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Abstract. 
This paper presents an upper bound for each of the generalized  values for testing the one population variance, the difference between two population variances, and the ratio of population variances for lognormal distribution when coefficients of variation are known. For each of the proposed generalized  values, we derive a closed form expression of the upper bound of the generalized  value. Numerical computations illustrate the theoretical results.



1. Introduction
The problem of statistical inference for the population variances has been widely discussed by various authors; see, for example, Singh et al. [1], Agrawal and Sthapit [2], Arcos Cebrián and Rueda García [3], and Arcos et al. [4]. Kadilar and Cingi [5] proposed some ratio estimators for the population variance in simple and stratified random sampling. Cojbasic and Tomovic [6] proposed the bootstrap methods to construct the confidence intervals of the population variance for one sample and the difference of variances of two samples. Cojbasic and Loncar [7] proposed one-sided bootstrap method to construct the confidence intervals of the population variance of skewed distributions. Rajic et al. [8] proposed the new method for the testing one population variance and the difference of variances of two samples, based on -statistics and bootstrap method. Singh and Malik [9] proposed a family of estimators for the population variance using auxiliary attributes. In this paper, we used the generalized p values, proposed by Tsui and Weerahandi [10] and Weerahandi [11], to find new generalized p values for testing:  one population variance,  the difference between two population variances, and  the ratio of population variances of lognormal distributions when coefficients of variation are known. This problem is analogous to the Behrens-Fisher problem; see, for example, Tang and Tsui [12] and Somkhuean et al. [13]. In Section 2, the outline for some basic steps to construct the generalized p value for testing hypothesis in this problem is presented. The process of deriving each of the upper bounds as mentioned above is presented in Section 3. The numerical results are shown in Section 4 and the conclusion is presented in Section 5.
2. Generalized  Values
The concept of the generalized p values has been introduced by Tsui and Weerahandi [10] and Weerahandi [11]. We briefly review this concept as follows.
Let  be a random variable with a density function , where ,  is the parameter of interest, and  is a nuisance parameter.
Suppose we want to testwhere  is a specified quantity. Let  be a particular observed sample. The generalized test variable, , is required to satisfy the following conditions:(A1)For fixed  and , the distribution  is free from the nuisance parameter .(A2) is free from any unknown parameter.(A3) is either stochastically increasing or decreasing in  for any given  and fixed values of  and .
Under the above conditions, if  is a stochastically increasing test variable then the subset of space is extreme region . For the one-sided hypothesis given above they defined a data-based extreme region  is of the formGiven the observed sample , the generalized p value is defined asfor further details and for several applications based on the generalized p value; we refer to the book by Weerahandi [11].
Moreover, Tsui and Weerahandi [10] used the generalized p value  for the Behrens-Fisher problem of testing the difference of two independent normal distribution means with possibly unequal variances. Later, Tang and Tusi [12] extended the works of Weerahandi [11], Gamage and Weerahandi [14] to derive the formula of the upper bound  of the generalized p value  which is in the form of (see also, e.g., Kabaila and Lloyd [15])
In this paper, we also extend Tang and Tsui [12] work to find upper bound of each of the generalized p values, , for hypotheses testing of the one population variance, the difference between two population variances, and the ratio of population variances of lognormal distributions with known coefficients of variation.
