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Abstract. 
This paper provides an application of generalized space-time autoregressive (GSTAR) model on GDP data in West European countries. Preliminary model is identified by space-time ACF and space-time PACF of the sample, and model parameters are estimated using the least square method. The forecast performance is evaluated using the mean of squared forecast errors (MSFEs) based on the last ten actual data. It is found that the preliminary model is GSTAR(2;1,1). As a comparison, the estimation and the forecast performance are also applied to the GSTAR(1;1) model which has fewer parameter. The results showed that the ASFE of GSTAR(2;1,1) is smaller than that of the order (1;1). However, the  t-test value shows that the performance is significantly indifferent. Thus, due to the parsimony principle, the GSTAR(1;1) model might be considered as a forecasting model.
 

1. Introduction
Space-time data are frequently found in many areas of research, for example, monthly tea production from some plants, yearly housing price at capital cities, and yearly per capita GDP (gross domestic product) of several countries in some region. The generalized space-time autoregressive model of order  
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				…
				,
				𝜆
			

			

				𝑝
			

			

				)
			

		
	
,  shortened by GSTAR(
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				;
				𝜆
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,…,
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), is one of space-time models characterized by autoregressive terms lagged in the 
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th order in time and the order of  
	
		
			
				(
				𝑝
				;
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				,
				…
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  in space [1].
The term of generalization is associated with the model parameters. When a parameter matrix is diagonal, the GSTAR model is the same as space time autoregressive (STAR) model given by Martin and Oeppen [2] and Pfeifer and Deutsch [3]. The notion of generalization has also been used by Terzi [4] who also generalizes STAR models but in a different context. He generalized the STAR(1;1) by adding the contemporaneous spatial correlation but still preserved the scalar parameters.
When  
	
		
			
				𝑝
				=
				1
			

		
	
  and 
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				=
				1
			

		
	
, GSTAR(1;1) is called the first order of GSTAR model. The model has interpretation that the current observation in a certain location only depends on the immediate past observations recorded at the location of interest and at its nearest neighbourhood [5]. The order (1;1) is the simplest natural assumption if one wants to forecast future observations in a certain location. The STAR(1;1) model is another simple space time model which also has the same interpretation as GSTAR(1;1) model. However, contrary to the generalization model, its parameters of each spatial order are assumed to be the same for all location though; there is no a priori justification for this assumption [1]. Parameters of GSTAR model can be estimated by the method of least square. This method has been used to model the monthly oil production [5] and to model the monthly tea production [1]. However, when the model was applied to their data, none of the papers included a description about how to assess the model based on forecasting performance which is an important step when the modelling purpose is to build a forecasting model. In this paper, we attempt to put in the idea to optimize the goodness of fit in model selection.
 This paper is presented as follows. In Section 2, the GSTAR model and the parameters least squares estimation is reviewed with the example given for GSTAR(1;1) and GSTAR(2;1,1). To illustrate the estimator properties for finite sample size, simulation study is discussed in Section 3. In the last section, the model is applied to the per capita GDP ratio data in West European countries for the period 1956–1996. The one step ahead forecasting is performed for each model for the period 1997–2006. As a comparison performance measure, it is used the empirical mean of squared forecast error (MSFE) where forecast error is defined as the difference between the actual value and the forecast value.  
2. The Model
Let  
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-dimensional vector process with zero mean with 
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 as is a fixed positive integer. GSTAR
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  process is a space-time process 
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					where 
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 is the autoregressive order, 
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 is the spatial order of the 
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th autoregressive term,  
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  is an  
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  matrix of spatial weight for the spatial order  
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  which has a zero diagonal, sum of each row is equal to one, and matrix  
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  is defined as the identity matrix I.  An  
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  matrix 
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 is a diagonal parameter matrix of temporal lag 
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 and spatial lag 
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 with the diagonal element
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. Finally, 
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 is an error vector at time 
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 which is assumed to be independent normal with zero mean and constant variance.
 Model parameters  
	
		
			

				𝜙
			

			
				(
				1
				)
				𝑘
				ℓ
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				ℓ
				=
				1
				,
				2
				,
				…
			

