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Abstract. 
Theoretical entities are aspects of the world that cannot be sensed directly but that, nevertheless, are causally relevant. Scientific inquiry has uncovered many such entities, such as black holes and dark matter. We claim that theoretical entities, or hidden variables, are important for the development of concepts within the lifetime of an individual and present a novel neural network architecture that solves three problems related to theoretical entities: (1) discovering that they exist, (2) determining their number, and (3) computing their values. Experiments show the utility of the proposed approach using discrete time
dynamical systems, in which some of the state variables are hidden, and sensor data obtained from the camera of a mobile robot, in which the sizes and locations of objects in the visual field are observed but their sizes and locations (distances) in the three-dimensional world are not. Two different regularization terms are explored that improve the network's ability to approximate the values of hidden variables, and the performance and capabilities of the network are compared to that of Hidden
Markov Models.


1. Introduction
Humans, like robots, have limited sensory access to the physical world. Despite this fact, thousands of years of scientific inquiry have uncovered much hidden structure governing the behavior and appearance of the world, along the way proposing a vast array of entities that we cannot see, hear, taste, smell, or touch. Just like Gregor Mendel who discovered genes in the middle of the 19th century, you and I cannot see, hear, taste, smell, or touch genes, but we can observe their effects on the world in the color of our friends’ eyes or the scent of a rose. That is, genes may be unobservable, but they have causal power that manifests itself in ways that can be sensed directly. For Mendel, one such manifestation was the color of the peas of the pea plants that he bred with one another. Whether a plant would have yellow or green peas could not be predicted accurately based solely on observable properties of the parent plants. The desire to explain this apparent nondeterminism led Mendel to posit the existence of a causally efficacious entity of the world that could not be sensed directly, that is, genes. Such entities are called theoretical entities.
No one has ever seen a black hole, yet most physicists believe that they exist because black holes accurately explain a wide array of observational data. We propose to develop algorithms that will allow robots to discover the existence of theoretical entities in much the same way and for many of the same reasons that human scientists do. First, theoretical entities will be posited to explain nondeterminism in action outcomes. For example, a mobile robot in a home environment might discover that sometimes when it is turned on the power required to move forward is 2.5 watts and at other times only 1.5 watts are required, but there is no way to anticipate this prior to actually moving. The robot will posit the existence of a theoretical entity—some aspect of the world that causes this difference but cannot be directly sensed. In this case, we know that the posited entity corresponds to whether the robot starts out on carpet or on a hardwood floor. Second, only those entities that account for multiple nondeterministic observations will be retained. Does knowledge of the fact that the power required to move is 2.5 watts (i.e., the robot is on carpet) make it possible to predict anything else more accurately, such as whether the cleaning function selected by the robot’s owner will be sweep or vacuum? If so, the robot can decide for itself which cleaning function is appropriate simply by moving and measuring power consumption. The goal for the robot, as for the human scientist, is to acquire knowledge that makes it possible to better understand, predict, and control the world around it.
Another example of a domain where finding hidden variables is of great importance is the control of aluminum smelting pots. The United States produces more than 22 billion pounds of aluminum each year. Optimal control of the smelting process is important as suboptimal control not only reduces the yield but also increases energy consumption. But optimal control is very difficult because the smelting process occurs at extremely high temperatures and involves such caustic chemicals that very few sensors are able to survive. This is a case where performance is affected by insufficient sensing. Discovering variables that affect performance, yet are unobservable, can enable better understanding, prediction, and control of the smelting process.
A domain that has motivated much of this work is the discovery of hidden variables where the environment is partially observable with respect to robots. A robot can build a model of the environment to predict future values of state variables based on current and past observations. If hidden variables are present in the environment, then this predictive model will be inaccurate. When the sensor data are insufficient to predict outcomes due to theoretical entities, hidden variables need to be introduced in the model. The main goal of this modeling process is to acquire knowledge that makes it possible to better understand and predict the environment. There are three important tasks to be addressed, each of which is central to this work. The first is to discover the existence of hidden variables; the second is to find the number of hidden variables; and the third is to determine their values.
Predictive models can be developed based on current and past observations in the presence of hidden variables. Hidden variables arise in a wide variety of contexts as an important consideration for explaining observed data. However, most of the previous work in hidden variable (or latent variable or theoretical entity) models have imposed either a simple model or a strong structure on the observed dependencies, be it intervariable dependencies or temporal dependencies. We developed new methodologies that allow for a more data-driven approach to the discovery of hidden variables. This work describes a novel method that has been developed for the discovery of hidden variables using an augmented neural network called the LO-net (Latent and Original network architecture). Almost all of the current hidden variable literature aims to build models that can efficiently learn even when hidden variables are present. Their aim is not to discover the hidden variables and quantify them but to maintain or improve predictive performance even when hidden variables might be present.
We compare the LO-net to regular neural networks and also Hidden Markov Models (HMMs). The LO-net always does better than the regular neural network model. The prediction performance using HMMs is comparable to that of the LO-net, but the LO-net provides information about the hidden variables. In HMMs, the hidden states are not informative, hence even if the performance of prediction is good, they do not provide any information about the hidden variables. This work provides a new perspective in finding hidden variables. If hidden variables can be discovered and quantified, then we can have a much better understanding of the overall structure of the system.This can then enable us to find answers to many questions that otherwise could not be accounted for.