3. Main Results for the Population Variance of Lognormal Distributions with Known Coefficients of Variation
Let , for  be random samples having lognormal distribution and let  where  and  denote the mean and variance of , respectively. In particular, the mean, variance, and the coefficient of variation for lognormal distribution are, respectively, given by where  denotes the coefficient of variation of  which is computed from.
It is easy to see thatand the parameters of interest areFor testing the null hypothesis,  vs ,  vs , and  vs , the sufficient statistics involving these problems are , whereIt is known that the probability distributions of the statistics below are independent:We denote ,  and ,  Here  and  are the vector of the observed samples. Let  be the observed value of the sufficient statistic  Following Tang and Tsui [12] and Somkhuean et al. [13], the repeated sampling,  follows the same probability distributions as (9).
Case  1. The hypothesis testing isThe parameter of the one population variance of lognormal distribution when the coefficient of variation is known isUsing the generalized test variable for  which iswhere , .
It is easy to see that  in (12) satisfies conditions (A1)–(A3) in Section 2.
The generalized p value, , is defined, under the null hypothesis , to be Following (13) the generalized p value for (10) can be defined aswhere  is an expectation operator with respect to  and  is cdf of the standard normal distribution.
Theorem 1.  If  then  is a convex function of  where  is - distribution with  degrees of freedom.
Proof. See Appendix.
Theorem 2.  The upper bound of  in (14) takes the form , for , , where  is a cdf of -distribution function with  degrees of freedom and  is a cdf of the standard normal distribution.
Proof. See Appendix.
Case  2. The hypothesis testing isThe parameter of the difference between two population variances for lognormal distributions isWithout loss of generality, suppose , Using generalized test variable for  isIt easy to see that  in (18) satisfies conditions (A1)–(A3) in Section 2.
The generalized p value, , is defined, under the null hypothesis , to beFollowing (19) the generalized p value for (15) can be defined aswhere  is a cdf of -distribution with  degrees of freedom and  is an expectation operator with respect to .
Theorem 3.  If  then for fixed  and ,  is convex function for .
Proof.  See  Appendix.
Theorem 4.  If  and , ,  are independent random variable such that , , , then  is convex function for .
Proof.  See  Appendix.
Theorem 5.  The upper bound of  is  for , , where  is the -distribution function with  degrees of freedom and  is the inverse function of .
Proof. See Appendix.
Case  3. The hypothesis testing isThe parameter of the ratio of population variances for lognormal distributions iswhere Using generalized test variable for  isIt easy to see that  in (24) satisfies conditions (A1)–(A3) in Section 2.
The generalized p value, , is defined, under the null hypothesis , to beFollowing (25) the generalized p value for (21) can be defined aswhere  is a cdf of -distribution with  degrees of freedom and  is an expectation operator with respect to .
Theorem 6.  The upper bound of  is  for , , where  is the -distribution function with  degrees of freedom and  is the inverse function of .
Proof. It is similar to Theorem 5.
4. Numerical Results
In this section, we used functions written in the  program [16] to compute the values of the upper bounds of the generalized p values proposed in Theorems 2, 5, and 6. For given values of , , , , , , and , we computed the upper bounds of , , and , by using the results from Theorems 2, 5, and 6 shown in Tables 1–3. As we can see in these tables, all results of the upper bounds of the generalized p values proposed in Theorems 2, 5, and 6 depend mainly on a variety of values of , , , , , , and . As a result, these upper bounds confirm our proof in Theorems 2, 5, and 6.
Table 1: The upper bound of p value for hypothesis (10), for .
	