		
	
  can be estimated by the least squares (LS) estimation. The procedure estimation and the asymptotic properties of LS estimators have been discussed extensively in Borovkova et al. [1]. The following examples are an illustration on how to find the LS estimator for GSTAR(1;1) and GSTAR(2;1,1) models, respectively.
Example 2.1 (LS estimation for GSTAR(1;1) model).  From (2.1), GSTAR(1;1) model can be expressed as
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. By rearranging the component of  
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, by location then by time, model (2.2) can be expressed as a linear model
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.Then, the LS estimator for parameter matrix 
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Example 2.2 (LS estimation for GSTAR(2;1,1) model). For order 
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 = 1 and 
	
		
			

				𝜆
			

			

				2
			

		
	
 = 1, model (2.1) is called GSTAR(2;1,1) which can be written as
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				𝐙
				(
				𝑡
				)
				=
				𝚽
			

			
				1
				0
			

			
				
				𝚽
				𝐙
				(
				𝑡
				−
				1
				)
				+
			

			
				1
				1
			

			

				𝐖
			

			
				(
				1
				)
			

			
				𝐙
				(
				𝑡
				−
				1
				)
				+
				𝚽
			

			
				2
				0
			

			
				𝐙
				(
				𝑡
				−
				2
				)
				+
				𝚽
			

			
				2
				1
			

			

				𝐖
			

			
				(
				2
				)
			

			
				𝐙
				(
				𝑡
				−
				2
				)
				.
			

		
	

						By rearranging the component of 
	
		
			
				𝐙
				(
				𝑡
				)
			

		
	
for 
	
		
			
				𝑡
				=
				2
				,
				3
				,
				…
				,
				𝑇
			

		
	
, by location then by time, model (2.6) can also be expressed as a linear model
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3. Simulation Study
Under the stationary assumption, the LS estimator for the GSTAR parameters is a consistent estimator [1]. To get insight into the LS properties for finite sample we performed a Monte Carlo simulation with 1000 replications. Artificial data were generated from GSTAR(1;1) model where the error 
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 is normally distributed with mean 0 and covariance matrix I 4. Spatial weight matrix and model parameters that used in the simulation, respectively, were 
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The LS estimator vector  
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 was calculated using R functions in Algorithm 1. Simulation was carried out for sample size 
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 40, 50, 100, 500, 1000, 10000, and for each 
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, simulations were repeated 1000 times to obtain the estimates average
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				𝑟
				=
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				
				𝜙
			

			
				𝑇
				(
				𝑟
				)
			

		
	

		# =============================================================
	# [FUNCTION]: OLS estimation for GSTAR(p;L1,…,Lp) models
	# =============================================================
	# 3 dimension zeros matrix
	# –––––––––––––––-
	zeros <-function(m,n,p){
	W<-rep(0, m*n*p)
	dim(W)<-c(m, n, p)
	W}
	# “vec” operator
	vec<-function(X){
	a<-dim(X)
	Y<- t(X[1, ])
	for (i in 2:a[1]){
	Y<- cbind(Y,t(X[i, ]))}
	t(Y)}
	#––––––––––
	# Inverse of matrix
	#––––––––––
	inv<-function(X){
	if(dim(X)[1]! = dim(X)[2]) stop(“THE MATRIX MUST BE SYMMETRIC!!!”)
	else{
	if (det(X)==0) stop("THE MATRIX IS SINGULAR!!!")
	else { n<-dim(X)[1]
	solve(X)
	
		
			
				}
				}
				}
			

		
	

