Case Report
Childhood Cryptosporidiosis: A Case Report

P. Agnamey,1 D. Djeddi,2 A. Diallo,1 A. Vanrenterghem,2 N. Brahimi,1 C. da Costa,1
and A. Totet1

1Department of Medical Parasitology and Mycology, University Hospital, 80054 Amiens, France
2Department of Paediatrics, University Hospital, 80054 Amiens, France

Correspondence should be addressed to P. Agnamey, agnamey.patrice@chu-amiens.fr

Received 20 May 2010; Accepted 30 August 2010

Academic Editor: Alvin A. Gajadhar

Copyright © 2010 P. Agnamey et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cryptosporidium has emerged as an important cause of diarrheal illness worldwide, especially amongst young children and patients
with infectious or iatrogenic immune deficiencies. The authors describe a case of mild cryptosporidiosis in a well-nourished,
immunocompetent, one-year-old child. Rapid clinical and parasitological improvement was observed after a 3-day course of
nitazoxanide.

1. Introduction

Cryptosporidium, a spore-forming protozoon, has been recognized as a human pathogen since 1976 [1]. The
species most frequently involved in human infections are Cryptosporidium hominis, which primarily infects humans,
and Cryptosporidium parvum, which infects humans and animals such as cattle, although infection with unusual
species and genotypes occurs in both immunocompetent and immunocompromised populations [2]. In immuno-
competent individuals, infection causes self-limited watery diarrhea. While, in patients with immune deficiencies,
cryptosporidiosis may present as chronic or severe life-threatening diarrhea. In children, mainly those living in
developing countries, cryptosporidiosis can lead to malnu-
trition and developmental delays [3]. Even asymptomatic infections are associated with growth deficits [4]. In industri-
alized countries, Cryptosporidium also has important public health implications. Cryptosporidium spp. are known to cause
traveler’s diarrhea [5] and they are also responsible for outbreaks of diarrhea, including a memorable outbreak in
Milwaukee, Wisconsin, in 1993 during which nearly 403,000 people developed cryptosporidiosis due to contamination
of drinking water [6]. These outbreaks highlight the medical importance of cryptosporidiosis. Antimotility drugs play
a key role in the treatment of cryptosporidiosis in both immunocompetent and immunocompromised individuals,
while the efficacy of antiparasitic drugs in cryptosporidio-
sis remains controversial, particularly in immunocompro-
mised individuals [7]. A recent meta-analysis of trials of
antiparasitic drugs in cryptosporidiosis revealed significant
improvement of non-AIDS patients with nitazoxanide, but
no clear evidence of efficacy for other antiparasitic drugs in
cryptosporidiosis or for nitazoxanide in AIDS patients [8].
We describe the clinical and parasitological course of a child
with cryptosporidiosis, who was treated successfully with
nitazoxanide (Alinia, Romark Laboratories).

2. Case Report

A 16-month-old child was admitted to the pediatrics depart-
ment of Amiens University hospital (France) for diarrheal
syndrome associated with rhinitis. He was born in France
to French parents living in a rural area who had never been
outside of France. The child’s father was a dairy farmer and
his mother did not work on the farm. The child did not
have any particular family history, but had a personal history
of acute otitis media and rhinopharyngitis. His immune
status was not investigated, but on the basis of this history
of frequent rhinitis, a respiratory allergy was suspected and
treated with antihistamine.

The child presented to our institution with a six-day
history of fever, rhinitis, vomiting, and profuse diarrhea. He
experienced up to 7 episodes of nonbloody and nonglairy
Figure 1: Amplification by nested PCR of Cryptosporidium DNA extracted from stool samples. The gel shows the amplification of a specific 861-bp fragment with specific primers [9]. Lane M: 123-bp DNA size marker ladder; lanes D0₁ and D0₂ (3 days later): samples collected before treatment; lanes D3–D28: samples collected after treatment; +: positive control; −: negative control.

Watery diarrhea per day. He was moderately dehydrated with very minor signs of dehydration such as weight loss, deep-set eyes, but no disorders of consciousness. On initial physical examination, the young patient was afebrile but presented tachycardia of 124 bpm, a respiratory rate of 18/min, and blood pressure of 82/52 mmHg. Oxygen saturation on room air was 99%. Chest, cardiac, and abdominal examinations were normal. On ear-nose-throat examination, the tympana could not be seen due to earwax and the throat was erythematous. One day after admission, after removal of earwax, ear examination revealed bilateral acute otitis media. The patient was placed on intravenous fluids and oral cefpodoxime was started while waiting for laboratory results.

