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We derive Bayes estimators of reliability and the parameters of a two- parameter geometric distribution under the general entropy
loss, minimum expected loss and linex loss, functions for a noninformative as well as beta prior from multiply Type II censored
data. We have studied the robustness of the estimators using simulation and we observed that the Bayes estimators of reliability
and the parameters of a two-parameter geometric distribution under all the above loss functions appear to be robust with respect
to the correct choice of the hyperparameters a(b) and a wrong choice of the prior parameters b(a) of the beta prior.

1. Introduction

In life testing experiments, a lot of work has been done
under the continuous lifetime models. Sometimes it is
neither possible nor convenient to measure the life length
of an item continuously until its failure. Also failure time
data is sometimes discrete either through the grouping of
continuous data due to imprecise measurement or because
time itself is discrete. In such circumstances one measures the
life of a device on a discrete scale and considers the number
of successful cycles, trials, or operations before failure.
Therefore, the number of successful trials before failure is
more pertinent than the time of continuous period. The one-
parameter geometric distribution has an important position
in discrete lifetime models. The geometric distribution can
be used as a discrete failure to investigate the ability of
electronic tubes to withstand successive voltage overloads
and performance of electric switches, which are repeatedly
turned on and off. Many authors like Yaqub and Khan
[1], Patel and Gajjar [2], N. W. Patel and M. N. Patel [3]
have contributed to the methodology and estimation of the
parameter of the geometric distribution.

Here we assume that the lifetime of certain items has a
two-parameter geometric distribution with probability mass

function (pmf), cumulative distribution function (cdf), and
reliability, respectively, as

p(x) = P(X = x) = pqx−M , FX(x) = 1− qx−M+1,

RX(x) = qx−M+1; x =M,M + 1,M + 2, . . . ,∞;

M ∈ N = {1, 2, 3, . . .}, 0 < p < 1, q = 1− p.

(1)

Here p, and M are unknown parameters.
This model is employed in situations where it is believed

that death or failure cannot occur before certain cycles M,
where M is the warranty time or threshold parameter and
M + (q/p) is the expected life of the item. One should be
cautious when the model includes a threshold parameter M,
since the data usually does not provide enough information
about M and the inclusion of M could cause rather special
statistical problems. If the threshold parameter is known,
then there is no difficulty. But if it is unknown then it must be
estimated. The models with threshold parameter are difficult
to fit with maximum likelihood because for such models
likelihood may be unbounded and so maximum likelihood
does not work.

In life testing experiments, the experimenter may not
always be in a position to observe the lifetimes of all the items
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Table 1: Generated observations from geometric distributions.

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi — — — 3 3 3 3 3 3 3 3 3 3 4 4

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xi 4 4 4 — — — 6 6 6 6 6 6 — — —

Table 2: The values of bayes estimators of M, p, and R(t0) at t0 = 6.

Prior Loss function Shape parameter ̂M p̂ ̂R(t0)

Informative

MELF — 2 0.3629 0.1184

GELF −3 5 0.3868 0.1730

GELF −2 5 0.3829 0.1643

SELF −1 5 0.3790 0.1555

GELF 1 3 0.3711 0.1370

GELF 2 3 0.3669 0.1274

GELF 3 2 0.3628 0.1175

LLF −3 7 0.3835 0.1590

LLF −2 7 0.3820 0.1581

LLF −1 6 0.3806 0.1568

LLF 1 3 0.3776 0.1541

LLF 2 2 0.3761 0.1531

LLF 3 2 0.3747 0.1530

Diffuse

MELF — 2 0.3760 0.1028

GELF −3 5 0.4020 0.1613

GELF −2 5 0.3979 0.1520

SELF −1 5 0.3937 0.1425

GELF 1 3 0.3850 0.1226

GELF 2 3 0.3805 0.1122

GELF 3 2 0.3759 0.1016

LLF −3 7 0.3987 0.1461

LLF −2 7 0.3970 0.1451

LLF −1 6 0.3954 0.1439

LLF 1 3 0.3920 0.1411

LLF 2 2 0.3904 0.1401

LLF 3 2 0.3887 0.1397

Jeffreys’

