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Abstract. 
The elimination of insignificant predictors and the combination of predictors with indistinguishable coefficients are the two issues raised in searching for the true model. Pairwise Absolute Clustering and Sparsity (PACS) achieves both goals. Unfortunately, PACS is sensitive to outliers due to its dependency on the least-squares loss function which is known to be very sensitive to unusual data. In this article, the sensitivity of PACS to outliers has been studied. Robust versions of PACS (RPACS) have been proposed by replacing the least squares and nonrobust weights in PACS with MM-estimation and robust weights depending on robust correlations instead of person correlation, respectively. A simulation study and two real data applications have been used to assess the effectiveness of the proposed methods.



1. Introduction
The latest developments in data aggregation have generated huge number of variables. The large amounts of data pose a challenge to most of the standard statistical methods. In many regression problems, the number of variables is huge. Moreover, many of these variables are irrelevant. Variable selection (VS) is the process of selecting significant variables for use in model construction. It is an important step in the statistical analysis. Statistical procedures for VS are characterized by improving the model’s prediction, providing interpretable models while retaining computational efficiency. VS techniques, such as stepwise selection and best subset regression, may suffer from instability [1]. To tackle the instability problem, regularization methods have been used to carry out VS. They have become increasingly popular, as they supply a tool with which the VS is carried out during the process of estimating the coefficients in the model, for example, LASSO [2], SCAD [3], elastic-net [4], fused LASSO [5], adaptive LASSO [6], group LASSO [7], OSCAR [8], adaptive elastic-net [9], and MCP [10].
Searching for the correct model raises two matters: the exclusion of insignificant predictors and the combination of predictors with indistinguishable coefficients (IC) [11]. The above approaches can remove insignificant predictors but be unsuccessful to merge predictors with IC. Pairwise Absolute Clustering and Sparsity (PACS, [11]) achieves both goals. Moreover, PACS is an oracle method for simultaneous group identification and VS.
Unfortunately, PACS is sensitive to outliers due to its dependency on the least-squares loss function which is known as very sensitive to unusual data. In this article, the sensitivity of PACS to outliers has been studied. Robust versions of PACS (RPACS) have been proposed by replacing the least squares and nonrobust weights in PACS with MM-estimation and robust weights depending on robust correlations instead of person correlation, respectively. RPACS can completely estimate the parameters of regression and select the significant predictors simultaneously, while being robust to the existence of possible outliers.
The rest of this article proceeds as follows. In Section 2, PACS has been briefly reviewed. The robust extension of PACS is detailed in Section 3. Simulation studies under different settings are presented in Section 4. In Section 5, the proposed robust PACS has been applied to two real datasets. Finally, a discussion concludes in Section 6.
2. A Brief Review of PACS
Under the linear regression model setup with standardized predictors  and centered response values ,  and . Sharma et al. [11] proposed an oracle method PACS for simultaneous group identification and VS. PACS has less computational cost than OSCAR approach. In PACS, the equality of coefficients is attained by adding penalty to the pairwise differences and pairwise sums of coefficients. The PACS estimates are the minimizers of the following:where  is the regularization parameter and  is the nonnegative weights.
The penalty in (1) consists of  that encourages sparseness, , and  that encourages equality of coefficients. The second term of the penalty encourages the same sign coefficients to be set as equal, while the third term encourages opposite sign coefficients to be set as equal in magnitude.
Choosing of appropriate adaptive weights is very important for PACS to be an oracle procedure. Consequently, Sharma et al. [11] suggested adaptive PACS that incorporate correlations into the weights which are given as follows:where  is  consistent estimator of , such as the ordinary least squares (OLS) estimates or other shrinkage estimates like ridge regression estimates and  is Pearson’s correlation between the  pair of predictors.
Sharma et al. [11] suggest using ridge estimates as initial estimates for ’s to obtain weights perform well in studies with collinear predictors.
3. Robust PACS
3.1. Methodology of Robust PACS
The satisfactory performance of PACS under normal errors has been demonstrated in [11]. However, the high sensitivity to outliers is the main drawback of PACS where a single outlier can change the good performance of PACS estimate completely.
