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Abstract. 
We are interested in the numerical solution of mean-reverting CEV processes that appear in financial mathematics models and are described as nonnegative solutions of certain stochastic differential equations with sublinear diffusion coefficients of the form  where . Our goal is to construct explicit numerical schemes that preserve positivity. We prove convergence of the proposed SD scheme with rate depending on the parameter . Furthermore, we verify our findings through numerical experiments and compare with other positivity preserving schemes. Finally, we show how to treat the two-dimensional stochastic volatility model with instantaneous variance process given by the above mean-reverting CEV process.



1. Introduction
Consider the following stochastic models in Itô form: where  represents the underlying financially observable variable,  is the instantaneous volatility when  or the instantaneous variance when , and the Wiener processes ,  have correlation .
We assume that  is a mean-reverting CEV process of the above form, with the coefficients  for  and , since the process  has to be nonnegative. To be more precise the above restriction on  implies that  is positive; that is,  is unattainable, as well as nonexplosive; that is,  is unattainable, as can be verified by Feller’s classification of boundaries [17, Proposition 5.22] (see also Appendix A). The steady-state level of  is  and the rate of mean-reversion is .
System (1) for  is the Heston model. When  we get the Brennan-Schwartz model [2, Section II] that despite its simple form cannot provide analytical expressions for 
Process  for , also known as the CIR process [6, (13)], by the initials of the authors that proposed it for the term structure of interest rates, has received a lot of attention and we just mention the latest two contributions to the study of such processes (see [4, 5] and references therein).
Process  for  has been also considered for the dynamics of the short-term interest rate [3, (1)]. The stationary distribution of the process has also been derived in [7, Proposition 2.2].
We aim for a positivity preserving scheme for the process  The scheme that we propose and denote as semidiscrete (SD) preserves the analytical property of  staying positive. The idea of the semidiscrete method is that we discretize a part of the original SDE and then apply Itô’s formula (cf. [8] where the method originally appeared and [5, 9, 23]). The explicit Euler scheme fails to preserve positivity, as well as the standard Milstein scheme. We intend to apply the semidiscrete method for the numerical approximation of  in model (1) with  and compare with other positivity preserving methods such as the balanced implicit method (BIM) (introduced by [11, (3.2)] with the positivity preserving property [25, Section 5] and its stability properties [13]; see also [14] for an extended balanced method with better stability behavior) and the balanced Milstein method (BMM) [25, Theorem 5.9] (we give in Appendix B the form of all the above schemes for the approximation of ). Finally, we approximate the stochastic volatility model (1) with  In [15] a thorough treatment can be found, where also another stochastic volatility model is suggested.
Section 2 provides the setting and the main results, Theorems 1 and 2, concerning the -convergence of the proposed semidiscrete method to the true solution of mean-reverting CEV processes of the form of the stochastic volatility in (1). The rate of mean-square convergence in Theorem 1 is logarithmic and in Theorem 2 is polynomial with magnitude  The main ingredient of the approach we adopt, inspired by [16], is a change of the initial Brownian motion  to another Brownian motion  justified by Lévy’s martingale characterization of Brownian motion.
Section 3 is devoted to the logarithmic rate of convergence of the proposed semidiscrete scheme, while Section 4 concerns the proof of the polynomial rate of convergence. In Section 5 we briefly discuss the case where we do not alter the initial Brownian motion  This approach produces reduced convergence rate. Finally, Section 6 presents illustrative figures where the behavior of the proposed scheme, regarding the order of convergence, is shown and a comparison with BIM and BMM schemes is given. In Section 7 we treat the full model (1) for a special case. Concluding remarks are in Section 8 and in Appendix B we briefly present numerical schemes for the integration of the variance-volatility process 