MELF — 2 0.3723 0.1043

GELF −3 5 0.3992 0.1650

GELF −2 5 0.3950 0.1554

SELF −1 5 0.3906 0.1455

GELF 1 3 0.3816 0.1249

GELF 2 3 0.3769 0.1141

GELF 3 2 0.3722 0.1031

LLF −3 7 0.4014 0.1440

LLF −2 7 0.3996 0.1429

LLF −1 6 0.3979 0.1417

LLF 1 3 0.3946 0.1389

LLF 2 2 0.3929 0.1379

LLF 3 2 0.3912 0.1374

put on test. This may be because of time limitations and/or
other restrictions on data collection. In this situations, Type
I or Type II censoring schemes are used. Another way to

get censored data is to censor first r, middle t and largest
s observations thus only available ordered observations
are xr+1, xr+2, . . . , xr+k and xr+k+t+1, xr+k+t+2, . . . , xN−S. The
scheme is known as the multiply Type II censoring scheme.
This censoring scheme is useful in follow-up studies in
epidemiology, reliability and endocrinology. Multiply Type
II censoring has been considered by many authors like
Balakrishnan [4], Fei and Kong [5], Kong and Fei [6] for
continuous lifetime models.

In this paper, we have obtained Bayes estimators of
parameters M, p, and reliability R of the life model defined
in (1) when the data available are of the multiply Type
II censored. Here we have considered three types of loss
functions, namely, general entropy loss function (GELF),
minimum expected loss function (MELF), and linex loss
function (LLF). A comparison has been made using Bayes
risk among the Bayes estimators. Using simulation study
robustness of Bayes estimators has been studied.

2. Likelihood: Prior, Posterior, and Marginal

For discrete failure mode, the likelihood function under the
multiply Type II censoring scheme described in previous
section can be written as

L(θ | x) = N !
r!t!s!

[FX(xr)]r[FX(xr+k+t)− FX(xr+k)]t

× [1− FX(xN−S)]S
r+k
∐

i=r+1

p(xi)
N−S
∐

i=r+k+t+1

p(xi).

(2)

Using (1) and (2), the likelihood becomes proportional to

L(θ | x)αpn
(

1− qV1

)r(

1− qV2

)t
qV3 , (3)

where

n = N − r − t − s, V1 = xr −M + 1,

V2 = xr+k+t − xr+k,

V3 =
r+k
∑

i=r+1

xi +
N−S
∑

i=r+k+t+1

xi + txr+k + sxN−S + t + s−M(N − r).

(4)

Here we consider beta prior density for p of the form

g1
(

p
)

α
(

1− p
)a−1

pb−1, 0 < p < 1. (5)

If the prior information about p is given in terms of the
prior mean μ and variances σ2, respectively, then the prior
parameters can be obtained by solving

μ = b

a + b
, σ2 = ab

(a + b)2(a + b + 1)
. (6)
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Table 3: The Bayes estimators and their risks under SELF and MELF.

a b
SELF MELF

̂MS p̂S ̂RS(t0) ̂MM p̂M ̂RM(t0)

1 5 0.3629 0.1720 2 0.3459 0.1325

2 5 0.3711 0.1634 2 0.3545 0.1252

7 3 5 0.3791 0.1555 2 0.3629 0.1184

5 5 0.3945 0.1409 2 0.3791 0.1061

7 5 0.4091 0.1279 2 0.3945 0.0954

9 5 0.4231 0.1165 2 0.4091 0.0860

1 5 0.4104 0.1277 2 0.3937 0.0909

3 5 0.3994 0.1370 2 0.3829 0.0999

5 5 0.3890 0.1462 2 0.3726 0.1092

7 3 5 0.3791 0.1555 2 0.3629 0.1184

8 5 0.3743 0.1600 2 0.3582 0.1231

9 5 0.3697 0.1646 2 0.3537 0.1277

For a = b = 1, the above marginal prior reduces to diffuse
(or natural) prior given by g1(p) = 1, 0 < p < 1.

Also the Jeffreys’ invariant noninformative prior

g1
(

p
)

α
(

1− p
)−1

p−1/2, 0 < p < 1, (7)

can be deduced from the above marginal prior with parame-
ters a = 0 and b = 0.5.

