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Abstract. 
In permanent magnet synchronous motor (PMSM) traditional vector control system, PI regulator is used in the speed loop, but it has some defects. An improved method of PMSM vector control is proposed in the paper. The active-disturbance rejection control (ADRC) speed regulator is designed with the input signals of given speed and real speed and the output of given stator current q coordinate component. Then, in order to optimize ADRC controller, the least squares support vector machines (LSSVM) optimal regression model is derived and successfully embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The load disturbance effect on the system is reduced to a large extent. The system anti-interference ability is further improved. Finally, the current sensor CSNE151-100 is selected to sample PMSM stator currents. The voltage sensor JLBV1 is used to sample the stator voltage. The rotor speed of PMSM is measured by mechanical speed sensor, the type of which is BENTLY 330500. Experimental platform is constructed to verify the effectiveness of the proposed method.
 

1. Introduction
With the advantages of high power density and high efficiency, permanent magnet synchronous motor (PMSM) is widely used in a variety of high performance electric drive fields. PMSM control method has been widely concerned and researched [1–17].
PMSM is nonlinear and is strongly coupling. In order to achieve high performance operation, the uncertainties and nonlinear impact on the system must be overcome. In traditional vector control system, PI regulator is adopted in the speed loop. PI controller structure is simple; nevertheless, its parameter robustness is poor and there are contradictions between speed and overshoot. PI control is difficult to meet the requirements of high performance operation.
Based on the preliminary research results, an improved method of PMSM control is proposed in the paper. The active-disturbance rejection controller (ADRC) is designed for speed loop. Then, in order to optimize ADRC controller, the least squares support vector machines (LSSVM) optimal regression model is derived and successfully embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The load disturbances effect on the system is reduced to a large extent. The system anti-interference ability is further improved. Finally, different sensors sampling current, voltage, and rotor speed are used to finish experimental validation.
2. PMSM Mathematical Model
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The electromagnetic torque equation of PMSM is shown as follows:
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For surface PMSM, 
	
		
			

				𝐿
			

			

				𝑑
			

			
				=
				𝐿
			

			

				𝑞
			

		
	
. Equation (3) can be derived from (2):
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The motion equation of PMSM is as follows: 
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3. Design of ADRC Speed Regulator
3.1. ADRC Theory
ADRC controller is composed of tracking-differentiator (TD) and extended state observer (ESO) and nonlinear state error feedback control rate (NLSEF) [18, 19].
First-order system is assumed as follows:
								
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				•
			

			
				𝑥
				=
				𝑓
				(
				𝑥
				,
				𝑡
				)
				+
				𝑏
				𝑢
				,
				𝑦
				=
				𝑥
				.
			

		
	

							The TD model of the first-order system (5) is as follows:
								
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				•
			

			

				𝑣
			

			

				1
			

			
				
				𝑣
				=
				−
				f
				s
				t
			

			

				1
			

			
				
				,
				−
				𝑣
				,
				𝑟
				,
				𝑇
			

		
	

							where 
	
		
			
				f
				s
				t
				(
				𝑣
			

			

				1
			

			
				,
				𝑟
				,
				𝑇
				)
			

		
	
 is defined as
								
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑑
				=
				𝑟
				𝑇
				;
				𝑑
			

			

				0
			

			
				𝑦
				=
				𝑑
				𝑇
				;
			

			
				T
				D
			

			
				=
				𝑣
			

			

				1
			

			
				;
				𝑎
			

			

				0
			

			
				=
				
				𝑑
			

			

				2
			

			
				|
				|
				𝑦
				+
				8
				𝑟
			

			
				T
				D
			

			
				|
				|
				
			

			
				1
				/
				2
			

			
				;
				⎧
				⎪
				⎨
				⎪
				⎩
				
				𝑎
				𝑎
				=
			

			

				0
			

			
				
				−
				𝑑
			

			
				
			
			
				2
				,
				|
				|
				𝑦
			

			
				T
				D
			

			
				|
				|
				>
				𝑑
			

			

				0
			

			
				,
				𝑦
			

			
				T
				D
			

			
				