Note that, in (1), the least-squares criterion is used between the predictors and the response. Also, the weighted penalty contains weights which depend on Pearson’s correlation in their calculations. However, the least-squares criterion and Pearson’s correlation are not robust to outliers. To achieve the robustness in estimation and select the informative predictors robustly, the authors propose replacing the least-squares criterion with MM-estimation [12] where the MM- estimators are efficient and have high breakdown points. Moreover, the nonrobust weights replaced with robust weights depend on robust correlations such as the fast consistent high breakdown (FCH) [13], reweighted multivariate normal (RMVN) [13], Spearman’s correlation (SP), and Kendall’s correlation (KN). The RPACS estimates minimizing the following: where  is the regularization parameter and  is the robust version of the nonnegative weights which are describes in (2). ,  is M-estimate of scale of the residuals, and it is defined as a solution of where  is a constant and  function satisfies the following conditions:(1) is symmetric and continuously differentiable, and .(2)There exist  such that  is strictly increasing on  and constant on (3).
 The MM estimator in the first part of (3) is defined as an M-estimator of  using a redescending score function, , and  obtained from (4). It is a solution to where  is another bounded  function such that .
3.2. Choosing the Robust Weights
The process of choosing the suitable weights is very important in order to obtain an oracle procedure [11]. The weights, which are described in (2), depend on Pearson’s correlation in their calculations. From a practical point of view, it is well known that Pearson’s correlation is not resistant to outliers and thus choosing weights in (2) based on this correlation will cause uncertain and deceptive results. Consequently, in order to get robust weights, there is a need to estimate the correlation by using robust approaches. There are two types of robust versions for Pearson’s correlation. The first type consists of those that are robust to the outliers, without interest in the general structure of the data, whereas the second type gives attention to the general structure of the data when dealing with outliers [14]. KN and MCD (minimum covariance determinant) are examples for the first and second types, respectively. Olive and Hawkins [13] proposed FCH and RMVN methods as practical consistent, outlier resistant estimators for multivariate location and dispersion. Alkenani and Yu [15] employed FCH and RMVN estimators instead of Pearson’s correlation in the canonical correlation analysis (CCA) to obtain robust CCA. The authors showed that these estimators have good performance under different settings of outliers.
In this article, the FCH, RMVN, SP, and KN correlations have been employed instead of Pearson’s correlation in order to obtain robust weights as follows:where  is a robust version of Pearson’s correlation such as FCH, RMVN, SP, and KN correlations.  is a robust initial estimate for  and we suggest using robust ridge estimates as initial estimates for β’s.
4. Simulation Study
In this section, five examples have been used to assess our proposed method RPACS by comparing it with PACS which is suggested in [11]. A regression model has been generated as follows:
In all examples, predictors are standard normal. The distributions of the error term  and the predictors are contaminated by two types of distributions,  distribution with 5 degrees of freedom  and Cauchy distribution with mean equal to 0 and variance equal to 1 . Also, different contamination ratios (5%, 10%, 15%, 20%, and 25%) were used. The performance of the methods is compared by using model error (ME) criterion for prediction accuracy which is defined by  where  represents the population covariance matrix of . The sample sizes were 50 and 100 and the simulated model was replicated 1000 times.
Example 1.  In this example, we choose the true parameters for the model of study as , . The first three predictors are highly correlated with correlation equal to 0.7 and their coefficients are equal in magnitude, while the rest are uncorrelated.
Example 2.  In this example, the true coefficients have been assumed as , . The first three predictors are highly correlated with correlation equal to 0.7 and their coefficients differ in magnitude, while the rest are uncorrelated.
Example 3.  In this example, the true parameters are , . The first three predictors are highly correlated with correlation equal to 0.7 and their coefficients are equal in magnitude, while the second three predictors have lower correlation equal to 0.3 and different magnitudes. The rest of predictors are uncorrelated.
Example 4.  In this example, true parameters are , . The first three predictors are correlated with correlation equal to 0.3 and their coefficients are equal in magnitude, while the second three predictors have correlation equal to 0.7 and different magnitudes. The rest of predictors are uncorrelated.
Example 5.  In this example, the true parameters are assumed as , . The first three predictors are highly correlated with pairwise correlation equal to 0.7 and the second two predictors have pairwise correlation of 0.7, while the rest are uncorrelated. It can be observed that the groups of three and two highly correlated predictors have coefficients which are equal in magnitude.
To avoid repetition, the observations about the results in Tables 1–5 have been summarized as follows.
Table 1: ME results of Example 1.
	