								
	

	10	2.001	0.000949333	0.02254277	0.03514731	0.06730417	0.1161747	0.2111518
	2.002	0.001898192	0.02257782	0.03520131	0.06740329	0.1163342	0.2114042
	2.003	0.002846578	0.02261291	0.03525537	0.06750250	0.1164939	0.2116567
	

	15	2.001	0.000949333	0.01779592	0.02963687	0.06122800	0.1105716	0.2073298
	2.002	0.001898192	0.01782805	0.02968858	0.06132703	0.1107338	0.2075869
	2.003	0.002846578	0.01786022	0.02974036	0.06142616	0.110896	0.2078441
	

	20	2.001	0.000949333	0.01563906	0.02706209	0.05832057	0.1078731	0.2054935
	2.002	0.001898192	0.01566962	0.02711254	0.05841947	0.1080364	0.2057529
	2.003	0.002846578	0.01570022	0.02716304	0.05851845	0.1081999	0.2060124
	



Table 2: The upper bound of p value for hypothesis (15), for , , and .
	

	, 					
	

	 5, 5	0.02213745	0.03526116	0.06823592	0.1174918	0.2121440
	10, 10	0.01553660	0.02705864	0.05846833	0.1080566	0.2055204
	15, 15	0.01356674	0.02457767	0.05550640	0.1052267	0.2035670
	20, 20	0.01262788	0.02338536	0.05407854	0.1038673	0.2026341
	30, 30	0.01172026	0.02222509	0.05268530	0.1025436	0.2017292
	



Table 3: The upper bound of p value for hypothesis (21), for , , and .
	

	, 							
	

	5, 5	1.01	0.00944854	0.02234846	0.03562201	0.06898679	0.1188115	0.2144116
	1.02	0.01880399	0.02255971	0.03598345	0.06973902	0.1201326	0.2166765
	1.03	0.02806817	0.02277119	0.03634547	0.07049260	0.1214551	0.2189384
	

	10, 10	1.01	0.00944854	0.01577932	0.02747895	0.05934179	0.1095594	0.2079965
	1.02	0.01880399	0.0160234	0.02790139	0.06021843	0.1110648	0.2104685
	1.03	0.02806817	0.01626883	0.02832593	0.06109821	0.1125725	0.2129362
	

	15, 15	1.01	0.00944854	0.01381588	0.02501398	0.05641761	0.1067866	0.2061060
	1.02	0.01880399	0.01406687	0.02545308	0.05733271	0.1083493	0.2086403
	1.03	0.02806817	0.01431970	0.02589493	0.05825161	0.1099147	0.2111700
	

	20, 20	1.01	0.009448542	0.01287934	0.02382890	0.05500805	0.1054549	0.2052033
	1.02	0.01880399	0.01313292	0.02427558	0.05594180	0.1070456	0.2077678
	1.03	0.02806817	0.01338861	0.02472537	0.05687972	0.1086391	0.2103272
	

	30, 30	1.01	0.009448542	0.01197343	0.02267532	0.05363272	0.1041586	0.2043280
	1.02	0.01880399	0.01222900	0.02312906	0.05458475	0.1057767	0.2069217
	1.03	0.02806817	0.01248697	0.02358628	0.05554131	0.1073979	0.2095102
	



