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The supplement contains two sections: Section S1 presents additional
simulations results, Section S2 describes additional real data analysis for
bike sharing data.

S1 Additional simulation results

Section S1.1 provides simulation settings and the results for the case of hav-
ing a single scalar covariate. Section S1.2 summarizes simulation results for
the case of having a single functional covariate. Section S1.3 presents simu-
lation results for the case of having a scalar covariate and a densely observed
functional covariate.

S1.1 Simulation study for scalar covariate only case

We compare the performance of the proposed method to the conventional
quantile regression, and consider generating five models with different set-
tings but all with scalar-only covariates as follows. The first three models
follow Reich et al. (2010) and are all with linear quantiles,

Model 1 Yi = 1 +Xi + εi,

Model 2 Yi = 1 +Xi + πiε1i + (1− πi)ε2i,
Model 3 Yi = 1 +Xi + (1.1−Xi)εi,

Model 1 is generated as above, where Xi
i.i.d∼ N(0, 1), εi

i.i.d∼ N(0, 1). Since
Yi ∼ N(1 + Xi, 1), the linear quantile can be analytically determined by
Qτ = 1 +Xi + Φ−1(τ). Model 2 is similar to the first one, the setting here is

a model with mixture errors, where Xi
i.i.d∼ N(0, 1), πi

i.i.d∼ Unif(0, 1), ε1i
i.i.d∼

N(0, 1) |= ε2i
i.i.d∼ N(3, 3). Since Yi ∼ N(1 + Xi, π

2
i + 3(1 − πi)2), Qτ =

1 +Xi +
√
π2
i + 3(1− πi)2Φ−1(τ). Model 3 is generated with heteroscedastic
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error, where Xi
i.i.d∼ Unif(−1, 1), εi

i.i.d∼ N(0, 1). True linear quantile can be
obtained according to Yi ∼ N(1 + Xi, (1.1 − Xi)

2), Qτ = 1 + Xi + (1.1 −
Xi)Φ

−1(τ). Model 4 and model 5 are generated under the same frame of
non-linear quantile considered in Bondell et al. (2010),

Yi = f(Xi) + g(Xi)εi,

Model 4 f(X) = 0.5 + 2X + sin(2πX − 0.5) g(X) = 1,

Model 5 f(X) = 3X g(X) = 0.5 + 2X + sin(2πX − 0.5),

where Xi
i.i.d∼ Unif(−1, 1), εi

i.i.d∼ N(0, 1). For model 4, Yi ∼ N(f(Xi), 1),
Qτ = 0.5 + 2Xi + sin(2πXi− 0.5) + Φ−1(τ); for model 5 with heteroscedastic
error, Yi ∼ N(3Xi, g(Xi)

2), Qτ = 3Xi + (0.5 + 2Xi + sin(2πXi− 0.5))Φ−1(τ).
All covariates and error terms appearing in the models are mutually inde-
pendent. The performance of each method is evaluated in terms of MAE
again on seven quantile levels of interests ranging from 0.05 to 0.95.

We compare the proposed method with several alternatives, pointwise
QR, LQR as introduced before, COBS (Constrained B-Spline Smoothing)
implemented by cobs from COBS package (Ng and Maechler, 2007) in R and
a variant of our approach by ignoring the binary-valued nature of the func-
tional response, and thus using identity link function (Joint QR (G): pffr,
Gaussian). Moreover we also consider the proposed methods (Pointwise QR
and Joint QR) with non-linear modeling of the conditional distribution, i.e.
FY |X(y) = g−1

{
β0(y)+h(X, y)

}
, where β0(·) and h(·, ·) are unknown smooth

functions; the methods are denoted by Pointwise QR (NL) and Joint QR
(NL). Note that pfr cannot only take scalar covariates as input directly,
thus we actually implement a generalized linear model.

As before, we set sample size n = 1000 as a training set, and use the ad-
ditional 100 as a testing set. Totally 500 Monte Carlo samples are generated.
Results of our numerical study are presented as in Table S1.