2. The Setting and the Main Results
We consider the following SDE: where  are positive and  Then, Feller’s test implies that there is a unique strong solution such that  a.s. when  a.s. Let  where  and 
Let the partition  with  and consider the following process: with  a.s. or more explicitly for , where  represents the level of implicitness and with 
Process (6) is well defined when  and this is true when  and  Furthermore, (6) has jumps at nodes  Solving for , we end up with the following explicit scheme:  with solution in each step given by [1, (4.39), page 123] which has the pleasant feature 
Inspired by [16] we remove the term  from (6) by considering the process  which is a martingale with quadratic variation  and thus a standard Brownian motion with respect to its own filtration, justified by Lévy’s theorem [17, Theorem 3.16, page 157]. Therefore, the compact form of (6) becomes  for  where Consider also the process  The process  of (2) and the process  of (14) have the same distribution. We show in the following that  as ; thus the same holds for the unique solution of (2); that is,  as  To simplify notation we write  as  We end up with the following explicit scheme:  where  is as in (8).
Assumption A. Let the parameters  be positive such that  and consider  such that , for  Moreover assume  a.s. and  for some 
Theorem 1 (logarithmic rate of convergence).  Let Assumption A hold. The semidiscrete scheme (15) converges to the true solution of (2) in the mean-square sense with rate given by  where  is independent of  and given by where 
Assumption B. Let Assumption A hold where now  and .
Theorem 2 (polynomial rate of convergence).  Let Assumption B hold. Then the semidiscrete scheme (15) converges to the true solution of (2) in the mean-square sense with rate given by where  and  is the constant described in (83) and  is an appropriately chosen positive parameter which satisfies (84) and always exists, , and 
In the following sections we write for simplicity  or  for .
3. Logarithmic Rate of Convergence
3.1. Moment Bounds
Lemma 3 (moment bound for SD approximation).  It holds that  for any , where .
Proof of Lemma 3. We first observe that  is bounded in the following way:  a.s., where the lower bound comes from the construction of  and the upper bound follows from a comparison theorem. We will bound  and therefore , since  a.s. Set the stopping time , for  with the convention  Application of Itô’s formula on  implies  where in the second step we have used the fact that , in the third step the inequality , valid for  and  with , and in the final step the fact that  and  Taking expectations in the above inequality and using that  is a local martingale vanishing at , we get  where we have applied the Gronwall inequality [18, (7)]. We have that  Thus taking expectations in the above inequality and using the estimated upper bound for  we arrive at and, taking the limit as , we get  Let us fix  The sequence of stopping times  is increasing in  and  as , and thus the sequence  is nondecreasing in  and  as  Application of the monotone convergence theorem implies  for any  Using again Itô’s formula on , taking the supremum, and then using Doob’s martingale inequality on the diffusion term we bound  and thus 
Lemma 4 (error bound for SD scheme).  Let  be an integer such that  Then  for any , where the positive quantities  do not depend on 
Proof of Lemma 4. First we take a  We get that where we have used the Cauchy-Schwarz inequality. Taking expectations in the above inequality and using Lemma 3 and Doob’s martingale inequality on the diffusion term we conclude  where the positive quantity , except on , depends also on the parameters , but not on  Now, for , we get  where we have used Jensen’s inequality for the concave function  Following the same lines, we can show that  for any , where the positive quantity , except on , depends also on the parameters , but not on 
For the rest of this section we rewrite again the compact form of (12) in the following way: where  is given by (3) and the auxiliary process  is close to  as shown in the next result.
Lemma 5 (moment bounds involving the auxiliary process).  For any  it holds that and for  one has that for any , where the positive quantities  do not depend on 
Proof of Lemma 5. We have that  for any , where we have used (33). Using Lemma 3 we get the left part of (34). Now for  and noting that we get the right part of (34), where we have used Lemma 3. The case  follows by Jensen’s inequality as in Lemma 4.
Furthermore, for  and , we derive that  where we have used (30) and in the same manner  The case  follows by Jensen’s inequality.
3.2. Convergence of the Auxiliary Process  to  in 
We will use the representation (33) and write 
Proposition 6.  Let Assumption A hold. Then one has  for any , where  and 