	Dist.		Outliers%	PACS 	RPACS.KN 	RPACS.SP	RPACS.FCH 	RPACS.RMVN
	

		50	0	0.02304	0.02964	0.03083	0.02979	0.02902
	5	0.20135	0.08124	0.08135	0.05575	0.04655
	10	0.25043	0.14048	0.14543	0.06579	0.05664
	15	0.30788	0.17578	0.18152	0.07225	0.06153
	20	0.34708	0.19266	0.21286	0.08195	0.06939
	25	0.40692	0.21584	0.22533	0.10242	0.08238
	100	0	0.02004	0.02644	0.02863	0.02772	0.02700
	5	0.19100	0.07100	0.08030	0.05111	0.04025
	10	0.23012	0.13011	0.14002	0.06116	0.05013
	15	0.28715	0.15523	0.17137	0.06899	0.05902
	20	0.32520	0.18670	0.19234	0.07115	0.06005
	25	0.36692	0.20522	0.21404	0.09032	0.07784
	

		50	5	0.18112	0.07004	0.07237	0.04390	0.03581
	10	0.23263	0.12001	0.12273	0.05472	0.04454
	15	0.28368	0.15274	0.16138	0.06237	0.05079
	20	0.33511	0.17162	0.18556	0.07381	0.05848
	25	0.38488	0.19330	0.20405	0.09342	0.07211
	100	5	0.17214	0.06111	0.07335	0.04277	0.03581
	10	0.22263	0.11001	0.11273	0.04672	0.03854
	15	0.27368	0.14274	0.15138	0.05237	0.04079
	20	0.31511	0.16162	0.17556	0.06381	0.04848
	25	0.35488	0.18330	0.19405	0.08342	0.06211
	



Table 2: ME results of Example 2.
	

	Dist.		Outliers%	PACS	RPACS.KN	RPACS.SP	RPACS.FCH	RPACS.RMVN
	

		50	0	0.11372	0.12032	0.12151	0.12047	0.11970
	5	0.29201	0.17191	0.17203	0.14644	0.13725
	10	0.34113	0.23117	0.23611	0.15646	0.14730
	15	0.39857	0.26647	0.27221	0.16294	0.15222
	20	0.43778	0.28336	0.30355	0.17263	0.16006
	25	0.49761	0.30653	0.31602	0.19312	0.17308
	100	0	0.10354	0.11022	0.11131	0.10407	0.10050
	5	0.28171	0.16170	0.17100	0.14180	0.13094
	10	0.32082	0.22080	0.23072	0.15185	0.14082
	15	0.37783	0.24591	0.26205	0.15967	0.14970
	20	0.41560	0.27700	0.28300	0.16185	0.15071
	25	0.45762	0.29592	0.30473	0.18101	0.16854
	

		50	5	0.27182	0.16072	0.16306	0.13460	0.12650
	10	0.32333	0.21071	0.21342	0.14541	0.13523
	15	0.37434	0.24340	0.25204	0.15303	0.14145
	20	0.42581	0.26232	0.27626	0.16451	0.14918
	25	0.47558	0.284	0.29475	0.18412	0.16281
	100	5	0.26282	0.15181	0.16405	0.13345	0.12651
	10	0.31331	0.20071	0.20343	0.13742	0.12923
	15	0.36435	0.23341	0.24205	0.14304	0.13149
	20	0.40581	0.25232	0.26625	0.15451	0.13916
	25	0.44557	0.27400	0.28473	0.17412	0.15281
	



Table 3: ME results of Example 3.
	

	Dist.		Outliers%	PACS	RPACS.KN	RPACS.SP	RPACS.FCH	RPACS.RMVN
	

		50	0	0.14172	0.14831	0.14950	0.14844	0.14743
	5	0.32001	0.19991	0.20003	0.17441	0.16522
	10	0.36913	0.25915	0.26411	0.18444	0.17530
	15	0.42653	0.29443	0.30021	0.19094	0.18022
	20	0.46576	0.31135	0.33154	0.20063	0.18806
	25	0.52561	0.33453	0.34402	0.22112	0.20107
	100	0	0.13042	0.13501	0.13645	0.13344	0.13255
	5	0.30971	0.18971	0.19901	0.16982	0.15894
	10	0.34882	0.24883	0.25872	0.17985	0.16882
	15	0.40582	0.27391	0.29003	0.18765	0.17774
	20	0.44365	0.30501	0.31103	0.18983	0.17871
	25	0.48562	0.32392	0.33271	0.20901	0.19650
	

		50	5	0.29982	0.18872	0.19106	0.1626	0.1545
	10	0.35133	0.23871	0.24142	0.17341	0.16323
	15	0.40234	0.2714	0.28004	0.18103	0.16945
	20	0.45381	0.29032	0.30426	0.19251	0.17718
	25	0.50358	0.312	0.32275	0.21212	0.19081
	100	5	0.32001	0.19991	0.20003	0.17445	0.16525
	10	0.36913	0.25917	0.26411	0.18441	0.17536
	15	0.42655	0.29444	0.30021	0.19093	0.18022
	20	0.46575	0.31134	0.33153	0.20063	0.18804
	25	0.525610	0.33453	0.34401	0.22112	0.20106
	



Table 4: ME results of Example 4.
	