Section 2 describes some of the work done on finding hidden variables in different contexts. Section 3 gives a description of the method that we have introduced to find hidden variables, the LO-net. Section 4 lists the different experimental domains that have been used and provides a brief explanation for each of the domains. It describes data obtained from a physical robot data, which is one of our main data sets, and many different dynamical systems. Section 5 presents experimental results using the LO-net on the different experimental domains. Section 6 introduces an extension of the LO-net by adding regularization terms in the network. Section 7 presents experimental results using the regularized LO-net. Section 8 shows the results of comparison of the LO-net architecture with Hidden Markov Models (HMMs). Finally, Section 9 describes the contribution of this work and suggests future directions toward improving these methods.
2. Background
A robot may not be able to observe all of the causally relevant variables in its environment. In the real world, a robot is expected to learn something useful given whatever sensors and effectors are available. Even if the robot’s task and the environment change, the hardware typically stays the same. Most commonly, inadequate foresight or sensor technology leads to a gap between what the robot can sense and what it would sense in an ideal world. That is, a robot’s environment is almost always partially observable. This is particularly problematic in the context of learning because most machine learning algorithms never explicitly consider that there is more to the world than what is provided in their input. For example, decision tree induction algorithms split the data with tests on observed features [1]. Constructive induction algorithms go one step further and build new features out of observed features by combining them in various ways [2]. Kernel methods implicitly project the input data into high-dimensional spaces, some with infinitely many dimensions, but each dimension in these spaces corresponds to a composite feature computed from the inputs [3]. Fahlmans and Lebiere cascade correlation architecture dynamically adds hidden nodes to a neural network, but these nodes do not correspond to hidden features of the environment, they provide a more expressive internal representation based on the inputs [4]. 
There are many algorithms for learning and reasoning in the face of hidden data, and almost all of them are based on the Expectation Maximization (EM) algorithm [5]. EM is used for parameter estimation when the data required to solve the estimation problem are of the form 
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 is not. EM uses a parameterized model to compute the expected value of the hidden data and then uses the expected value to reestimate model parameters. Therefore, EM requires a priori knowledge about the existence, quantity, and role (in the estimation problem) of hidden data. For example, [6] builds a Bayesian network in which hidden variables are manually added to the network as parents of all observable variables.
Similarly, work on planning under uncertainty using, for example, the Partially Observable Markov Decision Process (POMDP) framework assumes knowledge of the number of underlying hidden states [7]. The agent whose world is characterized by the POMDP does not have access to the state that it actually occupies. Rather, the agent maintains a belief state, or probability distribution over states that it might be occupying. This belief state is Markovian, meaning that no additional information from the past would help increase the expected reward of the agent. Again, the goal of this work is not to discover the existence of a hidden state, but to behave optimally given knowledge of the existence of hidden state. More recently, [8] showed that dynamical systems can be represented using Predictive State Representations (PSRs), or multistep, action-conditional predictions of future observations, and that every POMDP has an equivalent PSR. PSRs can look at the past and summarize what happened, and they can also look to the future and predict what will happen. A PSR is a vector of tests [9] which stores the predictions for a selected set of action-observation sequences. Unobserved or hidden states can be fully captured by a finite history-based representation called a looping prediction suffix tree (PST) [10]. They focus on cases of POMDPs where the underlying transition and observation functions are deterministic. Again, the goal of this work is not to discover the existence of hidden state, but to behave optimally given knowledge of the existence of hidden state.
Work on hidden states in the context of reinforcement learning has been going on for some time [11]. McCallum et al. proposed a method called instance-based state identification, where raw data from previous experiences is stored directly. The simplest such instance-based technique is the nearest sequence memory, which is based on k-nearest neighbors. This technique, though simple, improves learning performance. The main disadvantage of this technique is that, though it learns good policies quickly, it does not always learn the optimal policy. There is a relatively new method known as the deep belief nets (DBNs) which are probabilistic generative models that are composed of multiple layers of stochastic, latent variables with no intralayer connections [12]. Gaussian Process Dynamical Models (GPDMs) have also been built to generalize well from small datasets [13].
Latent variables are important in the psychology and social science research. [14] described three definitions of latent variables: local independence, expected value true score, and nondeterministic functions of observed variables and introduced a new notion of latent variables called “sample generalizations.” Latent variables can be defined nonformally or formally. Nonformal latent variables can be considered as hypothetical variables or unobserved variables as a data reduction device. Hypothetical variables are variables considered imaginary, that is, not existing in the real world. The third nonformal definition of latent variables defines them as a data reduction device that can be used to describe a number of variables by a small number of factors.
There is a tremendous body of work on time series analysis, much of it in the neural networks literature [15], with a variety of models aimed at predictive tasks and pattern discovery. That body of literature is too vast to review in any meaningful way here. Suffice it to say that very little of it is devoted to the explicit representation of the number and values of hidden variables in multivariate streaming time series.
In most of the previous work, the aim was to design better models that work with hidden variables. Our aim is to actually discover the hidden variables and quantify them. We describe a method that is developed for the discovery of hidden variables using augmented neural networks.
3. Method
Our neural network architecture is called the LO-net which is, at its heart, a multilayer feed-forward network. Conceptually, it consists of a single O-net (original net) and zero or more L-nets (latent nets). The network and its training are structured in such a way that the single output of each L-net approximates the value of one hidden (latent) variable. The outputs of the L-nets then serve as inputs to the O-net along with the values of the observable variables. The O-net is trained to produce as output the values of the observable variables on the next time step.
Somewhat more formally, let the state of some system at time 
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One standard way of dealing with hidden state in situations like this is to rely on a history of observable values. A theorem by Takens [16] says that for discrete-time deterministic dynamical systems of 
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Figure 1 shows the structure of an LO-net with one latent network for which 
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Figure 1: A generic LO-net with one latent network.