As in the stand by Broemeling and Tsurumi [7], we
suppose the marginal prior distribution of M to be discrete
uniform, that is,

g2(M) = 1
L

, M = 1, 2, 3, . . . ,L (L ∈ N). (8)

Using (5) and (8), the joint prior distribution of p and M is

g
(

p,M
)

α
(

1− p
)a−1

pb−1, 0 < p < 1. (9)

The joint posterior density of p and M say π(p,M | x), using

(3) and (9), is

π
(

p,M | x) = pn+b−1
(

1− qV1
)r(

1− qV2
)t
qV3+a−1

Ψ(V1,V2,V3,M,n, a, b)
,

0 < p < 1,

(10)

where

Ψ(V1,V2,V3,M,n, a, b) =
r
∑

j1=0

t
∑

j2=0

L
∑

M=1

(−1) j1+ j2

⎛

⎝

r

j1

⎞

⎠

⎛

⎝

t

j2

⎞

⎠

× B
(

n + b,V1 j1 + V2 j2 + V3 + a
)

,
(11)

where B(m,n) = ∫ 1
0 xm−1(1− x)n−1dx.

Marginal posterior distributions of M and p are obtained
as

π(M | x) =
∑r

j1=0

∑t
j2=0 (−1) j1+ j2

(

r
j1

)(

t
j2

)

B
(

n + b,V1 j1 + V2 j2 + V3 + a
)

Ψ(V1,V2,V3,M,n, a, b)
, M = 1, 2, 3, . . . ,L,

π
(

p | x) =
∑r

j1=0

∑t
j2=0

∑L
M=1 (−1) j1+ j2

(

r
j1

)(

t
j2

)

pn+b−1qV1 j1+V2 j2+V3+a−1

Ψ(V1,V2,V3,M,n, a, b)
, 0 < p < 1.

(12)

3. Bayes Estimator

The Bayesian concepts and methods are found useful
in Econometrics, Sociology, Engineering, Life Testing and
Reliability estimation, Quality Control and others. The
Bayes method avoids the possibility of an essentially non-
negative parameter having a negative estimator which could
occur when estimation is done using sampling framework.
For the given sample and the corresponding likelihood

function, Bayes estimator will be unique and there will
be no confusion about the choice of the estimator. In
estimating certain numbers of parameters in the presence of
nuisance parameters (threshold parameters), there would be
considerable difficulties in non-Bayesian case whereas in the
Bayesian setup inference can be made very simple [8].

The Bayesian method usually requires less sample data
to achieve the same quality of inference as compared to
the method based on sampling theory. This is an especially
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Table 4: The Bayes estimators and their risks under GELF.

a b
α1 = −2 α1 = 1 α1 = 2

̂MG p̂G ̂RG(t0) ̂MG p̂G ̂RG(t0) ̂MG p̂G ̂RG(t0)

1 5 0.3670 0.1813 3 0.3545 0.1524 3 0.3501 0.1421

2 5 0.3751 0.1726 3 0.3629 0.1444 3 0.3587 0.1345

7 3 5 0.3830 0.1643 3 0.3711 0.1370 3 0.3670 0.1274

5 5 0.3982 0.1493 3 0.3869 0.1235 3 0.3830 0.1145

7 5 0.4126 0.1359 3 0.4019 0.1116 3 0.3982 0.1032

9 5 0.4265 0.1239 3 0.4162 0.1011 3 0.4126 0.0932

1 5 0.4144 0.1367 3 0.4022 0.1092 3 0.3979 0.0996

3 5 0.4033 0.1459 3 0.3912 0.1184 3 0.3870 0.1088

5 5 0.3929 0.1552 3 0.3809 0.1277 3 0.3767 0.1181

7 3 5 0.3830 0.1643 3 0.3711 0.1370 3 0.3670 0.1274

8 5 0.3782 0.1689 3 0.3664 0.1416 3 0.3623 0.1320

9 5 0.3735 0.1734 3 0.3618 0.1462 3 0.3577 0.1367

Table 5: The Bayes estimators and their risks under LLF.

a b
α2 = −1 α2 = −2

̂ML p̂L ̂RL(t0) ̂ML p̂L ̂RL(t0)