	Dist.		Outliers%	PACS	RPACS.KN	RPACS.SP	RPACS.FCH	RPACS.RMVN
	

		50	0	0.15251	0.15910	0.16035	0.15921	0.15823
	5	0.33081	0.21070	0.21082	0.18520	0.17601
	10	0.37991	0.26993	0.27491	0.19523	0.18612
	15	0.43732	0.30521	0.31101	0.20175	0.19102
	20	0.47653	0.32216	0.34233	0.21143	0.19887
	25	0.53641	0.34531	0.35482	0.23192	0.21185
	100	0	0.13342	0.13901	0.14125	0.13814	0.13713
	5	0.32051	0.20051	0.20981	0.18062	0.16973
	10	0.35962	0.25965	0.26952	0.19067	0.17962
	15	0.41662	0.28471	0.30083	0.19847	0.18853
	20	0.45446	0.31581	0.32183	0.20066	0.18951
	25	0.49642	0.33472	0.34351	0.21981	0.20757
	

		50	5	0.31062	0.19952	0.20188	0.1734	0.16538
	10	0.36216	0.24951	0.25222	0.18421	0.17404
	15	0.41316	0.2822	0.29087	0.19184	0.18025
	20	0.46461	0.30112	0.31507	0.20331	0.18798
	25	0.51438	0.32284	0.33357	0.22294	0.20161
	100	5	0.33083	0.21071	0.21083	0.18525	0.17606
	10	0.37993	0.26995	0.27491	0.19521	0.18613
	15	0.43733	0.30522	0.31101	0.20175	0.19102
	20	0.47653	0.32217	0.34233	0.21143	0.19886
	25	0.53641	0.34533	0.354814	0.23192	0.21188
	



Table 5: ME results of Example 5.
	

	Dist.		Outliers%	PACS 	RPACS.KN	RPACS.SP	RPACS.FCH 	RPACS.RMVN
	

		50	0	0.06031	0.06695	0.06815	0.06701	0.06602
	5	0.23861	0.11851	0.11862	0.09305	0.08381
	10	0.28771	0.177735	0.182712	0.10303	0.09392
	15	0.34512	0.21301	0.21881	0.10955	0.09886
	20	0.38433	0.22996	0.25015	0.11923	0.10667
	25	0.44424	0.25315	0.26262	0.13972	0.11965
	100	0	0.04125	0.04684	0.04908	0.04597	0.04496
	5	0.22837	0.108313	0.11765	0.08846	0.07755
	10	0.26744	0.16745	0.17733	0.09846	0.08743
	15	0.32445	0.19256	0.20865	0.10627	0.09636
	20	0.36228	0.22365	0.22966	0.10844	0.09733
	25	0.40425	0.24257	0.25131	0.12761	0.11537
	

		50	0	0.06031	0.06695	0.06815	0.06701	0.06602
	5	0.21845	0.10737	0.10963	0.08125	0.07316
	10	0.26997	0.15734	0.16006	0.09206	0.08183
	15	0.32095	0.19007	0.19865	0.09963	0.08806
	20	0.37244	0.20896	0.22289	0.11115	0.09579
	25	0.42217	0.23067	0.24135	0.13073	0.10948
	100	0	0.04125	0.04684	0.04908	0.04597	0.04496
	5	0.23865	0.11854	0.11865	0.09308	0.08389
	10	0.28775	0.17779	0.18274	0.10303	0.09397
	15	0.34513	0.21304	0.21885	0.10958	0.09885
	20	0.38435	0.22998	0.25015	0.11926	0.10667
	25	0.44423	0.25314	0.26261	0.13977	0.11967
	