Proof of Proposition 6. Let the nonincreasing sequence  with  and  We introduce the following sequence of smooth approximations of  (method of Yamada and Watanabe [19]):  where the existence of the continuous function  with  and support in  is justified by  The following relations hold for  with ,We have thatMoreover we find that where we have used properties of Hölder continuous functions and, namely, the fact that  is -Hölder continuous for , that is, , and that  is -Hölder continuous since  Application of Itô’s formula to the sequence  implies  where in the second step we have used (46) and (47) and the properties of  and Taking expectations in the above inequality yields  where we have used Lemma 5 in the second step and the Hölder inequality and Lemmas 3 and 4 in the third step and the fact that  (the function  belongs to the space  of real-valued measurable -adapted processes such that ; thus [20, Theorem 1.5.8] implies ). Thus (45) becomes  where in the second step we have used the asymptotic relations  as  for any  as  for any  as ; in the last step we have used the Gronwall inequality and  is as defined in Proposition 6 while Taking the supremum over all  gives (41).
3.3. Convergence of the Auxiliary Process  to  in 
Proposition 7.  Let Assumption A hold. Then one has  where  is independent of  and given by , where 
Proof of Proposition 7. We estimate the difference  It holds that where in the second step we have used the Cauchy-Schwarz inequality and (46) and  Taking the supremum over all  and then expectations we have  where in the second step we have used Lemma 4 and Doob’s martingale inequality with , since  is an -valued martingale that belongs to  We find that  where we have used (47). Now, Lemmas 3, 4, and 5 imply  where we have used the asymptotic relations  for all  as  and the quantity  is given by 
Relation (56) becomes  where we have used Proposition 6 in the second step with the sequence  as defined there and Gronwall’s inequality in the last step and the asymptotic relation  as , for any , and  is independent of  and given by 
We take , with , to be specified soon and note that  as , since  as  Moreover we have that  Now, since  there is an  small enough such that  We take  and conclude that  as  which in turn implies the asymptotic relation  as , with the logarithmic rate stated before. In the same way we can show  as , by taking  We finally arrive at  by taking , which implies (53).
3.4. Proof of Theorem 1
In order to finish the proof of Theorem 1 we just use the triangle inequality, Lemma 5, and Proposition 7 to getwhere , given in the statement of Theorem 1.
4. Polynomial Rate of Convergence
We work with the stochastic time change inspired by [21]. We define the process and the stopping time  The process  is well defined since  a.s. and  (see Section 2).
The difference  is estimated as in Section 3 and we get, as in (56), that  where  is a stopping time and  independent of  is as in the proof of Proposition 7. The main difference here will be the estimation of the last term in (66). The approach in Section 3 resulted in the  estimation  where we used the Yamada-Watanabe approach. Now, we use the Berkaoui approach. Relation (47) becomes  where we have used the inequality valid for all , and  Consequently, we get the upper bound  where we used the Hölder inequality;  independent of  is as in proof of Proposition 7. Relation (66) becomes  where we have used Lemma 5 in the second step. At this point we want to estimate the inverse moments of  and to do so we consider the transformation  and apply Itô’s formula to get  for , where  Denote the drift coefficient of the process  by  and consider the function  where  Some elementary calculations show that this function attains its minimum at  and , thus Consider the process  defined through  for  with  Process (74) is a square root diffusion process and when  or the process is a CIR process which remains positive if  By a comparison theorem [17, Proposition 5.2.18] we obtain that  a.s. or  a.s. or equivalently  a.s. The inverse moment bounds of  follow [22, (3.1)]:by choosing big enough  and particularly such that (75) holds strictly. Therefore,  Relation (77) for  implies  where in the last step we have used Gronwall’s inequality. Using again relation (77) for  and under the change of variables  we get  where in the last steps we have used (78). We proceed by showing that  Markov’s inequality implies  for any  The following bound holds: and thus where  It remains to bound the exponential inverse moments of  defined through the stochastic integral equation (2). Exponential inverse moments for the CIR process are known [10, Theorem 3.1] and are given by  for  where the positive constant  is explicitly given in [10, (10)] and depends on the parameters , but is independent of  Thus the other condition that we require for parameter  is  When (84) is satisfied then (75) is satisfied too; thus there is actually no restriction on the coefficient  in (83) since we can always choose appropriately a  such that (84) holds. Relation (82) becomesWe therefore require that  and can always find a , such that the above relation holds by choosing appropriately  as discussed before.
Relation (85) becomes  and therefore  where  is chosen such that (86) holds with  We conclude by choosing  where , is as given in statement of Theorem 2.
5. Alternative Approach with Reduced Rate of Convergence