	# –––––––––––––––––––––––––––––––
	# Construction of vector Zi, for each i=1,…,N
	# –––––––––––––––––––––––––––
	# Construction of vector Zi, for each i=1,…,N
	# –––––––––––––––––––––––––––
	# suppose x = c(p,L1,..., Lp) represent the model order
	Zi<-function(Zt, x){
	N<-dim(Zt)[1] #number of sites
	T<-dim(Zt)[2]-1 #number of time periods
	p<-x [1]
	Zi<-matrix(0, T-p+1, N)
	for (i in 1: N)
	Zi[,i]<-Zt[i,(p+1):(T+1)]
	Zi}
	# –––––––––––––––––––––––––––––––-
	# Construction of matrix Xi, for each i= 1,…,N
	# ––––––––––––––––––––––-
	Xi<-function(Zt,x)
	{N<-dim(Zt)[1] #number of sites
	T<-dim(Zt)[2]-1 #number of time periods
	p<-x[1]
	La<-x[2: length(x)]
	r<-lmd+1 # where lmd = the greatest order for weight matrices
	WZ<-zeros(N, T, r)
	for (k in 1: r)
	WZ[,, k]<-W [,, k]%*%Zt[, 1: T]
	Xi<-zeros((T-p+1),sum(La+1), N)
	if (p==1)
	{ for (i in 1:N){
	        TR<-WZ[i,p:T,1:(La[1]+1)]
	            Xi[,, i]<-TR
	
		
			
				}
				}
			

		
	

	if (p>=2){
	        for (i in 1:N){
	    TR<-WZ[i,p:T,1:(La[1]+1)]
	    for (s in 2:p)
	        TR<-cbind(TR,WZ[i,(p-s+1):(T-s+1),1:(La[s]+1)])
	Xi[,, i]<-TR
	
		
			
				}
				}
			

		
	

	Xi}
	# –––––––––––––––––––––––––––––––-
	# OLS parameter of GSTAR model
	# ––––––––––––––
	gstar<-function(Zt,x){
	p<-x[1]
	La<-x[2:length(x)]
	r<-lmd+1 # where lmd = the greatest order for weight matrices
	N<-dim(Zt)[1] #number of sites
	T<-dim(Zt)[2]-1 #number of time periods
	Xi<-Xi(Zt,x)
	Zi<-Zi(Zt,x)
	coef.OLS<-matrix(0,sum(La+1),N)
	col.name<-array(0,N)
	for (i in 1:N){
	        coef.OLS[, i]<-inv(t(Xi[,, i])%*%Xi[,,i])%*%t(Xi[,, i])%*%Zi[,i]
	        col.name[i]<-paste("site",i)}
	colnames(coef.OLS)<-col.name
	round(coef.OLS,4)}
	# –––––––––––––––––––––––––––––––-
	# Residuals of GSTAR model
	# ––––––––––––––
	# (1). To find the LS estimates only, for example GSTAR(2;1,1), use
	#    the command:
	#        > gstar(Zt,c(2,1,1))
	#    where Zt is data matrix.
	# (2). To find the estimates, prediction values, and residuals
	#    vector respectively, call the function by the following
	#    commands:
	#                > as.2<-res(Zt,c(2,1,1))
	#            > as.2$coef
	#            > as.2$pred
	#            > as.2$res
	# –––––––––––––––––––––––––––––––-
	res<-function(Zt,x){
	coef<-gstar(Zt,x)
	Xi<-Xi(Zt,x)
	p<-x[1]
	La<-x[2:length(x)]
	N<-dim(Zt)[1] #number of sites
	T<-dim(Zt)[2]-1 #number of time periods
	Z.OLS<-matrix(0,T-p+1,N)
	res.OLS<-matrix(0,N,T-p+1)
	if (p==1){
	for (i in 1:N){
	if (La[1]!=0)Z.OLS[,i]<-Xi[,,i]%*%coef[,i]
	else Z.OLS[,i]<-Xi[,,i]*coef[,i]
	res.OLS[i,]<-t(Z.OLS[,i]-Zt[i,(p+1):(T+1)])}
	
								}
							
	if (p!=1){
	for (i in 1:N){
	Z.OLS[,i]<-Xi[,,i]%*%coef[,i]
	res.OLS[i,]<-t(Z.OLS[,i]-Zt[i,(p+1):(T+1)])
	
		
			
				}
				}
			

		
	

	az<-new.env()
	az$Xi<-Xi # matrix Xi
	az$coef<-coef
	az$pred<-t(Z.OLS)
	az$res<-res.OLS
	ax<-as.list(az)}
	# –––––––––––––––––––––––––––––––-