S1.2 Simulation study for functional covariate only case

Consider when there is only a single sparsely observed functional covariate.
The observed data for the ith subject is {Yi, (Wi1, ti1), · · · , (Wimi

, timi
)}. For

brevity, we omit the same settings described previously.
We consider two scenarios as before:

(i) normal distribution Yi|Xi(·) ∼ N(2
∑4

k=1 ξik, 5
2);

(ii) mixture distribution Yi|Xi(·) ∼ 0.5N(
∑4

k=1 ξik, 1
2)+0.5N(3

∑4
k=1 ξik, 4

2).
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Table S1: Average MAE (standard error in parentheses) of the predicted τ -
level quantile for the case of having a scalar covariate. Sample size n = 1000.

Model Method τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9 τ = 0.95

Model 1

Joint QR 0.09 (0.14) 0.09 (0.15) 0.09 (0.13) 0.06 (0.10) 0.06 (0.08) 0.07 (0.10) 0.09 (0.15)
Joint QR (G) 0.38 (0.26) 0.34 (0.19) 0.23 (0.14) 0.15 (0.13) 0.29 (0.14) 0.40 (0.19) 0.44 (0.25)
Pointwise QR 0.10 (0.14) 0.10 (0.14) 0.09 (0.13) 0.07 (0.10) 0.06 (0.08) 0.08 (0.10) 0.10 (0.14)

COBS 0.09 (0.19) 0.07 (0.15) 0.05 (0.11) 0.05 (0.11) 0.05 (0.12) 0.07 (0.15) 0.09 (0.19)
LQR 0.07 (0.17) 0.06 (0.14) 0.05 (0.10) 0.04 (0.10) 0.05 (0.11) 0.06 (0.14) 0.07 (0.16)

Joint QR (NL) 0.13 (0.16) 0.11 (0.13) 0.09 (0.11) 0.08 (0.10) 0.09 (0.12) 0.10 (0.13) 0.12 (0.16)
Pointwise QR (NL) 0.11 (0.14) 0.10 (0.13) 0.09 (0.11) 0.07 (0.10) 0.07 (0.10) 0.09 (0.11) 0.11 (0.13)

Model 2

Joint QR 1.24 (0.35) 1.27 (0.29) 1.33 (0.23) 1.44 (0.22) 1.65 (0.28) 2.00 (0.40) 2.26 (0.51)
Joint QR (G) 0.94 (0.43) 0.98 (0.34) 1.17 (0.26) 1.48 (0.23) 1.83 (0.28) 2.14 (0.40) 2.43 (0.58)
Pointwise QR 1.24 (0.35) 1.27 (0.29) 1.33 (0.24) 1.44 (0.23) 1.65 (0.28) 2.00 (0.40) 2.27 (0.51)

COBS 1.22 (0.41) 1.22 (0.33) 1.26 (0.26) 1.37 (0.25) 1.62 (0.33) 2.00 (0.48) 2.25 (0.60)
LQR 1.21 (0.40) 1.22 (0.33) 1.26 (0.25) 1.37 (0.24) 1.62 (0.32) 2.00 (0.46) 2.26 (0.57)

Joint QR (NL) 1.28 (0.36) 1.28 (0.29) 1.31 (0.25) 1.41 (0.24) 1.67 (0.30) 2.04 (0.42) 2.29 (0.53)
Pointwise QR (NL) 1.26 (0.37) 1.27 (0.30) 1.31 (0.24) 1.42 (0.23) 1.66 (0.29) 2.01 (0.42) 2.27 (0.52)

Model 3

Joint QR 0.30 (0.25) 0.28 (0.22) 0.24 (0.15) 0.22 (0.11) 0.19 (0.15) 0.15 (0.19) 0.17 (0.17)
Joint QR (G) 0.68 (0.71) 0.41 (0.25) 0.15 (0.13) 0.20 (0.14) 0.16 (0.11) 0.31 (0.23) 0.49 (0.75)
Pointwise QR 0.34 (0.27) 0.27 (0.22) 0.23 (0.15) 0.22 (0.12) 0.18 (0.14) 0.11 (0.17) 0.14 (0.17)