1 6 0.3644 0.1736 7 0.3659 0.1749

2 6 0.3726 0.1650 7 0.3741 0.1662

7 3 6 0.3806 0.1568 7 0.3820 0.1581

5 6 0.3959 0.1421 7 0.3974 0.1431

7 6 0.4106 0.1290 7 0.4120 0.1299

9 6 0.4245 0.1174 7 0.4260 0.1182

1 6 0.4120 0.1289 7 0.4137 0.1300

3 6 0.4009 0.1382 7 0.4026 0.1394

5 6 0.3905 0.1476 7 0.3920 0.1487

7 3 6 0.3806 0.1568 7 0.3820 0.1581

8 6 0.3758 0.1615 7 0.3772 0.1627

9 6 0.3711 0.1661 7 0.3726 0.1673

Table 6: The Bayes estimators and their risks under LLF.

a b
α2 = 1 α2 = 2

̂ML p̂L ̂RL(t0) ̂ML p̂L ̂RL(t0)

1 3 0.3614 0.1704 2 0.3599 0.1694

2 3 0.3696 0.1620 2 0.3681 0.1610

7 3 3 0.3776 0.1541 2 0.3761 0.1531

5 3 0.3930 0.1397 2 0.3916 0.1388

7 3 0.4072 0.1269 2 0.4062 0.1261

9 3 0.4217 0.1156 2 0.4203 0.1148

1 3 0.4088 0.1266 2 0.4071 0.1256

3 3 0.3978 0.1358 2 0.3962 0.1348

5 3 0.3874 0.1450 2 0.3859 0.1440

7 3 3 0.3776 0.1541 2 0.3761 0.1531

8 3 0.3729 0.1587 2 0.3714 0.1577

9 3 0.3683 0.1632 2 0.3669 0.1623
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Table 7: The Bayes estimators and their risks under SELF and MELF.∗

a b
SELF MELF

̂MS p̂S ̂RS(t0) ̂MM p̂M ̂RM(t0)

1
4 0.2961 0.2572 2 0.2810 0.2224

0.07469 0.01105 0.03011 0.11111 0.02336 0.07138

2
4 0.3034 0.2471 2 0.2887 0.2129

0.07411 0.01030 0.03207 0.11111 0.02140 0.07604

7 3
4 0.3106 0.2375 2 0.2961 0.2040

0.08128 0.01015 0.03591 0.11111 0.02073 0.08321

5
4 0.3244 0.2196 2 0.3106 0.1875

0.07528 0.01135 0.04931 0.11111 0.02290 0.10346

7
4 0.3377 0.2035 2 0.3244 0.1727

0.08362 0.01411 0.07050 0.11111 0.02929 0.12949

9
4 0.3505 0.1888 2 0.3377 0.1594

0.07996 0.01799 0.09969 0.11111 0.03938 0.15932

1
4 0.3316 0.2125 2 0.3167 0.1781

0.08098 0.01433 0.07098 0.11111 0.03006 0.13048

3
4 0.3243 0.2209 2 0.3095 0.1868

0.07981 0.01246 0.05556 0.11111 0.02558 0.11215

5
4 0.3173 0.2293 2 0.3027 0.1954

0.08245 0.01108 0.04414 0.11111 0.02253 0.09640

7 3
4 0.3106 0.2375 2 0.2961 0.2040

0.08128 0.01015 0.03591 0.11111 0.02073 0.08321

8
4 0.3073 0.2416 2 0.2929 0.2083

0.08347 0.00985 0.03279 0.11111 0.02024 0.07757

9
4 0.03042 0.2456 2 0.2898 0.2125

0.08259 0.00967 0.03026 0.11111 0.02000 0.07256
∗

In each cell the first value gives Bayes estimate and second its risk.

important consideration in those areas of application where
sample data may be either expensive or difficult to obtain, for
example as in reliability. Over the years, reliability estimation
methods based on sampling theory have been found to be
extremely useful for a wide variety of problems. However,
there are many instances in which the classical methods have
been found to be less satisfactory. As reliability testing is
directly related to cost and time, the use of sampling theory
would be extremely limited. Sampling theory methods are
especially inappropriate for reliability analysis based on
scarce data.

Most of the engineering designs are evolutionary rather
than revolutionary processes in which current equipment
is modified to suit new requirements. In such instances it
would appear that the known facts regarding reliability of
the current hardware could possibly be utilized in an attempt
to improve the quality of the reliability estimates of the new
design. The sampling theory methods are inappropriate for
incorporating such related information.