	Algorithm 1: R codes for least square estimation of GSTAR model.
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The result is presented in Table 1. It can be seen that the parameters estimates (in average) approaches the true parameters as 
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 increases while the empirical MSE is getting smaller and approaching 0 as  
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  increasing. It means that behavior of the LS estimator in the simulation exhibits the consistent property. In general, we can notice that the LS estimation could give fair estimates even for moderate sample size such as  
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 and 
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. 
Table 1: The LS estimated values (in average) for the data generated from GSTAR(1;1) model with 1000 replications for various sample sizes 
	
		
			

				𝑇
			

		
	
 compared to the theoretical parameter.
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	0.6989	0.6980	0.6961	0.7008	0.7002	0.7002
	MSE	0.0279	0.0219	0.0105	0.0002	0.0001	0.0001
	



4. Application of GSTAR Model to the Ratio of Per Capita GDP Data
In this section, we apply the GSTAR model to the ratio of per capita GDP data in 16 West European countries. The data was kindly given by Maddison [6] from Faculty of Economics, University of Groningen, the Netherland, who passed away on  April 24 2010. The per capita GDP of a country is the country GDP value divided by its population, and the per capita GDP of total West Europe is the sum of each West European country GDP divided by the total population in West Europe. The ratio of the per capita GDP of a country is the country per capita GDP value divided by the per capita GDP of total West Europe, multiplied by 100. Hence, the unit of the per capita GDP ratio is the percentage. For the data analysis in the following subsection, we will use the ratio of the per capita GDP data and for simplicity it will be called the GDP ratio data.
4.1. Dataset and Preliminary Model Building
The dataset is the GDP ratio data for periods 1955–2006. It consists of 52 observations of 16 dimensional vectors. For the purpose of forecasting the data was grouped into the training data set and test data set. The training data is the first 42 observations that will be used for model building and the test data is the last ten data that will be used in forecasting performance comparison.
Clearly, the 42 observations in the training data, depicted in Figure 1(a), are not stationary though they tend to converge to the value between 50% and 150%. Therefore, to achieve the zero mean stationary data, the first difference transformation and data centralization must be applied.
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Figure 1: (a) The ratio of per capita GDP in 16 West European countries for the period 1955–2006 and (b) plot of the centralized data of the difference data.
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. Plot of the 16 series of this transformation is displayed in Figure 1(b) and their behaviour has seemed to represent stationary series.
As a preliminary model building, we set some notations used in model (2.1). The length of time period is 
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, and the number of sites is  
	
		
			
				𝑁
				=
				1
				6
			

		
	
. Time period  
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  to 1958, and so on. Since the time dimension is one, the time lag can be ordered naturally by the sequence of  
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. On the other hand, the spatial order  
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  may be defined in a different ways because in a two-dimensional space there is no specific order just as in one-dimensional space. For the GDP data, there are 16 countries. The first order and the second order neighbours of the countries are given in Table 2. These are defined based on the geographical location of the countries. The first order neighbours of a country are those which have a common border with the country or within a close distance along a sea route. A second order neighbour of a country is the union of all first order neighbourhood countries of its first order neighbours, excluding itself.
Table 2: Geographical neighbourhood of order 1 and order 2.
	

	No.	Country	Countries in the 1st neighborhood	Countries in the 2nd neighborhood
	

	1	 Austria	6,9,15	2,3,5,7,10,14
	2	 Belgium	5,6,10,16	1,3,8,9,13,14,15
	3	 Denmark	6,10,11,14	1,2,4,5,15,16
	4	 Finland	11,14	3,6
	5	 France	2,6,9,13,15,16	1,3,7,8,10,12,14
	6	 Germany	1,2,3,5,10,14,15	4,9,11,13,16
	7	 Greece	9	1,5,15
	8	 Ireland	16	2,5,10
	9	 Italy	1,5,7,15	2,6,13,16
	10	 Netherland	2,3,6,16	1,5,8,11,14,15
	11	 Norway	3,4,14	6,10
	12	 Portugal	13	5
	13	 Spain	5,12	2,6,9,15,16
	14	 Sweden	3,4,6,11	1,2,5,10,15
	15	 Switzerland	1,5,6,9	2,3,7,10,13,14,16
	16	 United Kingdom	2,5,8,10	3,6,9,13,15
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							For example, from Table 2 it can be seen that Austria has 3 the first order neighbours, Germany, Netherland and Switzerland, and has 6 second order neighbours, Belgium, Denmark, France, Greece, Netherland, and Sweden. Then, the first order of spatial weight between Austria and each nearby country is
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4.2. GSTAR Model Building for the GDP Data
After transforming the data and constructing spatial weight matrix, the next step is identification of the model order. In STAR model-building, [3] used the sample space time autocorrelation function (STACF) and space time partial autocorrelation function (STPACF) as the primary tools for model identification. The order (
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				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝑝
			

