P188
were employed. The solvent : antisolvent ratio was kept con-
stant at 1: 20. Process parameters employed for spray drying
were 105°C inlet temperature, 50-60°C outlet temperature,
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FIGURE 5: APSP and EPN techniques for nanoparticle formulation of curcumin [92].

ImL/min spray flow rate, and 0.65MPa atomization air
pressure. The particle size obtained with HPMC, PVP, PEG
400, and P188 was found to be 161 + 3, 1156 + 78, 2168
+ 26, and 1644 + 47 nm, respectively. Dissolution studies
represented complete dissolution of resveratrol nanodisper-
sion in less than 45 min, whereas raw resveratrol did not
dissolve completely even after 120 min indicating increased
water solubility of resveratrol by using polymers.

2.4. Miscellaneous

2.4.1. Curcumin. Itis a naturally occurring polyphenol which
is extracted from the plants of Curcuma longa. Curcuma
longa (turmeric) has been used to treat ailments since a long
time ago. It is also employed as a spice in Indian cuisine.
Curcumin exhibits a variety of pharmacological actions such
as antitumor [87], anti-HIV [88], antioxidant, and anti-
inflammatory [89]. However, the goodness of curcumin
has not been able to reach up to its potential yet. The
maximum solubility of curcumin in plain aqueous buffer
pH 5.0 has been reported to be 11 ng/mL [90] and the oral
dose of curcumin for treating advanced colorectal cancer was
found to be 3.6 g/day [91]. Therefore, there is need to devise
strategies to increase solubility of curcumin. Nanoparticles
of curcumin employing antisolvent precipitation method

have been reported by Kakran et al. [92]. The antisolvent
precipitation involved two methods, namely, antisolvent pre-
cipitation using a syringe pump (APSP) and evaporative pre-
cipitation of nanosuspension (EPN). In first method ethanol
was used as solvent and deionized water as antisolvent. In
EPN method solvent was same but antisolvent employed
was hexane. Figure 5 depicts a schematic representation of
techniques employed for formulation of nanoparticles. The
effect of process variables such as stirring speed, flow rate,
solvent : antisolvent (S:AS) ratio, and drug concentration
was studied on particle size and solubility.

An increase in the stirring speed from 200 to 1000 rpm
in APSP leads to a decrease in particle size from 550 to
500 nm. An increase in stirring speed led to intensification
of micromixing between multiphases resulting in decrease in
particle size. Similar results were observed with a variation
in flow rate of curcumin solution. An increase in the flow
rate from 2 to 10mL/min led to decrease in length of
curcumin particles from 2560 to 1860 nm since an increase
in flow rate resulted in rapid mixing. Further, an inverse
relationship was reported between amount of antisolvent
in SAS ratios and particle size. With an increase in S: AS
ratio 1:20 from 1:10, a decrease in length and diameter of
curcumin particles from 1860 and 490 nm to 930 and 340 nm,
respectively, was reported. The drug concentration exhibited
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a direct relationship with particle size as greater supersatura-
tion followed by faster nucleation rate and smaller particles
was observed with an increase in drug concentration. The
particle length increased from 930 to 965 nm with a change
in drug concentration from 5 to 15mg/mL. Further, DSC
studies revealed a decrease in curcumin crystallinity owing
to decrease in melting enthalpy of nanoparticles although
melting point was identical to original curcumin. The sol-
ubility studies indicated that solubility of curcumin (0.58 +
0.03 ug/mL) was increased by APSP and EPN methods to
748 + 0.11 ug/mL and 8.23 + 0.07 ug/mL, respectively, which
was ascribed to a reduced particle size [93] and decreased
crystallinity [46].

Nanocrystal Solid Dispersions of Curcumin. Solid dispersions
have also been demonstrated to increase the bioavailabil-
ity of poorly water soluble drugs. Onoue et al. [94] have
reported the formulation of solid dispersions of curcumin to
enhance its solubility. Three types of curcumin dispersions
were formulated, namely, nanocrystal solid dispersion (CSD),
amorphous solid dispersion (ASD), and nanoemulsion (NE).

Figure 6 shows the schematic representation of preparation of
three types of solid dispersions. Diffraction pattern of CSD-
curcumin was identical with crystalline curcumin indicating
high crystallinity of curcumin whereas ASD-curcumin was
found to be amorphous. Release rates of amorphous solid
dispersion, nanocrystal solid dispersion, and nanoemulsion
formulation were found to be 95% (180 min), 80% (180 min),
and 93% (60 min), respectively, thus, indicating enhanced
solubility of curcumin with solid dispersions.

Self-Microemulsifying Drug Delivery Systems of Curcumin
(SMEDDS). Use of SMEDDS as one of the approaches
to enhance solubility, dissolution, and oral absorption of
poorly water soluble drugs has gained interest recently [95].
Cui et al. [96] employed SMEDDS for enhancing solubility
of curcumin. Curcumin loaded SMEDDS were formulated
employing oil (ethyl oleate), surfactant (the mixtures of
emulsifier OP : cremorphor EL-401: 1 w/w), and cosurfactant
(PEG 400). Different concentrations of the three components
were used and evaluated for particle size and solubility. The
optimal concentration of oil, surfactant, and cosurfactant was
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found to be 12.5%, 57.5%, and 30%, respectively. According
to transmission electron microscopy (TEM) images, the
mean particle size of formulation after dilution with water
was found to be 21nm and the solubility of curcumin was
enhanced to 21 mg/g. A rapid dissolution (85% in 10 min) was
observed with SMEDDS whereas crude curcumin showed
negligible release even after 60 min in both pH 1.2 and
6.8 buffer solutions. In vivo oral absorption of curcumin
loaded SMEDDS depicted 3.8-time increase in absorption
percentage of SMEDDS.

3. Conclusion

Increase in solubility of a therapeutic agent can enhance the
bioavailability of that compound. Polyphenols are naturally
occurring active principles with wide variety of physiological
and biological activities. However, their therapeutic potential
has not been exposed widely because of their low solubilities.
This review discusses the various techniques employed so
far for solubility enhancement of polyphenols. The different
strategies for example, antisolvent precipitation, evaporative
precipitation, high pressure homogenization, or SMEDDS
resulted in approximately 15-20-fold enhancement in solu-
bility and 3-5-fold enhancement in bioavailability for some
polyphenols, thus suggesting that application potential of
polyphenols can be enhanced by increasing their solubility.
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