In this section we briefly discuss the case where instead of (12) we use directly (6). Then, Lemmas 3, 4, and 5 still hold; that is, the moment bounds and error bounds of , as well as the moment bounds involving the auxiliary process , are true. The proof of the convergence results follows the same lines as in Sections 3 and 4. The main difference is in the estimation (47) that now becomes  The first term on the right-hand side of the above inequality containing the  will contribute in a negative way to the rate of convergence. We do not give all the details but just mention that in order to bound the expectation of that term, which can be done in the following way,  we need to estimate the probability of  being negative when at the same time , for 
Lemma 8.  For every  it holds that  where  and  and  Relation (92) implies that  as 
Proof of Lemma 8. By the definition (7) of  for  and for , we have that  where  The following inclusion relations hold for the event : when  and , where  We obtain  for every standard normal random variable , where in the last step we have used [17, (9.20), page 112] valid for . Using the fact that  is a standard normal r.v. and ignoring the exponential term in (96), since its exponent is negative, we get that  The following inclusion relations hold for the event : when  and  Using again (96) we have that  Taking probabilities in the inclusion relation (93) and using (97) and (99) we get  since  as  Finally, note that  as  which justifies the  notation (see, e.g., [24]).
6. Numerical Experiments
We discretize the interval  with a number of steps in power of  The semidiscrete (SD) scheme is given by  for , where  are the increments of the Brownian motion which are Gaussian random variables with 
The ALF (Alfonsi) scheme [4, Section 3] is an implicit scheme which requires solving the nonlinear equation  and then computing  The estimation of  in (102) can be done, for example, with Newton’s method but requires a small enough  (in the CIR case, that is, when , (102) simplifies to a solution of a quadratic equation). We also consider a scheme recently proposed in [16] using again the SD method, but in a different way, for  Note the similarity in the expressions of (103) and the SD scheme (101) proposed here. This is not strange, because they both rely on the same way of splitting the drift coefficient. In particular, in the explicit HAL scheme, the following process is considered:  for  with  a.s. where now  A comparison with (3) and (4) shows that  and , for  We write (104) again as  and the process (106) is well defined when  The reader can compare again with (6) for  Solving for , we end up with  The main result in [16] is when (107) holds, implying a rate of convergence at least  which is bigger than the rate of convergence of the SD scheme proposed here which is at least  (see Theorem 2).
We also consider two more linear-implicit schemes that were stated in the Introduction and discussed in Appendix B. Namely, we compare with the balanced implicit method (BIM) with appropriate weight functions to guarantee positivity ([25, Theorem 5.9]), which reads  and the balanced Milstein method (BMM) with the suggested weight functions [25, Theorem 5.9] that is given by  We take the relaxation parameter  to be  as recommended in [25, (5.10)].
We aim to show experimentally the order of convergence for the above positivity preserving methods for the estimation of the true solution of the CEV model (2), that is, the semidiscrete methods SD (101) and the HAL scheme (103), as well as the implicit ALF scheme (102) and the linear-implicit schemes BIM and BMM. The choice of the parameters is the same as in [15, Figure 6] with  In particular 
Furthermore, we would also like to reveal the dependence of the order of the semidiscrete methods on ; that is, we want to verify our theoretical results and in particular the order shown in Theorem 2. We take the level of implicitness of the SD method (101) to be ; that is, we consider the fully implicit scheme. We also discuss the fully explicit scheme, that is, when , but also an intermediate scheme , in Section 7.
We want to estimate the endpoint -norm  of the difference between the numerical scheme evaluated at step size  and the exact solution of (2). For that purpose, we compute  batches of  simulation paths, where each batch is estimated by  and the Monte Carlo estimator of the error is  and requires  Monte Carlo sample paths. The reference solution is evaluated at step size  of the numerical scheme. For the SD case, we have shown in Theorems 1 and 2 that it strongly converges to the exact solution. We simulate  paths, where the choice for  is as in [28, page 118]. The choice of the number of trajectories  is also considered in [26, Section 5] where a fundamental mean-square theorem is proved for SDEs with superlinear growing coefficients satisfying a one-side Lipschitz condition, but unfortunately it is not positivity preserving. Of course, the number of Monte Carlo paths has to be sufficiently large, so as not to significantly hinder the mean-square errors.
We plot in a - scale and error bars represent  confidence intervals. The results are shown in Table 1 and Figure 1. Table 1 does not present the computed Monte Carlo errors with  confidence, since they were at least  times smaller that the mean-square errors.
Table 1: 98% error and step size of fully implicit SD, HAL, ALF, BIM, and BMM scheme for (2) with .
	