COBS 0.10 (0.26) 0.08 (0.21) 0.06 (0.15) 0.05 (0.15) 0.05 (0.15) 0.16 (0.10) 0.34 (0.11)
LQR 0.07 (0.23) 0.06 (0.18) 0.05 (0.14) 0.04 (0.14) 0.05 (0.15) 0.07 (0.19) 0.08 (0.23)

Joint QR (NL) 0.17 (0.20) 0.14 (0.18) 0.11 (0.14) 0.10 (0.14) 0.10 (0.15) 0.11 (0.19) 0.13 (0.21)
Pointwise QR (NL) 0.16 (0.28) 0.14 (0.20) 0.11 (0.15) 0.10 (0.14) 0.11 (0.15) 0.13 (0.20) 0.15 (0.26)

Model 4

Joint QR 0.61 (0.22) 0.60 (0.18) 0.59 (0.15) 0.58 (0.14) 0.58 (0.15) 0.60 (0.20) 0.64 (0.26)
Joint QR (G) 0.73 (0.34) 0.65 (0.22) 0.58 (0.17) 0.55 (0.14) 0.59 (0.19) 0.64 (0.25) 0.69 (0.33)
Pointwise QR 0.62 (0.23) 0.60 (0.19) 0.58 (0.15) 0.58 (0.14) 0.58 (0.15) 0.60 (0.20) 0.65 (0.27)

COBS 0.35 (0.17) 0.34 (0.15) 0.32 (0.13) 0.32 (0.12) 0.32 (0.12) 0.33 (0.15) 0.34 (0.16)
LQR 0.62 (0.21) 0.60 (0.19) 0.58 (0.16) 0.58 (0.14) 0.60 (0.16) 0.63 (0.19) 0.65 (0.22)

Joint QR (NL) 0.14 (0.15) 0.12 (0.13) 0.11 (0.11) 0.10 (0.10) 0.10 (0.11) 0.12 (0.13) 0.14 (0.16)
Pointwise QR (NL) 0.18 (0.16) 0.15 (0.13) 0.12 (0.11) 0.11 (0.10) 0.11 (0.11) 0.14 (0.13) 0.17 (0.17)

Model 5

Joint QR 0.74 (0.34) 0.57 (0.25) 0.34 (0.19) 0.22 (0.13) 0.30 (0.13) 0.55 (0.20) 0.78 (0.29)
Joint QR (G) 1.11 (0.93) 0.81 (0.33) 0.57 (0.21) 0.27 (0.14) 0.60 (0.23) 1.07 (0.42) 1.52 (0.63)
Pointwise QR 0.76 (0.34) 0.56 (0.24) 0.33 (0.19) 0.22 (0.14) 0.30 (0.14) 0.54 (0.21) 0.79 (0.30)

COBS 0.38 (0.23) 0.29 (0.19) 0.16 (0.17) 0.03 (0.11) 0.16 (0.19) 0.24 (0.22) 0.33 (0.24)
LQR 0.84 (0.30) 0.59 (0.21) 0.30 (0.13) 0.03 (0.09) 0.30 (0.13) 0.59 (0.20) 0.84 (0.29)

Joint QR (NL) 0.34 (0.22) 0.27 (0.18) 0.17 (0.14) 0.14 (0.15) 0.17 (0.16) 0.24 (0.21) 0.30 (0.29)
Pointwise QR (NL) 0.32 (0.24) 0.25 (0.21) 0.18 (0.17) 0.15 (0.14) 0.16 (0.15) 0.22 (0.18) 0.28 (0.23)
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Figure S1: Boxplots of MAEs of the predicted τ -level quantile for sample size
n = 1000 for the case of having a scalar covariate only. Results are based on
500 replication.
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Sample size and replication number are set as 1000 and 500, respectively. We
compare the performance of our method with three alternatives: Pointwise
QR, CM and Joint QR (G). The results are presented in Tables S2 and S3.