Now that the LO-net as a whole is in a good part of the weight space and can predict 
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 as its input. The L-net is unchanged, and its output is still an input to the O-net. This gives the O-net less information about the hidden variables and causes it to rely more on the output of the L-net. Because the L-net has full access to the history of observables, it is forced to provide information about that history to the O-net through its one output. The most informative and parsimonious way to do that is for the L-net to compute the current value of the hidden variable (assuming 
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 and produce that as output. Note that there is an initial drop in accuracy, but it quickly rebounds as the L-net learns to provide a more informative output. Training continues until the error of the O-net stabilizes, the inputs to the O-net are changed one more time so that they consist of 
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, placing even more pressure on the L-net to provide information about the value of the hidden variable, and training continues until the error of the O-net stabilizes.
To estimate the number of hidden variables, we run this procedure with a sequence of LO-nets starting with no latent networks. If adding an additional latent network significantly improves prediction accuracy, we have evidence for a hidden variable. We keep adding latent networks until doing so has no significant impact on the accuracy of the O-net at predicting 
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. Empirically, we have strong evidence that the number of latent networks in the previous LO-net corresponds to the number of hidden variables and their outputs are approximations (up to a scaling factor) of the values of the hidden variables. Note that in contrast to a standard neural network (and most other kinds of models one might use in this case), the LO-net makes explicit information about hidden variables.
Note that this method makes no assumptions about the numbers of observable or unobservable variables and will work with histories of arbitrary size. Figures 2(a) and 2(b) show the one- and two-LO-net architectures, respectively. Note that in the latter the outputs of both L-nets act as inputs to the O-net and their values are presented in parallel.







(a) An LO-net with one L-net







(b) An LO-net with two L-nets
Figure 2: Example LO-net architectures.