In reliability estimation, the Bayesian analysis has been
found useful due to two facts: one is the increased quality
of the inferences; provided the prior information accurately
reflects the true variation in the parameter(s); the other is the
reduction in testing requirements (like test time, sample size,
etc.) that often occur in Bayesian reliability demonstration

test programs. The Bayesian method produces believable
results which go a long way in convincing the engineer of the
utility of Bayesian methods.

4. Bayes Estimators under Minimum
Expected Loss Function (MELF)

In Bayesian analysis, widely used loss function is a quadratic
loss function given by

L1(θ,d) = w(d − θ)2. (13)

If w = 1, it reduces to squared error loss function (SELF) and
for w = θ−2, it becomes

L1(θ,d) = θ−2(d − θ)2 (14)

known as MELF introduced by Rao Tummala and Sathe [9]
in their study.

The Bayes estimators of θ under MELF are given by

̂θM = E
(

θ−1
)

E(θ−2)
. (15)

For the threshold parameter M, which is a positive inte-
ger quantity M = 1, 2, 3, . . . ,L (L ∈ N), the loss

function is defined as L1(M, ̂MM) = (M − ̂MM)
2
, where



6 International Journal of Quality, Statistics, and Reliability

Table 8: The bayes estimators and their risks under GELF.∗

a b
α1 = −2 α1 = 1 α1 = 2

̂MG p̂G ̂RG(t0) ̂MG p̂G ̂RG(t0) ̂MG p̂G ̂RG(t0)

1
5 0.2998 0.2654 3 0.2887 0.2400 3 0.2848 0.2310

0.38165 0.04352 0.11424 0.000 0.01142 0.03371 0.000 0.04648 0.14289

2
5 0.3070 0.2551 3 0.2961 0.2302 3 0.2924 0.2214

0.38165 0.04071 0.12074 0.000 0.01054 0.03619 0.000 0.04272 0.15354

7 3
5 0.3141 0.2454 3 0.3034 0.2209 3 0.2998 0.2123

0.38165 0.04029 0.13513 0.000 0.01031 0.04029 0.000 0.04154 0.17015

5
5 0.3278 0.2273 3 0.3176 0.2037 3 0.3141 0.1955

0.38165 0.04513 0.18951 0.000 0.01147 0.05291 0.000 0.04608 0.21865

7
5 0.3409 0.2108 3 0.3312 0.1882 3 0.3278 0.1803

0.38165 0.05565 0.28154 0.000 0.01445 0.07071 0.000 0.05858 0.28386

9
5 0.3536 0.1959 3 0.3442 0.1742 3 0.3410 0.1666

0.38165 0.07015 0.41591 0.000 0.01895 0.09296 0.000 0.07779 0.36221

1
5 0.3352 0.2207 3 0.3242 0.1954 3 0.3204 0.1865

0.38165 0.05614 0.28525 0.000 0.01477 0.07138 0.000 0.05999 0.28830

3
5 0.3279 0.2290 3 0.3170 0.2040 3 0.3132 0.1952

0.38165 0.04933 0.21658 0.000 0.01271 0.05856 0.000 0.05130 0.24075

5
5 0.3208 0.2373 3 0.3101 0.2125 3 0.3063 0.2038

0.38165 0.04397 0.16824 0.000 0.01124 0.04829 0.000 0.04524 0.20161

7 3
5 0.3141 0.2454 3 0.3034 0.2209 3 0.2998 0.2123

0.38165 0.04029 0.13513 0.000 0.01031 0.04029 0.000 0.04154 0.17015

8
5 0.3108 0.2494 3 0.3002 0.2251 3 0.2966 0.2165

0.38165 0.03907 0.12310 0.000 0.01003 0.03706 0.000 0.04049 0.15711

9
5 0.3076 0.2534 3 0.2971 0.2293 3 0.2935 0.2207

0.38165 0.03825 0.11361 0.000 0.00987 0.03429 0.000 0.03994 0.14575
∗

In each cell the first value gives Bayes estimate and second its risk.

̂MM = 1, 2, 3, . . . ,L (L ∈ N) is the smallest integer greater
than the analytical solution.