Table S2: Average MAE (standard error in parentheses) of the predicted τ -
level quantile for the case of having a sparsely observed functional covariate.
Sample size n = 1000.

Distribution SNR Method τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5

Normal 2

Joint QR 7.91 (0.03) 7.04 (0.03) 6.24 (0.02) 6.05 (0.02)
Joint QR (G) 10.95 (0.04) 9.28 (0.03) 7.18 (0.02) 6.30 (0.02)
Pointwise QR 8.06 (0.03) 7.13 (0.03) 6.28 (0.02) 6.06 (0.02)

CM 7.99 (0.03) 7.14 (0.03) 6.35 (0.02) 6.15 (0.02)

Normal 1

Joint QR 10.02 (0.04) 8.83 (0.03) 7.59 (0.03) 7.23 (0.02)
Joint QR (G) 11.80 (0.04) 10.18 (0.04) 8.17 (0.03) 7.34 (0.03)
Pointwise QR 10.17 (0.04) 8.91 (0.03) 7.62 (0.03) 7.24 (0.03)

CM 10.10 (0.04) 8.95 (0.03) 7.73 (0.03) 7.35 (0.03)

Mixture 2

Joint QR 9.61 (0.04) 7.74 (0.03) 6.32 (0.03) 4.59 (0.02)
Joint QR (G) 14.45 (0.07) 10.28 (0.04) 7.16 (0.02) 4.29 (0.01)
Pointwise QR 9.88 (0.04) 7.77 (0.03) 6.27 (0.03) 4.53 (0.02)

CM 9.81 (0.04) 7.90 (0.03) 6.43 (0.03) 4.73 (0.02)

Mixture 1

Joint QR 12.03 (0.04) 9.60 (0.03) 7.53 (0.03) 5.27 (0.02)
Joint QR (G) 15.15 (0.07) 11.19 (0.04) 8.12 (0.03) 5.10 (0.02)
Pointwise QR 12.39 (0.04) 9.69 (0.03) 7.51 (0.03) 5.23 (0.02)

CM 12.30 (0.04) 9.85 (0.03) 7.70 (0.03) 5.43 (0.02)

Table S3: Average computing times (in seconds).

Distribution Joint QR Joint QR (G) Pointwise QR CM

Normal 179 125 310 477
Mixture 206 134 313 314

S1.3 Simulation results for the case of having a scalar
covariate and a densely observed functional co-
variate

Tables S4 and S5 summarize the simulation results for the case of having
a scalar covariate and a densely observed functional covariate. Simulation
settings are described in the main manuscript.
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Table S4: Average MAE (standard error in parentheses) of the predicted τ -
level quantile for the case of having a scalar covariate and a densely observed
functional covariate. Sample size n = 100.

Distribution SNR Method τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5

Normal 150

Joint QR 3.30(0.03) 3.15(0.03) 2.90(0.02) 2.71(0.02)
Pointwise QR 4.41 (0.03) 4.06 (0.03) 3.67 (0.02) 3.59 (0.02)

Mod CM 4.32 (0.03) 4.04 (0.03) 3.67 (0.02) 3.53 (0.02)
PQR 2.97 (0.04) 2.72 (0.04) 2.50 (0.04) 2.45 (0.04)

Normal 2

Joint QR 8.13 (0.04) 7.57 (0.03) 7.13 (0.03) 7.02 (0.03)
Pointwise QR 9.37 (0.05) 8.46 (0.04) 7.63 (0.03) 7.36 (0.03)

Mod CM 8.88 (0.04) 8.69 (0.04) 8.52 (0.04) 8.60 (0.04)
PQR 8.76 (0.06) 8.04 (0.05) 7.13 (0.04) 6.76 (0.03)

Normal 1

Joint QR 9.90 (0.05) 9.05 (0.04) 8.32 (0.03) 8.13 (0.03)
Pointwise QR 11.07 (0.06) 9.90 (0.05) 8.78 (0.03) 8.41 (0.03)

