Research Article

Research on an Improved Method for Permanent Magnet Synchronous Motor

Yingpei Liu,1 Tao Gao,2 and Guo Li3

1 School of Electrical and Electronic Engineering, North China Electric Power University, Baoding, Hebei 071003, China
2 Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China
3 School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Yingpei Liu; liuyingpei123@126.com

Received 20 June 2014; Revised 19 July 2014; Accepted 14 August 2014; Published 1 September 2014

Academic Editor: Tinggui Chen

Copyright © 2014 Yingpei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In permanent magnet synchronous motor (PMSM) traditional vector control system, PI regulator is used in the speed loop, but it has some defects. An improved method of PMSM vector control is proposed in the paper. The active-disturbance rejection control (ADRC) speed regulator is designed with the input signals of given speed and real speed and the output of given stator current q coordinate component. Then, inorder tooptimize ADRC controller, the least squares support vector machines (LSSVM) optimal regression model is derived and successfully embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The load disturbance effect on the system is reduced to a large extent. The system anti-interference ability is further improved. Finally, the current sensor CSNE151-100 is selected to sample PMSM stator currents. The voltage sensor JLBV1 is used to sample the stator voltage. The rotor speed of PMSM is measured by mechanical speed sensor, the type of which is BENTLY 330500. Experimental platform is constructed to verify the effectiveness of the proposed method.

1. Introduction

With the advantages of high power density and high efficiency, permanent magnet synchronous motor (PMSM) is widely used in a variety of high performance electric drive fields. PMSM control method has been widely concerned and researched [1–17].

PMSM is nonlinear and is strongly coupling. In order to achieve high performance operation, the uncertainties and nonlinear impact on the system must be overcome. In traditional vector control system, PI regulator is adopted in the speed loop. PI controller structure is simple; nevertheless, its parameter robustness is poor and there are contradictions between speed and overshoot. PI control is difficult to meet the requirements of high performance operation.

Based on the preliminary research results, an improved method of PMSM control is proposed in the paper. The active-disturbance rejection controller (ADRC) is designed for speed loop. Then, in order to optimize ADRC controller, the least squares support vector machines (LSSVM) optimal regression model is derived and successfully embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The load disturbance effect on the system is reduced to a large extent. The system anti-interference ability is further improved. Finally, different sensors sampling current, voltage, and rotor speed are used to finish experimental validation.

2. PMSM Mathematical Model

d-q coordinate is chosen. The voltage equation of PMSM is as follows:

$$
\begin{align*}
u_d &= R_s i_d + p i_d L_d - \omega_r L_q i_q, \\
u_q &= R_s i_q + p i_q L_d + \omega_r i_d + \omega_r \psi_r,
\end{align*}
$$

(1)

where u_d, u_q are stator voltage d, q coordinate components; i_d, i_q are stator current d, q coordinate components; R_s is stator resistance, L_d, L_q are stator inductance; ω_r is rotor speed; ψ_r is permanent magnet flux linkage; and p is differential operator.
The electromagnetic torque equation of PMSM is shown as follows:

\[T_e = N_p (\psi_r i_q + (L_d - L_q)i_d i_q) \] \hspace{1cm} (2)

For surface PMSM, \(L_d = L_q \). Equation (3) can be derived from (2):

\[T_e = N_p \psi_r i_q \] \hspace{1cm} (3)

The motion equation of PMSM is as follows:

\[J \frac{d}{dt} \left(\frac{\omega_r}{N_p} \right) + B \left(\frac{\omega_r}{N_p} \right) = T_e - T_L \] \hspace{1cm} (4)

where \(J \) is rotational inertia; \(B \) is friction coefficient; and \(T_L \) is the load.

3. Design of ADRC Speed Regulator

3.1. ADRC Theory. ADRC controller is composed of tracking-differentiator (TD) and extended state observer (ESO) and nonlinear state error feedback control rate (NLSEF) [18, 19].

First-order system is assumed as follows:

\[\dot{x} = f(x, t) + bu, \]
\[y = x. \] \hspace{1cm} (5)

The TD model of the first-order system (5) is as follows:

\[\dot{v}_1 = -f_{st}(v_1 - v, r, T), \] \hspace{1cm} (6)

where \(f_{st}(v_1, r, T) \) is defined as

\[d = rT; \quad d_0 = dT; \]
\[y_{TD} = v_1; \quad a_0 = (d^2 + 8r |y_{TD}|)^{1/2}; \]
\[a = \begin{cases} (a_0 - d), & |y_{TD}| > d_0, \\ \frac{2}{T} y_{TD}, & |y_{TD}| \leq d_0, \end{cases} \]
\[f_{st} = \begin{cases} \frac{r a}{d}, & |a| \leq d, \\ r \text{sgn}(a), & |a| > d, \end{cases} \]

where \(v_1 \) is the tracking signal of \(v; r \) is the tracking speed factor; and \(T \) is the sample period.