			
			
				𝑇
				,
				|
				|
				𝑦
			

			
				T
				D
			

			
				|
				|
				≤
				𝑑
			

			

				0
			

			
				,
				
				f
				s
				t
				=
				−
				𝑟
				𝑎
			

			
				
			
			
				𝑑
				,
				|
				𝑎
				|
				≤
				𝑑
				,
				𝑟
				s
				g
				n
				(
				𝑎
				)
				,
				|
				𝑎
				|
				>
				𝑑
				,
			

		
	

							where 
	
		
			

				𝑣
			

			

				1
			

		
	
 is the tracking signal of 
	
		
			

				𝑣
			

		
	
; 
	
		
			

				𝑟
			

		
	
 is the tracking speed factor; and 
	
		
			

				𝑇
			

		
	
 is the sample period.
The ESO model of first-order system (3) is as follows:
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NLSEF model of system (3) is as follows:
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3.2. Speed Regulator Design
Equation (11) is obtained from (3) and (4):
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Based on ADRC theory, 
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Speed regulator based on ADRC with 
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 as the output signal is designed according to (6), (8), and (10). The diagram of speed regulator based on ADRC is shown in Figure 1.
[image: 816421.fig.001]Figure 1: Diagram of the speed regulator based on ADRC.


4. Design of LSSVM-ADRC Controller
4.1. LSSVM Theory
Assume training sample data 
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LSSVM regression algorithm is to calculate the optimum as follows:
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The corresponding Lagrange function is shown as follows:
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The partial derivation operation of 
	
		
			

				𝐿
			

		
	
 is made, and then make it to zero. Equation (17) is got:
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Thus, the optimization problem is transformed into solving the following linear equation:
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Therefore, the LSSVM approximation function is as follows:
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4.2. LSSVM-ADRC Controller
In Figure 1, sample the output variables 
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 of ESO. Train LSSVM model to get the optimal regression model with 
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 as the input signal and 
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 as the output signal. Then, embed the LSSVM optimal regression model into the ADRC controller. The diagram of LSSVM-ADRC is shown in Figure 2.
[image: 816421.fig.002]Figure 2: Diagram of LSSVM-ADRC controller.


In Figure 2, the LSSVM model can estimate part of system disturbance 
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 estimated by ESO compose the total disturbance. Therefore, it can be seen that the ADRC disturbances estimation burden has reduced and system response has been improved. Furthermore, the system anti-interference ability is enhanced. The mathematical model of LSSVM-ADRC controller is obtained:
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5. Simulation and Experiment Results
5.1. Simulation Result
Based on Matlab/Simulink, the system simulation model is constructed to carry out simulation. LSSVM training is programed using m file in Matlab. The main parameters of PMSM are as follows: 
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.(1)The given speed is 700 r/min; at 0.3 s load torque changes from 0 to 3 N·m. The speed waves are shown in Figures 3 and 4 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively.
[image: 816421.fig.003a](a) Speed wave
[image: 816421.fig.003b](b) Part of speed wave when load changes front and back
Figure 3: Simulation waves under ADRC method when given speed is 700 r/min and load changes from 0 to 3 N·m at 0.3 s.


[image: 816421.fig.004a](a) Speed wave
[image: 816421.fig.004b](b) Part of speed wave when load changes front and back
Figure 4: Simulation waves under LSSVM-ADRC method when given speed is 700 r/min and load changes from 0 to 3 N·m at 0.3 s.


From Figure 3, it can be seen that, based on ADRC speed controller, rotor speed instantly drops to 660 r/min when load suddenly changes, and then it reaches a steady state once again after 0.1 seconds. Contrastively, under LSSVM-ADRC speed controller in Figure 4, rotor speed drops to 695 r/min when load suddenly changes, and only after 0.06 s it reaches steady state again. The reason is LSSVM has reduced the burden on the ESO observation. The observation accuracy and system response speed have been improved under LSSVM-ADRC method.(2)The given speed is 1500 r/min; at 0.25 s load torque changes from 3 N·m to 6 N·m. The speed waves are shown in Figures 5 and 6 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively.
[image: 816421.fig.005a](a) Speed wave
[image: 816421.fig.005b](b) Part of speed wave when load changes front and back
Figure 5: Simulation waves under ADRC method when given speed is 1500 r/min and load changes from 3 N·m to 6 N·m at 0.25 s.