The Bayes estimators of M, p and R(t0) under MELF
are

̂MM =
∑r

j1=0

∑t
j2=0

∑L
M=1 M

−1(−1) j1+ j2
(

r
j1

)(

t
j2

)

B
(

n + b,V1 j1 + V2 j2 + V3 + a
)

∑r
j1=0

∑t
j2=0

∑L
M=1 M−2(−1) j1+ j2

(

r
j1

)(

t
j2

)

B
(

n + b,V1 j1 + V2 j2 + V3 + a
)

,

p̂M = Ψ(V1,V2,V3,M,n, a, b− 1)
Ψ(V1,V2,V3,M,n, a, b− 2)

,

̂RM(t0) = Ψ(V1,V2,V3,M,n, a− (t0 −M + 1), b)
Ψ(V1,V2,V3,M,n, a− 2(t0 −M + 1), b)

.

(16)

5. Bayes Estimators under General Entropy
Loss Function (GELF)

Sometimes, the use of symmetric loss function, namely,
SELF, was found to be inappropriate in a situation where
an overestimation of the reliability function is usually much
more serious than an underestimation. Here we consider
the asymmetric loss function, namely, GELF, proposed by
Calabria and Pulcini [10], is

L2(θ,d) =
(

d

θ

)α1

− α1 ln
(

d

θ

)

− 1, α1 /= 0, (17)

whereas for the threshold parameter M, the loss function is
defined as

L2

(

M, ̂MG

)

=
(

̂MG

M

)α1

− α1 ln

(

̂MG

M

)

− 1, (18)

where α1 /= 0, M = 1, 2, 3, . . . ,L, and ̂MG = 1, 2, 3, . . . ,L (L ∈
N). Here ̂MG is the smallest integer greater than the analytical
solution. The sign of the shape parameter α1 reflects the
deviation of the asymmetry, α1 > 0 if overestimation is more
serious than underestimation, and vice versa. The magnitude
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Table 9: The bayes estimators and their risks under LLF.∗

a b
α2 = −1 α2 = −2

̂ML p̂L ̂RL(t0) ̂ML p̂L ̂RL(t0)

1
6 0.2972 0.2591 7 0.2983 0.2598

2.0498 0.00094 0.00185 7.0003 0.00377 0.00717

2
6 0.3045 0.2489 7 0.3056 0.2497

2.0498 0.00096 0.00167 7.0003 0.00387 0.00653

7 3
6 0.3117 0.2392 7 0.3128 0.2400

2.0498 0.00104 0.00016 7.0003 0.00417 0.00628

5
6 0.3255 0.2212 7 0.3267 0.2221

2.0498 0.00132 0.00170 7.0003 0.00530 0.00675

7
6 0.3389 0.2049 7 0.3400 0.2058

2.0498 0.00177 0.00206 7.0003 0.00706 0.00828

9
6 0.3516 0.1901 7 0.3527 0.1909

2.0498 0.00236 0.00262 7.0003 0.00935 0.01061

1
6 0.3329 0.2142 7 0.3341 0.2151

2.0498 0.00177 0.00210 7.0003 0.00705 0.00842

3
6 0.3255 0.2226 7 0.3267 0.2235

2.0498 0.00146 0.00186 7.0003 0.00584 0.00741

5
6 0.3184 0.2309 7 0.3196 0.2318

2.0498 0.00122 0.00170 7.0003 0.00489 0.00670

7 3
6 0.3117 0.2392 7 0.3128 0.2400

2.0498 0.00104 0.00016 7.0003 0.00417 0.00628

8
6 0.3084 0.2432 7 0.3095 0.2441

2.0498 0.00097 0.00157 7.0003 0.00389 0.00617

9
6 0.3052 0.2473 7 0.3063 0.2481

2.0498 0.00091 0.00156 7.0003 0.00366 0.00612
∗

In each cell the first value gives Bayes estimate and second its risk.

of α1 reflects the degree of asymmetry. The Bayes estimator
of θ under the GELF given in (17) is given by

̂θG = [Eπ(θ−α1 )]−1/α1 . (19)

The Bayes estimators of M, p, and R(t0) under GELF are,
respectively,

̂MG =
⎡

⎣

∑r
j1=0

∑t
j2=0

∑L
M=1 M

−α1 (−1) j1+ j2
(

r
j1

)(

t
j2

)

B(n + b,V1 j1 + V2 j2 + V3 + a)

Ψ(V1,V2,V3,M,n, a, b)

⎤

⎦

−1/α1

, (20)

p̂G =
[

Ψ(V1,V2,V3,M,n, a, b− α1)
Ψ(V1,V2,V3,M,n, a, b)

]−1/α1

, (21)

̂RG(t0) =
[

Ψ(V1,V2,V3,M,n, a− α1(t0 −M + 1), b)
Ψ(V1,V2,V3,M,n, a, b)

]−1/α1

.