Mod CM 10.27 (0.04) 10.00 (0.04) 9.79 (0.04) 9.84 (0.04)
PQR 10.67 (0.07) 9.71 (0.06) 8.40 (0.04) 7.86 (0.03)

Mixture 150

Joint QR 6.59 (0.06) 6.27 (0.06) 6.07 (0.06) 4.45 (0.05)
Pointwise QR 7.53 (0.07) 6.13 (0.06) 6.07 (0.06) 4.64 (0.06)

Mod CM 6.66 (0.06) 6.44 (0.06) 6.37 (0.06) 4.95 (0.06)
PQR 8.08 (0.07) 7.06 (0.05) 6.32 (0.04) 5.91 (0.14)

Mixture 2

Joint QR 10.40 (0.06) 9.06 (0.05) 8.60 (0.05) 6.89 (0.05)
Pointwise QR 11.70 (0.08) 9.65 (0.06) 8.61 (0.05) 6.88 (0.05)

Mod CM 11.40 (0.06) 10.89 (0.06) 10.68 (0.06) 9.34 (0.07)
PQR 12.00 (0.08) 10.28 (0.06) 8.68 (0.04) 6.09 (0.06)

Mixture 1

Joint QR 11.79 (0.07) 10.15 (0.05) 9.38 (0.05) 7.53 (0.05)
Pointwise QR 12.94 (0.09) 10.68 (0.06) 9.37 (0.05) 7.48 (0.05)

Mod CM 12.61 (0.07) 11.95 (0.06) 11.60 (0.06) 10.23 (0.07)
PQR 13.40 (0.10) 11.47 (0.07) 9.48 (0.04) 6.59 (0.05)

7



Table S5: Average MAE (standard error in parentheses) of the predicted τ -
level quantile for the case of having a scalar covariate and a densely observed
functional covariate. Sample size n = 1000.

Distribution SNR Method τ = 0.05 τ = 0.1 τ = 0.25 τ = 0.5

Normal 150

Joint QR 1.27 (0.01) 1.34 (0.01) 1.33 (0.01) 1.22 (0.01)
Pointwise QR 1.61 (0.01) 1.59 (0.01) 1.54 (0.01) 1.43 (0.01)

Mod CM 1.43 (0.01) 1.40 (0.01) 1.39 (0.01) 1.36 (0.01)
PQR 1.74 (0.02) 1.71 (0.02) 1.67 (0.02) 1.67 (0.02)

Normal 2

Joint QR 7.79 (0.03) 6.91 (0.02) 6.22 (0.02) 6.11 (0.02)
Pointwise QR 8.03 (0.03) 7.06 (0.03) 6.31 (0.02) 6.19 (0.02)

Mod CM 7.94 (0.03) 7.11 (0.03) 6.43 (0.02) 6.32 (0.02)
PQR 8.36 (0.04) 7.55 (0.04) 6.60 (0.03) 6.22 (0.02)

Normal 1

Joint QR 9.84 (0.04) 8.59 (0.03) 7.52 (0.03) 7.30 (0.03)
Pointwise QR 10.09 (0.04) 8.76 (0.03) 7.61 (0.03) 7.35 (0.03)

Mod CM 9.95 (0.04) 8.79 (0.03) 7.77 (0.03) 7.55 (0.03)
PQR 10.39 (0.05) 9.26 (0.04) 7.89 (0.03) 7.33 (0.02)

Mixture 150

Joint QR 4.33 (0.03) 3.89 (0.02) 3.66 (0.03) 3.54 (0.03)
Pointwise QR 4.04 (0.03) 3.82 (0.02) 3.65 (0.03) 3.45 (0.03)

Mod CM 4.12 (0.03) 3.88 (0.02) 3.68 (0.03) 3.65 (0.03)
PQR 7.74 (0.04) 6.40 (0.03) 5.31 (0.02) 3.75 (0.10)

Mixture 2

Joint QR 9.62 (0.04) 7.46 (0.03) 7.10 (0.03) 5.74 (0.03)
Pointwise QR 9.64 (0.04) 7.37 (0.03) 6.86 (0.03) 5.67 (0.03)