	Step 	 SD 	 Rate 	 HAL	 Rate 	 ALF	 Rate 	 BIM	 Rate 	 BMM	 Rate 
	

			—		—		—		—		−
											
											
											
						0.014600	0.2099	0.024998	0.1719	0.025292	0.2077
	







	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
		
		
		
		
		
			
		
		
		
		
		
		
			
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
	


Figure 1: Convergence of fully implicit SD, HAL, ALF, BIM, and BMM schemes applied to SDE (2) with parameters 


In Table 2 we present the computational times (we simulate with GHz Intel Pentium, GB of RAM in MATLAB  Software. The random number generator is Mersenne Twister. The evaluated times do not include the random number generation time, since all the methods we compare involve the same amount of random numbers) of fully implicit SD, HAL, ALF, BIM, and BMM, for the same problem. Figure 2 shows the relation between the error and computer time consumption. As one can see from Table 2 the CPU times for ALF are at least  times bigger than the other schemes; thus we choose in Figure 2 to restrict our attention to the rest of the methods.
Table 2: Average computational time (in seconds) for a path, for different discretizations, for all considered positivity preserving methods for the mean-reverting CEV process (2) with .
	

	Step Δ 	Time/path (in sec): Implicit SD 	 HAL	 ALF 	 BIM	 BMM
	

						
						
						
						
						
	







	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
		
		
		
		
		
			
		
		
		
		
		
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 2: Strong convergence error of the mean-reverting CEV process (2) as a function of CPU time (in sec) using positivity preserving schemes SD, HAL, ALF, BIM, and BMM with 


We show, in Table 3, the -distance between our proposed method and the other methods for the numerical approximation of (2). We work as before and estimate the distance,  between method  and , by considering sufficient small , and in particular for 
Table 3: The -distance between all the considered numerical schemes applied to SDE (2) with parameter set .
	

	Step Δ	- (SD, HAL) 	- (SD, ALF) 	- (SD, BIM) 	- (SD, BMM)
	

					
					
					
	



Finally, we examine the behavior of all the methods for a value of the parameter  close to  The results are shown in Table 4.
Table 4: 98% error and step size of fully implicit SD, HAL, ALF, BIM, and BMM scheme for (2) with .
	

	Step Δ	 SD-error 	 Rate 	 HAL-error 	 Rate 	 BIM-error	 Rate 	 BMM-error	 Rate 
	

			—		—		—		—
									
									
									
	



The following points of discussion are worth mentioning:(i)The performance of all methods, as shown in Table 1 and Figure 1, implies, in terms of error estimates, that the implicit ALF scheme performs better, for values of discretization steps  Actually for these step sizes the ALF method starts to converge, and the same is true for the HAL and BIM methods. All the methods except ALF, that is, the semidiscrete SD and HAL, the BIM, and the BMM have a similar behavior for all values of  in the sense of error estimation as Figure 1 shows. The similarity of SD, HAL, BIM, BMM, and especially between SD and BMM is also indicated in Table 3, where we see how close they are with respect to the -norm. Nevertheless, Table 3 also shows that in order to get an accuracy to at least two decimal digits, which in practice may be adequate concerning that we want, for example, to evaluate an option and thus our results are in euros, we are free to use any of the above available methods. We may then choose the fastest one, as will be discussed later on.(ii)The experimental strong order of convergence of implicit SD for problem (2) is  (at least  as shown theoretically and presented in Table 1). We also see that all methods converge with similar orders and the theoretically rate  of the ALF method [4] does not hold for these values of . Thus, again we see that the rate in practical situations does not necessarily matter, if one has to consider very small values of  to achieve it. Moreover, we present in Table 5 the performance of the explicit SD method and see that it is very close to the implicit, which is of course natural to happen.(iii)Table 4 concerns the case where the parameter  is  We do not present the ALF method since it required smaller values of  All the methods again behave quite the same, with the BIM performing better with respect to error estimation.(iv)In practice, the computer time consumed to provide a desired level of accuracy is of great importance. In particular, in financial applications, a scheme is considered better when, except of its accuracy, it is implemented faster. As mentioned before, the SD method as well as the HAL method performs well in that aspect, compared to the implicit ALF method, which requires the estimation of a root of a nonlinear equation in each step and is therefore time consuming. This is presented in Table 2 and Figure 2 which illustrates the advantage of the semidiscrete method SD, performing slightly better than HAL and BMM, better than BIM, and of course a lot better compared with ALF (over  times quicker to achieve an accuracy of almost two decimal digits). Moreover, the explicit SD performs slightly better in that aspect.(v)A negative step of a numerical method appears when the computer-generated random variable exceeds a certain threshold, which tends to increase as the step size  decreases. Thus, the undesirable effect of negative values that are produced by some numerical schemes (such as the explicit Euler (EM) and standard Milstein (M)) tends to disappear, since, after a certain small step size, the threshold exceeds the maximum standard normal random number attainable by the computer system.
Table 5: The performance of fully explicit SD scheme (101) applied to SDE (2) with parameter set .
	