[image: 816421.fig.006a](a) Speed wave
[image: 816421.fig.006b](b) Part of speed wave when load changes front and back
Figure 6: Simulation waves under LSSVM-ADRC method when given speed is 1500 r/min and load changes from 3 N·m to 6 N·m at 0.25 s.


From Figure 5, it can be seen that, based on ADRC speed controller, when load suddenly changes rotor speed drops from 1500 r/min to 1470 r/min, and after that it reaches a steady state after 0.07 seconds. Contrastively, under LSSVM-ADRC speed controller in Figure 6, rotor speed drops from 1500 r/min to 1497 r/min when load suddenly changes, and only after 0.03 s it reaches a steady state again.
Combining the above simulation results under conditions of low speed and high speed, it can be concluded that, based on LSSVM-ADRC method, system responsiveness has been greatly improved; at the same time, system anti-interference ability has been improved to a large extent.
5.2. Experiment Result
To validate the performance of the proposed method, experimental study is conducted on a PMSM turbine. The motor parameters are the same as the simulation motor. The chip TI DSP TMS320F2812 is chosen as the control core. The AC-DC-AC main circuit structure is adopted. The rectifier module uses diode and inverter module uses MOSFET. The current sensor CSNE151-100 is selected to sample PMSM stator currents. The voltage sensor JLBV1 is used to sample the stator voltage. The rotor speed of PMSM is measured by mechanical speed sensor, the type of which is BENTLY 330500.
The given speed is 700 r/min and load torque changes from 0 to 3 N·m. The rotor speed waves are shown in Figures 7 and 8 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively.
[image: 816421.fig.007]Figure 7: Experiment speed wave under ADRC method when given speed is 700 r/min and load changes from 0 to 3 N·m.


[image: 816421.fig.008a](a) Speed wave
[image: 816421.fig.008b](b) Electromagnet torque wave
Figure 8: Experiment waves under LSSVM-ADRC method when given speed is 700 r/min and load changes from 0 to 3 N·m.


The given speed is 1500 r/min and load torque changes from 3 N·m to 6 N·m. The speed waves are shown in Figures 9 and 10 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively.
[image: 816421.fig.009]Figure 9: Experiment speed wave under ADRC method when given speed is 1500 r/min and load changes from 3 N·m to 6 N·m.


[image: 816421.fig.0010a](a) Speed wave
[image: 816421.fig.0010b](b) Electromagnet torque wave
Figure 10: Experiment waves under LSSVM-ADRC method when given speed is 1500 r/min and load changes from 3 N·m to 6 N·m.