The ESO model of first-order system (3) is as follows:

\[e = z_1 - y, \]
\[\dot{z}_1 = z_2 - \beta_{01} \times \text{fal}(e, \alpha_1, \delta) + bu, \]
\[\dot{z}_2 = -\beta_{02} \times \text{fal}(e, \alpha_2, \delta), \] \hspace{1cm} (8)

where \(z_1 \) is the tracking signal of \(y; z_2 \) is the estimation value of disturbance; \(\alpha_1, \alpha_2 \) are nonlinear factors; \(\delta \) is filter factor; \(\beta_{01}, \beta_{02} \) are the parameters; and \(\text{fal}(e, \alpha, \delta) \) is nonlinear function:

\[\text{fal}(e, \alpha, \delta) = \begin{cases} |e|^{\alpha} \text{sgn}(e), & |e| > \delta, \\ 0, & |e| \leq \delta. \end{cases} \] \hspace{1cm} (9)

NLSEF model of system (3) is as follows:

\[e_1 = v_1 - z_1, \]
\[u_0 = \beta_1 \text{fal}(e_1, \alpha_1, \delta_1), \]
\[u = u_0 - \frac{z_2}{b}. \] \hspace{1cm} (10)

where \(\delta_1 \) is filter factor and \(\alpha_1 \) is nonlinear factor.

3.2. Speed Regulator Design. Equation (11) is obtained from (3) and (4):

\[\frac{d \omega_r}{dt} = \frac{N_p^2 \psi_r i_q}{J} - \frac{N_p T_L}{J} - \frac{B \omega_r}{J}. \] \hspace{1cm} (11)

Based on ADRC theory, \(T_L, B, \) and \(J \) are seen as disturbance velocity loop. The disturbance is denoted as \(w(t) \), \(w(t) = -(N_p T_L/J) - (B \omega_r/J) \). Equation (12) is got as follows:

\[\frac{d \omega_r}{dt} = \frac{N_p^2 \psi_r i_q}{J} + w(t). \] \hspace{1cm} (12)

The output of the speed loop is the given value of \(i_q \), which is \(i_q^* \). Then, (13) is got:

\[\frac{d \omega_r}{dt} = \frac{N_p^2 \psi_r i_q^*}{J} + w(t). \] \hspace{1cm} (13)

Speed regulator based on ADRC with \(\omega_r^* \) and \(\omega_r \) as the input signals and \(i_q^* \) as the output signal is designed according to (6), (8), and (10). The diagram of speed regulator based on ADRC is shown in Figure 1.

4. Design of LSSVM-ADRC Controller

4.1. LSSVM Theory. Assume training sample data \(\{(x_k, y_k) \mid k = 1, 2, \ldots, N\} \), while \(x_k \in \mathbb{R}^d \) is the input data and
\(y_k \in R \) is the output data. The goal of LSSVM is to construct a regression model as follows [20–23]:

\[
y(x) = w^T \varphi(x) + b,
\]

where \(w \in R^n \) is weight vector; \(b \in R \) is the offset; and \(\varphi(x) \) is the mapping function in kernel space.

LSSVM regression algorithm is to calculate the optimum as follows:

\[
\min J(w, \varepsilon) = \frac{1}{2} \| w \|^2 + \frac{1}{2} \sum_{k=1}^{N} \xi_k^2 \tag{15}
\]

s.t. \(y_k = w^T \varphi(x_k) + b + \varepsilon_k; \quad k = 1, 2, \ldots, N, \)

where \(J \) is the optimized objective function; \(\xi \in R \) is the regularization parameter; and \(\varepsilon_k \in R \) is the relaxation factor of insensitive loss function.

The corresponding Lagrange function is shown as follows:

\[
L = \frac{1}{2} \| w \|^2 + \frac{1}{2} \sum_{k=1}^{N} \xi_k^2 - \sum_{k=1}^{N} a_k (w^T \varphi(x_k) + b + \varepsilon_k - y_k), \tag{16}
\]

where \(a_k \in R \) is Lagrange factor.