The symptoms resolved on the day after the last dose of nitazoxanide. Three-day treatment (100 mg twice daily) with nitazoxanide suspension (Alinia, Romark Laboratories, FL, USA) was then initiated. The laboratory work-up revealed white blood cell count: 10,200 cells/mm³ with 46% neutrophils, 41% lymphocytes, 10% monocytes, 3% eosinophils; hemoglobin: 13.3 g/dL; platelets: 477,000/mm³. Basophilic lymphoid cells were observed. Blood biochemistry showed hyponatremia (130 mmol/L) and decreased alkaline reserve (19 mmol/L). Stool specimens were also sent for routine bacterial culture, rotavirus/adenovirus antigen, Giardia antigen, and all were negative. Routine stool examination for enteric parasites including direct saline wet mount examination and two concentration techniques: Bailenger’s method and MIF (merthiolate iodine formaldehyde) with both a fixative and a stain was negative. Cryptosporidium antigen was detected in stool by the immunochromatographic method (RIDA QUICK Cryptosporidium, R-biopharm Diagnostic). Modified Ziehl-Nielsen staining of a stool smear showed several Cryptosporidium oocysts, up to 2,400 per gram of stool. Polymerase chain reaction-restriction fragment length polymorphism (PCR/RFLP) [9] identified the species as Cryptosporidium parvum. Three-day treatment (100 mg twice daily) with nitazoxanide suspension (Alinia, Romark Laboratories, FL, USA) was then initiated. The symptoms resolved on the day after the last dose of nitazoxanide. Oocysts were no longer detected in stool using the modified Ziehl-Nielsen stain and immunochromatographic methods, while PCR detection was still weakly positive. Eradication of oocyst excretion was observed on the day-7 stool sample and PCR detection was also negative (Figure 1).

3. Discussion

Cryptosporidium infections obviously do not represent a major public health threat in developed countries, although recurrence of gastrointestinal symptoms due to Cryptosporidium is frequently reported, for example, in the Milwaukee outbreak in 1993 and in sporadic cases in Europe. In most sporadic cases, the source of infection is difficult to ascertain as many risk factors are commonly encountered in everyday life. Several factors facilitate transmission of Cryptosporidium and account for the propensity to cause large-scale outbreaks of diarrhea. (i) Cryptosporidium can infect many mammalian species. It is frequently identified in farm animals, particularly calves, and in domestic animals; (ii) the oocyst is very resistant and can conserve its infectivity in moist environments for a long time; (iii) Cryptosporidium genus is composed of a large number of species, several of which can infect humans; (iv) the infectious dose is very low, and infected individuals excrete large numbers of oocysts, up to 10^8 in a single day [10]. Cryptosporidium oocysts also remain infectious after being shed and can cause self-infection. Public health surveys of cases must investigate all forms of exposure during the two weeks prior to onset of the illness in order to identify the source of contamination. In the present case, the child’s father was a dairy farmer and the family lived 3 km from the farm. Two years prior to onset of the child’s illness, the father reported cryptosporidium-related loss of calves in his livestock. The child had never been on the farm, and therefore had never had any contact with the animals. Parasitological stool examinations including specific methods for Cryptosporidium oocyst detection of other family members were negative, although the father reported occasional gastrointestinal disorders. Cryptosporidium parvum identified in the child and the documented presence of Cryptosporidium in the father’s livestock are both in favour of these animals as the source of contamination, with transmission via the father. An environmental survey may have confirmed this hypothesis. As reported elsewhere [11, 12], this case report confirms the efficacy of nitazoxanide for the treatment of cryptosporidiosis in immunocompetent children. Rapid eradication of oocyst excretion was observed...
in this case. However, the role of the child’s immune system in this rapid clearance of the parasite remains unknown. The negative result of Cryptosporidium antigen detection in stool observed immediately after the 3-day course of nitazoxanide is an interesting finding, suggesting that the rapid immunochromatographic method could be used for posttreatment stool tests instead of more time-consuming staining or PCR methods.

This case highlights the need to consider spore-forming protozoa as potential causes of diarrhea in children. Parasite-related diarrhea in both immunocompetent adults and children is probably underestimated due to underdiagnosis. In contrast with bacterial and viral agents, parasites are less frequently considered by physicians as a potential cause of diarrhea. Clinical pathologists should therefore systematically perform screening for spore-forming protozoa in all patients with persistent or acute watery stools.

References

Submit your manuscripts at http://www.hindawi.com