From Figures 7–10, it can be seen that, based on LSSVM-ADRC method, system responsiveness has been greatly improved; at the same time, system anti-interference ability has been improved to a large extent. It is consistent with the simulation results.
6. Conclusion
An improved method of PMSM vector control is proposed in the paper. The ADRC speed regulator is designed. Then, LSSVM optimal regression model is derived and embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The system anti-interference ability is further improved. Finally, the current sensor, voltage sensor, and speed sensor are chosen to sample PMSM current, voltage, and speed. Experimental platform is constructed to verify the effectiveness of the proposed method.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
This paper is supported by the Fundamental Research Funds for the Central Universities (2014MS89) and (2014QN46).
References
	H. Zhu, X. Xiao, and Y.-D. Li, “Stator flux control scheme for permanent magnet synchronous motor torque predictive control,” Proceedings of the Chinese Society of Electrical Engineering, vol. 30, no. 21, pp. 86–90, 2010.
	J. Faiz and S. H. Mohseni-Zonoozi, “A novel technique for estimation and control of stator flux of a salient-pole PMSM in DTC method based on MTPF,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 262–271, 2003.
	M. Kazerooni, S. Hamidifar, and N. C. Kar, “Analytical modelling and parametric sensitivity analysis for the PMSM steady-state performance prediction,” IET Electric Power Applications, vol. 7, no. 7, pp. 586–596, 2013.
	F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding-mode control using TSKFNN-AMF,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5747–5762, 2013.
	S. H. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system,” IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 767–779, 2012.
	C. L. Xia, J. X. Zhao, Y. Yan, and T. N. Shi, “A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction,” IEEE Transaction on Industrial Electronics, vol. 61, no. 6, pp. 2700–2713, 2014.
	H. Liu and S. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1171–1183, 2012.
	Z. Wang, Y. Zheng, Z. Zou, and M. Cheng, “Position sensorless control of interleaved CSI fed PMSM drive with extended Kalman filter,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3688–3691, 2012.
	Y. Da, X. Shi, and M. Krishnamurthy, “A novel universal sensor concept for survivable PMSM drives,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5630–5638, 2013.
	B. Q. Li and H. Lin, “Direct control of current vector for surface-mounted permanent magnet synchronous motor,” Proceedings of the Chinese Society of Electrical Engineering, vol. 31, no. 1, pp. 288–294, 2011.
	Y. Xu and Y. Zhong, “A novel direct torque control strategy of permanent magnet synchronous motors based on duty ratio control,” Transactions of China Electrotechnical Society, vol. 24, no. 10, pp. 27–32, 2009.
	D. Sun, Y.-K. He, and Z.-Y. He, “Fault tolerant inverter based direct torque control for permanent magnet synchronous motor,” Journal of Zhejiang University (Engineering Science), vol. 41, no. 7, pp. 1101–1131, 2007.
	S. He, A. R. Qiu, and X. M. Yuan, “Direct torque control of permanent magnet synchronous motor with SVM,” Micromotors, vol. 41, pp. 6–8, 2008.
	L. Tang, L. Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 346–354, 2004.
	J. Xu, Y. Xu, and J. Feng, “Direct torque control of permanent magnet synchronous machines based on modified integrator,” Transactions of China Electrotechnical Society, vol. 19, no. 7, pp. 77–80, 2004.
	D. Sun and Y. K. He, “Space vector modulated based constant switching frequency direct control for permanent magnet synchronous motor,” Proceeding of the CSEE, vol. 25, pp. 112–116, 2005.
	Y. P. Liu, “Space vector modulated direct torque control for PMSM based on ADRC,” Electric Power Automation Equipment, vol. 31, no. 11, pp. 78–82, 2011.
	J. Q. Han, “From PID technique to active disturbance rejection control technique,” Control Engineering of China, vol. 9, pp. 13–18, 2002.
	J. Q. Han, Active Disturbance Rejection Control Technique, National Defense Industry Press, Beijing, China, 2008.
	C. Peng, G. Liu, and H. Sun, “Wind speed forecasting based on wavelet decomposition and differential evolution-support vector machine for wind farms,” Electric Power Automation Equipment, vol. 32, no. 1, pp. 9–13, 2012.
	Y. Zhang, Least Squares Support Vector Machines Inverse Control of Two-Motor Variable Frequency Speed-Regulation Systems, Jiang Su University, 2011.
	X. Shi, Z. Liu, M. Fu, and J. Wang, “Course control of air cushion vehicle based on SVM-ADRC,” Journal of Huazhong University of Science and Technology (Natural Science Edition), vol. 40, no. 5, pp. 59–63, 2012.
	Z. C. Wu, Q. D. Ouyang, and Z. W. Hu, “Polarimetric SAR image classification using watershed-transformation and support vector machine,” Geomatics and Information Science of Wuhan University, vol. 37, no. 1, pp. 7–10, 2012.


OEBPS/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  





OEBPS/pageMap.xml
 
                                 
                                



OEBPS/Fonts/xits-italic.otf


OEBPS/Fonts/xits-bolditalic.otf


OEBPS/Fonts/xits-regular.otf


OEBPS/Fonts/xits-math.otf