	Step Δ	 SD-error 	 Rate 
	

			—
			
			
			
	



7. Approximation of Stochastic Model (1)
So far we have focused on the process , which is one part of system (1). Nevertheless, it can be treated independently, since the only way that it interacts with the process  is through the correlation  of the Wiener processes. First we apply Itô’s formula on  to get 
Then, we consider two different schemes for the integration of (113) (the reason for not considering other schemes such as the two-dimensional Milstein is that they generally are time consuming, since they involve additional random number generation for the approximation of double Wiener integrals). The first is the EM scheme which reads which has strong convergence order  and is easy to implement. The second scheme, which is based on an interpolation of the drift term and an interpolation of the diffusion term, considering decorrelation of the diffusion term, including a higher order Milstein term [15, Section 4.2], is denoted IJK and is given by [15, (137)]
We therefore consider the EM scheme (114) combined with SD (101) and the IJK scheme (115) combined with SD (101) and compare with the case where the stochastic variance  is integrated with BMM scheme (110), for three different correlation parameters, , and  with , as in [15, Section 5]. We present in Tables 6, 7, and 8 the errors, in the sense of distance (112), for all the above considered ways of numerical integration of process , for different step sizes, as well as the average computational time (in seconds) consumed for each discretization. We also give an illustrative representation just for one case  in Figure 3.
Table 6: 98% error, step size, and average computational time of numerical integration of process  using log-Euler or IJK method with SD or BMM scheme for (1) with  and correlation .
	

	Step Δ	 EM and SD-error 	 IJK and SD-error 	 EM and BMM-error 	 IJK and BMM-error 
	

					
					
					
					
					
	



Table 7: 98% error, step size, and average computational time of numerical integration of process  using log-Euler or IJK method with SD or BMM scheme for (1) with , correlation .
	

	Step Δ	 EM and SD-error 	 IJK and SD-error 	 EM and BMM-error 	 IJK and BMM-error 
	

					
					
					
					
					
	



Table 8: 98% error, step size, and average computational time of numerical integration of process  using log-Euler or IJK method with SD or BMM scheme for (1) with , correlation .
	

	Step Δ	 EM and SD-error 	 IJK and SD-error 	 EM and BMM-error 	 IJK and BMM-error 
	

					
					
					
					
					
	







	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
			
		
			
		
		
		
		
			
		
			
		
		
		
			
		
			
	


Figure 3: Strong convergence error of the financial underlying process , as a function of CPU time (in sec) using log-Euler or IJK method with SD or BMM scheme for (1) with , correlation .