		
	
) model can be characterized by the tail-off behaviour of the autocorrelations and the cut-off behaviour of the partial after  
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  time lag and  
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  spatial lag. Since STAR model is a special case of GSTAR model, these autocorrelation functions will be adopted to identify the order of GSTAR model.
        Figure 2 presents sample STACF and STPACF for the differenced data  
	
		
			
				𝐙
				(
				𝑡
				)
			

		
	
  up to time lag 10 and spatial lags 0, 1, and 2. The pattern is not clearly suggested an exact order. However, since the sample STPACF cut off after time lag 2 and spatial lag 1, order (2;1,1) can be considered as the space-time order candidate. In addition, the space-time partials also cut off at time lag 5 and spatial 2, but applying this GSTAR model to the data will result too many estimated parameters because there will be at least 160 parameters which have to be estimated.







	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	






























	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
		
		
		
		
		
		
	


	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
		
			
			
			
		
	


	
		
			
		
		
			
			
			
		
	




	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
		
			
			
			
		
	


	
		
			
		
		
			
			
			
		
	




	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
		
			
			
			
		
	


	
		
			
		
		
			
			
			
		
	




	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
		
			
			
			
		
	


	
		
			
		
		
			
			
			
		
	




	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
		
			
			
			
		
	


	
		
			
		
		
			
			
			
		
	




	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
			
		
		
			
			
			
		
	


	
		
			
		
		
			
			
			
		
	




Figure 2: Sample space-time ACF and PACF of the differenced data.


The 64 parameters and the error variance in this model were estimated using the least square method and the result is presented in Table 3. The empirical MSE for GSTAR(2;1,1) model is 2.735 counted based on 
	
		
			
				1
				6
				×
				3
				9
			

		
	
  or 624 values. The residuals histogram and normal probability plot on Figures 4(a) and 4(b) show that the GSTAR(2;1,1) residuals are approximately normal distributed with zero mean and constant variance. Meanwhile, fitted value versus residuals plot in Figure 4(c) exhibits that the residuals do not show a significant pattern. From Figure 3 we can observe that the STACF of the residuals is significantly almost zero except for time lag 5 and 10, and spatial lag 2. The exception points at time lags 5 and 10, suggesting that the seasonal difference of order 5 might be useful for further model analysis. But the seasonal model analysis is not discussed here because it is out of the research scope.
Table 3: Least square estimates for GSTAR(2;1,1) parameter.
	

	Site i 	
	
		
			
				
				𝜙
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				)
				1
				0
			

		
	
	
	
		
			
				
				𝜙
			

			
				(
				𝑖
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				
				𝜙
			

			
				(
				𝑖
				)
				2
				1
			

		
	

	

	1	−0.083	0.058	0.045	−0.046
	2	−0.092	0.028	0.404	0.052
	3	−0.218	0.730	−0.113	0.638
	4	0.566	−0.534	−0.262	0.253
	5	0.152	0.563	−0.030	0.255
	6	0.176	0.211	−0.052	0.046
	7	0.106	−0.048	−0.018	0.261
	8	0.332	−0.126	−0.114	0.540
	9	0.271	−0.424	−0.217	0.461
	10	−0.026	−0.250	0.097	−0.332
	11	0.549	−0.278	−0.166	0.239
	12	0.442	0.198	−0.254	−0.204
	13	0.376	0.242	−0.054	0.037
	14	0.390	−0.120	−0.457	0.304
	15	0.042	0.564	−0.250	−0.949
	16	0.293	0.226	0.119	−0.318
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