Mod CM 9.64 (0.04) 7.60 (0.03) 7.18 (0.03) 6.12 (0.03)
PQR 11.74 (0.05) 9.65 (0.04) 7.82 (0.03) 4.64 (0.02)

Mixture 1

Joint QR 11.47 (0.04) 8.94 (0.03) 8.00 (0.03) 6.33 (0.03)
Pointwise QR 11.55 (0.05) 8.91 (0.03) 7.82 (0.03) 6.22 (0.03)

Mod CM 11.48 (0.04) 9.17 (0.04) 8.22 (0.04) 6.81 (0.03)
PQR 13.33 (0.06) 10.87 (0.04) 8.65 (0.03) 5.37 (0.02)
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S2 Bike sharing data application

In this section we illustrate the proposed method using the bike sharing data
(Fanaee-T and Gama, 2014) available at the University of California, Irvine
(UCI) Machine Learning Repository (Lichman, 2013). The data set consists
of hourly counts of bike rentals in Washington, D.C. recorded by the Capital
Bike Sharing (CBS) system from January 1, 2011 to December 31, 2012, with
additional information on corresponding users, such as membership (casual
vs. registered), and on corresponding days, such as season, temperature, and
etc. More detailed descriptions on the data set are provided in Fanaee-T and
Gama (2014).

The CBS system is an automated bike sharing system, where users can
rent bikes from (and return them to) any bike docks located across Wash-
ington, D.C. on an hourly basis. One of main challenges associated with the
system is to understand and forecast a daily demand of bike rentals in a sup-
ply chain. In most cases, such demand analysis involves studying a quantile
of the response instead of its average; for example, a supplier would probably
be more interested in covering 90% of a demand than only an average de-
mand. Here we use the proposed method to study the total number of bikes
rented by casual users on Saturday (Y ), using average of hourly ‘feeling’ tem-
peratures on Saturday (X1) and the hourly counts of bike rentals by casual
users on the previous day (X2(t) for hour of a day t = 1, 2, . . . , 24). In this
analysis short term weather-related forecasts are assumed to be accurate.

There are total of n = 104 Saturdays during the period that the data were
collected, with about four to five weekly measurements per each month. Raw
responses of total counts of Saturday bike rentals, {Yi : i = 1, 2, . . . , 104},
suggest strong seasonal and year effects; see Figure S4. To remove these
effects prior to the analysis, we fit a linear model to the log-transformed
response, log(Y +1), using three dummy variables for season and one dummy
variable for year and obtain residuals shown in Figure S5. The resulting
residuals are then used as our response variable in the subsequent analysis
procedure; henceforth, with abuse of notation, denote the resulting residuals
by Y . Alternatively, we also consider fitting a generalized linear model with
a Poisson distribution to the original responses. However, as two approaches
give a similar conclusion in our analysis, we exclude the results obtained
using the second approach.

While the data set includes hourly ‘feeling’ temperatures on Saturday, we
use their average as one of the predictors because a forecast for the average
daily temperature is expected to be less variable than that for the hourly
temperatures. Specifically we consider the centered average daily ‘feeling’
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temperature of Saturday as our scalar covariate in the analysis. Whereas
hourly counts of bike rentals by casual users on Fridays are considered in
the analysis as noisy functional observations with mild missingness (about
0.35% of the data is missing). Prior to the analysis we pre-smooth the ob-
served functional predictor and center it; by following an approach taken by
Goldsmith et al. (2011) and Ivanescu et al. (2015), pre-smoothing is done us-
ing the principal analysis by conditional expectation (PACE) method (Yao
et al., 2005) with percentage of variance explained (PVE) equal to 0.99.
With abuse of notation, we denote the resulting, pre-processed scalar and
functional covariates for the ith Saturday with X1,i and X2,i(t), respectively;
see Figures S6 - S8.