Tables 6, 7, and 8 indicate that in all cases the favorable choice is to integrate  using IJK method combined with the SD scheme for  in model (1). The IJK-SD approximation of system (1) seems to be the better one, with respect to CPU time, for every correlation coefficient considered.
8. Conclusion
In this paper, we exploit further the semidiscrete method (SD), which originally appeared in [8], to numerically approximate stochastic processes that appear in financial mathematics and are meant to be nonnegative. In [23] we examined the Heston -model, that is, a mean-reverting process with superlinear diffusion, described by a SDE of the form (2) with  Now, we deal with SDEs with sublinear diffusion coefficients of the type  with  These kinds of SDEs, called mean-reverting CEV processes, appear in stochastic models, where they represent the instantaneous volatility-variance of an underlying financially observable variable. We prove theoretically the strong convergence of our proposed SD scheme, revealing the order of convergence. The resulting polynomial rate is shown in Theorem 1. We present a comparative study between various positivity preserving schemes and the SD method seems to be the best with respect to CPU time consumption. The advantage of the SD method here is that although implicit, it has an explicit formula and thus requires fewer arithmetic operations and consequently less computational time. Moreover, our method can cover cases where (2) has time varying coefficients, that is, 
We also treat the two-dimensional stochastic volatility model (1). In order to do that, we actually integrate the process  which satisfies a SDE of the form (113) and in the end transform back for  We only consider two different schemes for the integration of , namely, the Euler Maruyama (EM) scheme, which is easy to implement and the IJK scheme [15, (137)] which is shown to be the most efficient method, robust and simple as EM [15]. We do not apply other two-dimensional schemes, such as, for example, the Milstein scheme, since they are in general time consuming, as they involve approximations of double Wiener integrals which require additional random number generation. We therefore combine the EM scheme with SD ((114) and (101)) and the IJK scheme with SD ((115) and (101)) and compare with the case where the stochastic variance  is integrated with BMM scheme (110), for three different correlation parameters, , and  with , as in [15, Section 5]. The combination IJK with SD seems to be the most favorable with respect to CPU time, for all the cases.
Appendices
A. Boundary Classification of One-Dimensional Time-Homogeneous SDEs

            Let us now recall some results [17, Section 5.5] concerning the boundary behavior of SDEs of the form  Let  be an interval with  and define the exit time from  to be  Let also the coefficients of (A.1) satisfy the following conditions: Nondegeneracy (ND) Local Integrability (LI)

            Then for , we can define the scale function whose behavior at the endpoints of  determines the boundary behavior of  [17, Proposition 5.22]. In particular, we get for the dynamics of the mean-reverting CEV process  of (1) a boundary behavior which is determined by the scale function  for any , where  Let  and take  We compute  when ; thus by [17, Proposition 5.22c] we have that 
B. Some Numerical Schemes for the Integration of the Variance-Volatility Process 

            We consider a partition of the time interval  with  and discretization steps  for  Moreover, we denote by  the increments of the Brownian motion. We show in the following subsections some numerical schemes for the approximation of  and make some brief comments on them. We also denote 
B.1. Standard Euler-Maruyama Scheme
The Euler method, applied to the SDE setting, already appeared in the s through Maruyama [27] and thereafter there has been an extensive study on numerical approximations of solutions of SDEs (we just mention [12] for a recent review on numerical methods for SDEs with applications in finance and references therein).
The explicit Euler-Maruyama (EM) scheme for the process  is given by  for  Clearly ; thus the EM scheme can produce negative values with positive probability, or in the notion of [29] we say that (B.2) has a finite life time.
B.2. Standard Milstein Scheme
The standard one-dimensional Milstein (M) scheme contains some extra terms derived by Itô-Taylor expansion [1, Section 5] and applied to  reads  for  where we have retained terms of order  Again (M) scheme has a finite life time.
B.3. Balanced Implicit Method
The balanced implicit method (BIM) [11, (3.2)] was the first attempt to treat the problem of invariance-preserving of specific domains of the underlying process and reads for  where  and  are appropriate weight functions. The choice  and  preserves positivity [25, Section 5]. Rearranging the above equation, we get the expression 
B.4. Balanced Milstein Method
The balanced Milstein method (BMM) was proposed in [25], for an improvement of the BIM in the stability behavior as well as in the rate of convergence. It is given by the following linear-implicit relation:  for  where  and  are appropriate weight functions. The choice , where  and  implies an eternal life time for the scheme [25, Theorem 5.9], in the sense that  The step sizes  have to be such that  The relaxation parameter resembles the implicitness parameter ( in our notation). For  there is no restriction in the step size, but it is recommended when possible [25, Remark 5.10] to take  Rearranging with the above specifications leads to 
Finally, the proposed semidiscrete (SD) scheme reads  Increasing the time horizon  results in an increase of the percentage of negative paths of EM and M. On the other hand BIM, BMM, and of course SD are not affected by that, since they preserve their positivity on any interval .
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