The partial derivation operation of \(L \) is made, and then make it to zero. Equation (17) is got:

\[
w = \sum_{k=1}^{N} a_k \varphi(x_k),
\]

\[
a_k = \xi \varepsilon_k,
\]

\[
\sum_{k=1}^{N} a_k = 0,
\]

\[
w^T \varphi(x_k) + b + \varepsilon_k - y_k = 0.
\]

Thus, the optimization problem is transformed into solving the following linear equation:

\[
\begin{bmatrix}
0 & 1^T \\
1 & \Omega + \xi^{-1} 1 \\
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
y \\
\end{bmatrix}, \tag{18}
\]

4.2. LSSVM-ADRC Controller. In Figure 1, sample the output variables \(z_1, z_2 \) of ESO. Train LSSVM model to get the optimal regression model with \(z_1 \) as the input signal and \(z_2 \) as the output signal. Then, embed the LSSVM optimal regression
5. Simulation and Experiment Results

5.1. Simulation Result. Based on Matlab/Simulink, the system simulation model is constructed to carry out simulation. LSSVM training is programed using m file in Matlab. The main parameters of PMSM are as follows: $R_s = 13 \Omega$, $\psi_r = 0.7$ Wb, and $N_p = 2$.

(1) The given speed is 700 r/min; at 0.3 s load torque changes from 0 to 3 N·m. The speed waves are shown in Figures 3 and 4 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively. From Figure 3, it can be seen that, based on ADRC speed controller, rotor speed instantly drops to 660 r/min when load suddenly changes, and then it reaches a steady state once again after 0.1 seconds. Contrastively, under LSSVM-ADRC speed controller in Figure 4, rotor speed drops to 695 r/min when load suddenly changes, and only after 0.06 s it reaches steady state again. The reason is LSSVM has reduced the burden on the ESO observation. The observation accuracy and system response speed have been improved under LSSVM-ADRC method.

(2) The given speed is 1500 r/min; at 0.25 s load torque changes from 3 N·m to 6 N·m. The speed waves are shown in Figures 5 and 6 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively. From Figure 5, it can be seen that, based on ADRC speed controller, when load suddenly changes rotor speed drops from 1500 r/min to 1470 r/min, and after that it reaches a steady state after 0.07 seconds. Contrastively, under LSSVM-ADRC speed controller in Figure 6, rotor speed drops from 1500 r/min to 1497 r/min when load suddenly changes, and only after 0.03 s it reaches a steady state again.

Combining the above simulation results under conditions of low speed and high speed, it can be concluded that, based
on LSSVM-ADRC method, system responsiveness has been greatly improved; at the same time, system anti-interference ability has been improved to a large extent.

5.2. Experiment Result. To validate the performance of the proposed method, experimental study is conducted on a PMSM turbine. The motor parameters are the same as the simulation motor. The chip TI DSP TMS320F2812 is chosen as the control core. The AC-DC-AC main circuit structure is
adopted. The rectifier module uses diode and inverter module uses MOSFET. The current sensor CSNE151-100 is selected to sample PMSM stator currents. The voltage sensor JLBV1 is used to sample the stator voltage. The rotor speed of PMSM is measured by mechanical speed sensor, the type of which is BENTLY 330500.

The given speed is 700 r/min and load torque changes from 0 to 3 N-m. The rotor speed waves are shown in Figures 7 and 8 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively.

The given speed is 1500 r/min and load torque changes from 3 N-m to 6 N-m. The speed waves are shown in Figures 9 and 10 under ADRC speed regulator and LSSVM-ADRC speed regulator, respectively.

From Figures 7–10, it can be seen that, based on LSSVM-ADRC method, system responsiveness has been greatly improved; at the same time, system anti-interference ability has been improved to a large extent. It is consistent with the simulation results.

6. Conclusion

An improved method of PMSM vector control is proposed in the paper. The ADRC speed regulator is designed. Then, LSSVM optimal regression model is derived and embedded in the ADRC controller. ADRC observation precision and dynamic response of the system are improved. The system anti-interference ability is further improved. Finally, the current sensor, voltage sensor, and speed sensor are chosen to sample PMSM current, voltage, and speed. Experimental platform is constructed to verify the effectiveness of the proposed method.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This paper is supported by the Fundamental Research Funds for the Central Universities (2014MS89) and (2014QN46).

References

Submit your manuscripts at
http://www.hindawi.com