In the following we first consider three different quantile models:

(M1) a model with a scalar covariate X1 only

(M2) a model with a functional covariate X2(t) only

(M3) a model with both covariates X1 and X2(t)

When applicable, we also compare the prediction accuracy of our proposed
method with other available methods that are closely related to ours, namely
LQR and CM. We quantify prediction accuracy using leave-one-out cross val-
idation (LOO-CV) with the loss function typically used in a quantile regres-
sion: ρτ (q) = (1−τ)

∑
yi<q

(yi−q)+τ
∑

yi≥q(yi−q). Specifically we define out-

of-sample prediction error for given τ as OUT-PEτ = n−1
∑n

i=1 ρτ

(
Q̂

[−i]
Y |X(τ)

)
,

where Q̂
[−i]
Y |X(τ) is the predicted τth quantile obtained using the ith training

set; we prepare the ith training set by leaving the ith observations out and
then pre-processing the rest as described earlier in this section. Covariates
in the testing sets are also appropriately pre-processed. For example, con-
sider the ith testing set; the scalar covariate, X1,i, is centered by subtracting
the average of X1,i’s in the ith training set, whereas the noisy functional
covariate, X2,i(t), is smoothed and is centered using the mean and principal
component (PC) estimates obtained using X2,i(t)’s in the ith training set.

In terms of prediction accuracy we compare the proposed method (Joint
QR) with Pointwise QR for all of the three models (M1) - (M3) considered.
Additionally LQR and CM are considered for the models (M1) and (M2),
respectively. OUT-PEτ is obtained for τ = 0.1, 0.2, . . . , 0.9 and the results
are summarized in Figure S2. The results are consistent with the simula-
tion results given in Sections 4 and S1. As shown in Figure S2, Pointwise
QR and Joint QR have very similar prediction accuracy for all three models
(M1)-(M3). When considering only a functional covariate, prediction accu-
racy of the CM method also lies in the same range as Pointwise QR and
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Joint QR; this is consistent with the simulation results given in Section S1.2.
When considering a scalar covariate only, the LQR estimation method has
substantially higher OUT-PEτ than Pointwise QR and Joint QR for all τ ’s.
It implies that the relationship between quantiles of the total number of bike
rentals of Saturday and average daily ‘feeling’ temperature on Saturday may
not be linear. In summary for models (M1) and (M2), the propose method
provides as reliable prediction as other existing methods and there is no
obvious estimation method that outperforms the others.

However the existing methods are not applicable for model (M3), when
there is both scalar and functional covariates X1 and X2(t). One of advan-
tages of the proposed methods (Joint and Pointwise QR) is that now we can
compare among models (M1) - (M3) and investigate which covariates have
more effects on the conditional distribution of the response, and consequently
on the quantiles. For example, based on OUT-PEτ ’s for Joint QR for (M1)-
(M3) shown in Figure S9 we can see that average daily ‘feeling’ temperature
on Saturday (X1) provides more information on the total number of bike
rental demands on Saturday (Y ) than hourly counts of bike rentals on Friday
(X2(t)) does for all quantile levels considered. It seems that incorporating a
functional covariate X2(t) in addition to a scalar covariate, X1, does not have
any effect on prediction accuracy for low quantile levels (τ < 0.5). However,
a model that incorporates both covariates, X1 and X2(t), has slightly better
prediction accuracy than a model with only scalar covariate, X1, for higher
quantile levels (τ > 0.5).

As we are interested in studying demand of bike rentals, predicting quan-
tiles at high quantile levels are particularly of interest in this analysis. Thus
based on prediction accuracy of different models and estimation methods for
τ > 0.5, we choose a model that incorporates covariates of both types (X1

and X2(t)): E [I(Y < y)|X1, X2(t)] = β0 +βX1(y)X1 +
∫
X2(t)βX2(t, y)dt and

use the proposed method for estimation. The estimated coefficients, β̂X1(y)

and β̂X2(t, y), are given in Figure S10. As in the analysis of the sow data
in Section 5, we investigate the relationship between covariates and quan-
tiles of the response (i.e. bike rental demands) for different quantile levels
by studying predicted quantiles. While fixing X2(t) equal to the pointwise
average of hourly Friday bike rentals, we predict quantiles of total demands
of Saturday’s bike rentals for fine grids of average feeling temperatures (X1);

again τ = 0.1, 0.2, . . . , 0.9 are considered. The predicted quantiles, Q̂Y |X(τ),
are given in Figure S3.