(22)

The Bayes estimators of M, p, and R(t0) under SELF can be
obtained by substituting α1 = −1 in the results (20) to (22),
respectively.

6. Bayes Estimators under Linex Loss
Function (LLF)

Another asymmetric loss function given by Varian [11],
known as LLF, is defined as

L3(θ,d) = exp[α2(d − θ)]− α2(d − θ)− 1 (α2 /= o),

(23)
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whereas for the threshold parameter M, the loss function is
defined as

L3

(

M, ̂ML

)

= exp
[

α2

(

̂ML −M
)]

− α2

(

̂ML −M
)

− 1 (α2 /= 0),
(24)

where M = 1, 2, 3, . . . ,L and ̂MG = 1, 2, 3, . . . ,L (L ∈ N).
Here ̂ML is the smallest integer greater than the analytical
solution. The sign and magnitude of the shape parameter α2

reflect the deviation and degree of asymmetry, respectively.
The Bayes estimator of θ under LLF given in (23) is given by

̂θL = −1
α2

lnEπ
[

exp(−α2θ)
]

. (25)

Using marginal posterior distributions (12) in (25) and
formula 3.478 (3), page 364 of Gradshteyn and Ryzhik [12],
the Bayes estimators of M, p, and R(t0), respectively, can be
obtained as

̂ML = −1
α2

ln

⎡
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∑r
j1=0

∑t
j2=0

∑L
M=1 e

−α2M(−1) j1+ j2
(

r
j1

)(

t
j2

)

B
(

n + b,V1 j1 + V2 j2 + V3 + a
)

Ψ(V1,V2,V3,M,n, a, b)

⎤

⎦,

p̂L = −1
α2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ln
r
∑
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t
∑

j2=0

L
∑

M=1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩
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⎛

⎝

t
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⎠B
(

n + b,V1 j1 + V2 j2 + V3 + a
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1F1
(

n + b;V1 j1 + V2 j2 + V3 + a + b + n;−α2
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⎫
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⎪

⎬
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,

̂RL(t0) = −1
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,

(26)

where pFq(α1,α2, . . . ,αp;β1,β2, . . . ,βq; z) is called a general-
ized hypergeometric series which is defined as follows (see
Gradshteyn and Ryzhik (see [12, page 1000, formula 9.14
(1)]:

pFq

(

α1,α2, . . . ,αp;β1,β2, . . . ,βq; z
)

=
∞
∑

k = 0

(α1)k(α2)k · · ·
(

αp

)

k
(

β1
)

k

(

β2
)

k · · ·
(

βq
)

k

(z)k

k!
,

(27)

where (γi)k = (γi)(γi + 1)(γi + 2) · · · (γi + k − 1).
The underconsidered multiply Type II censoring scheme

reduces to right Type II, left Type II, and doubly Type II
censoring schemes when r = 0 and t = 0, t = 0, and s = 0
and t = 0, respectively.

7. Numerical Example

We have generated 30 random observations withM = 3, L =
7, p = 0.3 from the distribution defined in (1) having

reliability R(t0) = 0.2401 at t0 = 6. Suppose that information
about first 3, middle 3, and largest 3 observations are
censored, then the only available observations are given in
Table 1.

In Table 1, N = 30, r = t = s = 3, k = 15. Prior
parameters a and b themselves were random observations
from beta distribution with means μ = 0.3 and variance
σ2 = 0.0233, resulting in a = 7 and b = 3. We have
calculated Bayes estimators of M, p and R(t0) at t0 = 6 under
MELF, SELF, GELF, and LLF. For a comparative purpose,
point estimates under the diffuse prior (a = 1, b = 1) and
Jeffreys’ prior (a = 0, b = 0.5) have also been calculated.

The results are shown in Table 2.