The L-net and the O-net have the same network structure. The neural network architecture has been implemented in Matlab, using Matlab’s Neural Network Toolbox. The Neural Network Toolbox provides a flexible network object type that allows many kinds of networks to be created and then used with other functions in the toolbox. This flexibility is possible because the networks have an object-oriented representation, allowing a user to define various architectures and assign different algorithms to those architectures. To create a custom network, we start with an empty network (obtained with the network function) and set its properties as desired. The network object consists of many properties that can be set to specify the structure and behavior of the network. 
In our implementation, the network has each of its layers’ weights and biases initialized with the Nguyen-Widrow layer initialization method [17]. The Nguyen-Widrow method generates initial weight and bias values for each layer so that the active regions of the layer’s neurons are distributed approximately evenly over the input space. The values contain a degree of randomness, so they are not the same each time this function is called. The training function used to update the weight and bias values in the network is gradient descent with momentum and adaptive learning rate backpropagation. The parameter lr indicates the learning rate, similar to simple gradient descent. The parameter mc is the momentum constant. mc is set between 0 (no momentum) and values close to 1 (high momentum). A momentum constant of 1 results in a network that is completely insensitive to the local gradient and therefore does not learn properly. The learning rate (lr) chosen is 0.01. The momentum constant used was 0.9. For each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor lr-inc (1.05). If performance increases by more than the factor max-perf-inc (1.04), the learning rate is adjusted by the factor lr-dec (0.7) and the change that increased the performance is not made. A transfer function is used to calculate the 
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 is the previous change to the weight or bias. Gradient descent with momentum depends on two training parameters. The transfer function used to calculate the hidden layer’s output is the tan-sigmoid transfer function and the output layers use a linear transfer function. The hyperbolic tangent sigmoid transfer function takes the net inputs and returns a value squashed into 
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4. Test Domains
This section describes the various domains from which data were drawn to test the LO-net approach. In all cases, the goal is to determine the number of hidden variables and to approximate, as accurately as possible, their values. In practice, the trained LO-net would be used in two qualitatively different ways. The first is by humans to better understand the domain. Knowing, for example, that there are three hidden variables that affect the price of a financial security or the blood pressure of an intensive care unit patient, and being able to see how they change over time would be extremely valuable for domain experts. The second way in which the results would be used is by machines for making more accurate predictions. The output of the O-net is more accurate by virtue of having the L-nets, and the values produced by the L-nets can be used as inputs to other models constructed for other purposes in the underlying domain.
4.1. Robot Data
We take a robot mounted camera taking pictures of 2D objects. Consider the coordinate frame shown in Figure 3, center of projection at the origin and an image plane orthogonal to the 
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Figure 3: Perspective projection of the centroid of an object in 3D space onto the robot’s image plane.
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 The robot’s perception of the size of the target thus changes with the distance from the target, though the target itself is of constant size. The quantities 
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Real-world data was provided for this project by a surveyor SRV-1 Blackfin robot. The robot consists of a camera mounted on a pair of tank style treads that can be controlled remotely through a user interface on a laptop. The robot was placed in a fairly uniform environment (in this case, the UMBC Department of Computer Science lobby) and driven by a human around several targets. The targets are brightly colored boxes, easily distinguishable from the surrounding environment by standard image processing software. The surveyor would approach a target from different angles, keeping it in view the entire time for some trials, and occasionally facing in different directions for others. Each frame transmitted from the surveyor’s camera was recorded for later processing. The computation done on these frames consisted of counting the number of pixels that were present in a certain color range (giving us the surveyor’s perception of the size of the box), and the centroid of the pixels of that color. Before each experiment, the color range was calibrated to avoid the surveyor mistaking other things for its target.
4.2. Lorenz Attractor
The Lorenz attractor [18] is a dynamical system which has three variables 
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. It is defined by a system of three equations that give the first derivative of each of the three variables
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 We can test our methods using the Lorenz attractor, or any other dynamical system, by generating data for 
	
		
			

				𝑥
			

		
	
, 
	
		
			

				𝑦
			

		
	
, and 
	
		
			

				𝑧
			

		
	
 over time and then hiding one or two of the variables.
4.3. Character Trajectories Dataset
We also used a practical data set from the UCI machine learning repository [19], the character trajectories data set. The data consists of 2858 character samples. We randomly picked one character sample from the data set to run the experiments. The data stored for each character was the 
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 coordinates and the pen tip force during writing a character and were captured at 200 Hz. The pen tip force will depend on both the 
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 coordinates.
4.4. A Dynamical System with Four Variables
Next we generated a dynamical system with four variables, 
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. This dynamical system is defined by the following set of equations:
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. The initial values of the variables are 
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. Figures 4(a) and 4(b) plot the values of 
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(a) Variable 
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(b) Variables 
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Figure 4: Sample values from the four-variable dynamical system.


Note that the variable 
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 depends on all four variables 
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, and 
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. This dynamical system will be referred henceforth as the four-variable dynamical system (FVDS). 
5. Experimental Results Using the Unregularized LO-Net
5.1. Simulated Robot Data
The first set of experiments are performed with simulated robot data. A robot collects data by moving towards a box with a constant velocity. It records the 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 coordinates of the centroid of the box and the size of the box in its vision. The network is trained for 400 epochs since around that time the mean squared error (MSE) converges to a very low value. The dataset is divided into training and test datasets. The MSE is calculated over the test dataset. Figure 8(a) plots the MSE for predicting the next value of 
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 is predicted. The dash-dot line and the dotted lines show the performance with one and two latent networks, respectively. Initially for the first 100 epochs, the current and the previous two 
	
		
			

				𝑥
			

		
	
 values (
	
		
			

				𝑥
			

			

				𝑡
			

			
				,
				𝑥
			

			
				𝑡
				−
				1
			

			
				,
				𝑥
			

			
				𝑡
				−
				2
			

		
	
) are input to the original and latent networks. The output of the latent networks are also given as an input to the original network as shown in Figure 1. In the next 100 epochs, one history value 
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 is dropped from the original network and training is continued. In the last 200 epochs, the original network is fed with only the current value of 
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) and the output from the latent network. All the figures plot the MSE versus the number of epochs. The plots show the MSE of the last 150 epochs where the input to the original net is the current value of the variable and the output from the latent net. The 
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