5. Conclusion
We proposed three new generalized p values for testing the hypotheses of  one population variance,  the difference between two population variances, and  the ratio of population variances of lognormal distributions when the coefficients of variation are known. We also proved new upper bounds for our proposed generalized p values. We note here that the results for these results for case , case , and case  were analogous to the upper bound of the generalized p value for the Behrens-Fisher problem proposed by Tang and Tsui [12]. Numerical results shown in Tables 1–3 confirmed our results of the upper bounds of the generalized p values proposed in Theorems 2, 5, and 6; we also found that the proposed upper bounds are increasing up on the parameter values of  and . For example, for , , and , the upper bound of p value using Theorem 2 is 0.022261291 and this upper bound of p value approaches  when  is increasing. Similar results are applied for other cases. For the two-tailed test, that is,  and ; it is easy to apply the results of Theorem  of Tang and Tsui [12] to all hypotheses in this paper. So we skipped it.
Appendix
Proof of Theorem 1. Defining , we have . Let  be the probability density function of .
HenceFor ,  . Hence  and 
Moreover Hence , and  is convex in .
Proof of Theorem 2. Denote  and .
From (14), we haveFor any  and , hence, by Theorem 1, we have For , we have
Proof of Theorem 3. Define , , and  is the probability density function of -distribution of  degrees of freedom. Hence For ,  implies that , , and .
We have We have . Hence  is convex function for .
Proof of Theorem 4. where  is the cdf of a standard normal distribution.
Let , , and  is the probability density function of a standard normal distribution. Hence We have We have . Hence    is convex function for . As a result,  is convex in .
Proof of Theorem 5. DenoteFrom (24)For any  and , hence, by Theorem 1, such that For , we have 
Competing Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
The second author is grateful to Grant no. KMUTNB-GOV-59-36 from King Mongkut’s University of Technology North Bangkok.
References
	H. P. Singh, L. N. Upadhyaya, and U. D. Namjoshi, “Estimation of finite population variance,” Current Science, vol. 57, no. 24, pp. 1331–1334, 1988.
	M. C. Agrawal and A. B. Sthapit, “Unbiased ratio-type variance estimation,” Statistics and Probability Letters, vol. 25, no. 4, pp. 361–364, 1995.
	A. Arcos Cebrián and M. Rueda García, “Variance estimation using auxiliary information: an almost unbiased multivariate ratio estimator,” Metrika. International Journal for Theoretical and Applied Statistics, vol. 45, no. 2, pp. 171–178, 1997.
	A. Arcos, M. Rueda, M. D. Martínez, S. González, and Y. Román, “Incorporating the auxiliary information available in variance estimation,” Applied Mathematics and Computation, vol. 160, no. 2, pp. 387–399, 2005.
	C. Kadilar and H. Cingi, “Ratio estimators for the population variance in simple and stratified random sampling,” Applied Mathematics and Computation, vol. 173, no. 2, pp. 1047–1059, 2006.
	V. Cojbasic and A. Tomovic, “Nonparametric confidence intervals for population variance of one sample and the difference of variances of two samples,” Computational Statistics & Data Analysis, vol. 51, no. 12, pp. 5562–5578, 2007.
	V. Cojbasic and D. Loncar, “One-sided confidence intervals for population variances of skewed distributions,” Journal of Statistical Planning and Inference, vol. 141, no. 5, pp. 1667–1672, 2011.
	V. C. Rajic, J. Kocovic, D. Loncar, and T. R. Antic, “Testing population variance in case of one sample and the difference of variances in case of two samples: example of wage and pension data sets in Serbia,” Economic Modelling, vol. 29, no. 3, pp. 610–613, 2012.
	R. Singh and S. Malik, “Improved estimation of population variance using information on auxiliary attribute in simple random sampling,” Applied Mathematics and Computation, vol. 235, pp. 43–49, 2014.
	K.-W. Tsui and S. Weerahandi, “Generalized p-values in significance testing of hypotheses in the presence of nuisance parameters,” Journal of the American Statistical Association, vol. 84, no. 406, pp. 602–607, 1989.
	S. Weerahandi, Exact Statistical Methods for Data Analysis, Springer, New York, NY, USA, 1995.
	S. Tang and K.-W. Tsui, “Distributional properties for the generalized p-value for the Behrens-Fisher problem,” Statistics & Probability Letters, vol. 77, no. 1, pp. 1–8, 2007.
	R. Somkhuean, S. Niwitpong, and S.-A. Niwitpong, “Upper bounds of generalized p-values for testing the coefficients of variation of lognormal distributions,” Chiang Mai Journal of Science, vol. 43, pp. 671–681, 2016.
	J. Gamage and S. Weerahandi, “Size performance of some tests in one-way ANOVA,” Communications in Statistics—Simulation and Computation, vol. 27, no. 3, pp. 625–640, 1998.
	P. Kabaila and C. J. Lloyd, “Tight upper confidence limits from discrete data,” The Australian Journal of Statistics, vol. 39, no. 2, pp. 193–204, 1997.
	 The R Development Core Team, An Introduction to R, R Foundation for Statistical Computing, Vienna, Austria, 2010, http://www.R-project.org.


EPUB/Navigation/nav.xhtml


		

			

		  1. Introduction

		  2. Generalized p Values

		  3. Main Results for the Population Variance of Lognormal Distributions with Known Coefficients of Variation

		  4. Numerical Results

		  5. Conclusion

		  References 





EPUB/Content/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  