From Table 2, we observed that the Bayes estimator of
M moves away from the true value of M under |α1| ≥ 2
for GELF and |α2| ≥ 2 for LLF, but the Bayes estimators
of the other parameters are not affected, so much, under
these choices. So, in subsequent Sections 8 and 9, we have
considered the values of α1 only −2, −1, 1, and 2 whereas for
α2 only −2, −1, 1, and 2 for the comparison.



International Journal of Quality, Statistics, and Reliability 9

Table 10: The bayes estimators and their risks under LLF.

a b
α2 = 1 α2 = 2

̂ML p̂L ̂RL(t0) ̂ML p̂L ̂RL(t0)

1
3 0.2950 0.2555 2 0.2940 0.2572

0.000 0.00093 0.00186 1.1353 0.00369 0.00845

2
3 0.3023 0.2455 2 0.3013 0.2467

0.000 0.00095 0.00168 1.1353 0.00378 0.00742

7 3
3 0.3095 0.2359 2 0.3084 0.2368

0.000 0.00102 0.00160 1.1353 0.00407 0.00690

5
3 0.3233 0.2182 2 0.3223 0.2168

0.000 0.00131 0.00169 1.1353 0.00524 0.00698

7
3 0.3367 0.2022 2 0.3356 0.2022

0.000 0.00178 0.00204 1.1353 0.00711 0.00817

9
3 0.3494 0.1876 2 0.3483 0.1874

0.000 0.00239 0.00256 1.1353 0.00963 0.01014

1
3 0.3304 0.2110 2 0.3292 0.2112

0.000 0.00177 0.00208 1.1353 0.00711 0.00850

3
3 0.3231 0.2194 2 0.3220 0.2198

0.000 0.00145 0.00185 1.1353 0.00580 0.00769

5
3 0.3162 0.2277 2 0.3150 0.2283

0.000 0.00121 0.00169 1.1353 0.00480 0.00716

7 3
3 0.3095 0.2359 2 0.3084 0.2368

0.000 0.00102 0.00160 1.1353 0.00407 0.00690

8
3 0.3063 0.2400 2 0.3052 0.2410

0.000 0.00096 0.00158 1.1353 0.00380 0.00688

9
3 0.3031 0.2440 2 0.2950 0.2553

0.000 0.00090 0.00157 1.1353 0.00347 0.00780
∗

In each cell the first value gives Bayes estimate and second its risk.

8. Sensitivity of Bayes Estimators

In this section, we have studied the sensitivity of the Bayes
estimators with respect to changes in the parameters of the
beta prior. We have computed Bayes estimators of M, p and
R(t0) at t0 = 6 in case of MELF, SELF, GELF, and LLF
considering different sets of values of (a, b) for the data given
in Table 1. The results are shown in Tables 3–6.

Following Calabria and Pulcini [13], we also assume the
prior information to be correct if the true value of p is close
to prior mean μ and is assumed to be wrong if p is far from μ.

We observed that the Bayes estimators of M, p, and R(t0)
under MELF and SELF appear to be robust with respect to
the correct choice of prior parameters a (b) and a wrong
choice of the prior parameters b(a). This can be seen from
Table 3. These conclusions are also valid in case of GELF and
LLF, as observed in Tables 4, 5, and 6.

9. Simulation Results

In this section, we have generated 500 different random
samples with M = 3, N = 30, L = 7, t0 = 6, p = 0.3,
r = t = s = 3, k = 15 from the distribution defined in
(1) to justify the results obtained in Section 8 and obtained
the Bayes estimators and their risk = Ed[L(d, θ)]under SELF,

GELF, LLF and MELF for different choices of (a, b). The
results are summarized in Tables 7, 8, 9, and 10.

10. Conclusions

From Table 7, we observed that the Bayes estimators of the
parameter perform well (minimum Bayes risk) under MELF
compared to SELF for any choice of hyper parameters a and
b.

From Tables 8–10, we find that under both the asymmet-
ric loss functions, namely, GELF and LLF, Bayes risks become
smaller when parameters (α1 and α2) tend to zero, that is,
Bayes estimators perform well under these asymmetric loss
functions.

From Tables 7–10 following Calabria and Pulcini [13], we
also observed that the Bayes estimators of the parameters are
robust with respect to the correct choice of prior parameters
a(b) and a wrong choice of the prior parameters b(a) which
we have concluded in Section 8.
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