First, it is clear from the predicted quantiles curves that the relationship
between average feeling temperature and quantile of Y is positive and non-
linear for all τ ’s we consider. This is probably why prediction accuracy of
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Figure S2: Out-of-sample prediction error, ρτ

(
Q̂Y |X(τ)

)
for three models

(M1) - (M3) and four different methods (Joint QR, Pointwise QR, CM, LQR)
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LQR ; scalar only (M1)
CM ; functional only (M2)

LQR is noticeably inferior to the proposed approach when only scalar covari-
ate (X1) in earlier comparison. Secondly, gaps between curves are wider for
higher τ ’s imply that the density function of total bike rental demands on
Saturday is right skewed; while there is implication of right-skewness across
all values of average feeling temperature, we notice particularly large right-
skewness around −3◦C average feeling temperature and a steep increase in
90% quantiles between −5◦C to 0◦C. Specifically, the predicted 90% quan-
tiles, Q̂Y |X(0.9), for −5◦C and 0◦C average Saturday feeling temperatures
are about −0.5 and 0.38 respectively; the result suggest that, with increase
in average Saturday feeling temperature from −5◦C to 0◦C, we expect 90%
quantile of Saturday bike rentals demands to increase by more than twice
(from 168 to 407) for winter of 2012.

12



Figure S3: Predicted quantiles against average Saturday feeling temperatures
for X2(t) equal to pointwise average of hourly Friday bike rentals

S2.1 Additional Figures for the Bike Sharing Data Anal-
ysis

Figure S4: Total counts of bike rentals on Saturday, Yi
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Figure S5: Pre-processed response; transformed responses, log(1 + Y ) (top)
and transformed responses without season and year effects (bottom)

Figure S6: Average feeling temperatures on Saturday
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Figure S7: Spaghetti plots of hourly number of bike rentals on Friday; ob-
served (top) and smoothed (bottomed)
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Figure S8: Lasagna plots of hourly number of bike rentals on Friday; observed
(top) and smoothed (bottomed)
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Figure S9: Out-of-sample prediction error, ρτ

(
Q̂Y |X(τ)

)
, when the proposed

estimation method (Joint QR) is used
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Figure S10: Estimated coefficients, β̂X1(y) and β̂X2(y, t)

17



References

Bondell, H., Reich, B., and Wang, H. (2010). Noncrossing quantile regression
curve estimation. Biometrika, 97(4):825–838.

Fanaee-T, H. and Gama, J. (2014). Event labeling combining ensemble de-
tectors and background knowledge. Progress in Artificial Intelligence, 2(2-
3):113–127.

Goldsmith, J., Bobb, J., Crainiceanu, C. M., Caffo, B., and Reich, D. (2011).
Penalized functional regression. Journal of Computational and Graphical
Statistics, 20(4):830–851.

Ivanescu, A. E., Staicu, A.-M., Scheipl, F., and Greven, S. (2015). Penalized
function-on-function regression. Computational Statistics, 30(2):539–568.

Lichman, M. (2013). UCI machine learning repository.

Ng, P. and Maechler, M. (2007). A fast and efficient implementation of
qualitatively constrained quantile smoothing splines. Statistical Modelling,
7(4):315–328.

Reich, B., Bondell, H., and Wang, H. (2010). Flexible bayesian quantile
regression for independent and clustered data. Biostatistics, 11(2):337–
352.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional data analysis for
sparse longitudinal data. Journal of the American Statistical Association,
100(470):577–590.

18


	Additional simulation results 
	Simulation study for scalar covariate only case
	Simulation study for functional covariate only case
	Simulation results for the case of having a scalar covariate and a densely observed functional covariate

	Bike sharing data application
	Additional Figures for the Bike Sharing Data Analysis