From Tables 1, 2, 3, 4, and 5, when there is no contamination data, PACS has good performance compared with our proposed methods. It is clear, when the contamination ratio of  or  goes up the performance of PACS goes down while RPACS with all the robust weights has a stable performance, and the preference is for RPACS.RMVN and RPACS.RFCH, respectively, for all the samples sizes. The variations in ME values for the RPACS estimates with all the robust weights are close under different setting of contamination and sample sizes, and they are less than the variations of PACS estimates.
5. Analysis of Real Data
In this section, the RPACS methods with all the robust weights and PACS method have been applied in real data. The NCAA sports data from Mangold et al. [16] and the pollution data from McDonald and Schwing [17] have been studied.
The response variable was centered and the predictors were standardized. To verify RPACS, the two data sets have been analyzed by including outliers in the response variable and the predictors. The two data sets have been contaminated with (5%, 10%, 15%, and 20%) data from multivariate  distribution with three degrees of freedom.
To evaluate the estimation accuracy of the RPACS methods, the correlation between the estimated parameters according to the different methods under consideration and the estimated parameters from PACS without outliers, denoted as , was presented. Also, the effective model size after accounting for equality of absolute coefficient estimates has been reported.
5.1. NCAA Sports Data
The NCAA sport data is taken from a study of the effects of sociodemographic indicators and the sports programs on graduation rates. The dataset is available from the website (http://www4.stat.ncsu.edu/~boos/var.select/ncaa.html). The data size is  and  predictors. The response variable is the average of 6 year graduation rate for 1996–1999. The predictors are students in top 10% HS (X1), ACT COMPOSITE 25TH (X2), on living campus (X3), first-time undergraduates (X4), Total Enrollment/1000 (X5), courses taught by TAs (X6), composite of basketball ranking (X7), in-state tuition/1000 (X8), room and board/1000 (X9), avg BB home attendance (X10), Full Professor Salary (X11), student to faculty ratio (X12), white (X13), assistant professor salary (X14), population of city where located (X15), faculty with PHD (X16), acceptance rate (X17), receiving loans (X18), and out of state (X19).
5.2. Pollution Data (PD)
The PD is taken from a study of the effects of different air pollution indicators and sociodemographic factors on mortality. The dataset is available from the website (http://www4.stat.ncsu.edu/~boos/var.select/pollution.html). The data contains  observations and  predictors. The response is the total Age Adjusted Mortality Rate (y). The predictors are Mean annual precipitation (X1), mean January temperature (X2), mean July temperature (X3), % population that is 65 years of age or over (X4), population per household (X5), median school years (X6), % of housing with facilities (X7), population per square mile (X8), % of population that is nonwhite (X9), % employment in white-collar occupations (X10), % of families with income under 3; 000 (X11), relative population potential (RPP) of hydrocarbons (X12), RPP of oxides of nitrogen (X13), RPP of sulfur dioxide (X14), and % relative humidity (X15).
From Tables 6 and 7, we have the following findings in terms of estimation accuracy and the effective model size:(1)In case of no contamination, it can be observed that RPACS methods give comparable results as PACS. In addition, it can be seen that RPACS.RMVN and RPACS.FCH achieve better performance than RPACS.KN and RPACS.SP.(2)In case of contamination, the performance of PACS is dramatically affected. Also, it is obvious that RPACS.RMVN and RPACS.FCH methods give very consistent results, even with the high contamination percentages. The performance of RPACS.KN and RPACS.SP is less efficient than RPACS.RMVN and RPACS.FCH especially for all the contamination percentages.
Table 6: The  and the effective model size values for the methods under consideration based on the NCAA sport data.
	

	Methods	Outliers%
	0	5	10	15	20
	

		PACS	1	0.9033	0.8069	0.4112	0.1345
	RPACS.KN	0.9843	0.9839	0.9530	0.9019	0.8499
	RPACS.SP	0.9840	0.9837	0.9526	0.9006	0.8490
	RPACS.FCH	0.9850	0.9846	0.9843	0.9841	0.9839
	RPACS.RMVN	0.9856	0.9852	0.9850	0.9847	0.9845
	

	The effective model size	PACS	5	6	7	9	10
	RPACS.KN	5	5	6	6	7
	RPACS.SP	5	5	6	6	7
	RPACS.FCH	5	5	5	5	5
	RPACS.RMVN	5	5	5	5	5
	



Table 7: The  and the effective model size values for the methods under consideration based on the pollution data.
	

	Methods	Outliers%
	0	5	10	15	20
	

		PACS	1	0.9247	0.8259	0.7001	0.5925
	RPACS.KN	0.9882	0.9866	0.9552	0.9044	0.8518
	RPACS.SP	0.9877	0.9862	0.9545	0.9038	0.8511
	RPACS.FCH	0.9890	0.9887	0.9884	0.9882	0.9879
	RPACS.RMVN	0.9897	0.9895	0.9893	0.9890	0.9888
	

	The effective model size	PACS	5	6	6	8	9
	RPACS.KN	5	5	6	7	7
	RPACS.SP	5	5	6	7	7
	RPACS.FCH	5	5	5	5	5
	RPACS.RMVN	5	5	5	5	5
	



6. Conclusions
In this paper, robust consistent group identification and VS procedures have been proposed (RPACS) which combine the strength of both robust and identifying relevant groups and VS procedure. The simulation studies and analysis of real data demonstrate that RPACS methods have better predictive accuracy and identifying relevant groups than PACS when outliers exist in the response variable and the predictors. In general, the preference is for RPACS.RMVN and RPACS.RFCH, respectively, for all the samples sizes.
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