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The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to
analyze the microelectromechanical systems (MEMS) behavior for specific application and operating conditions. MEMS devices
are more complex and extremely diverse due to the immersion of multidomains.Their failure modes are distinctive under different
circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is
becoming very challenging as compared to the IC test, becauseMEMS respond to electrical, physical, chemical, and optical stimuli.
Currently, test systems developed forMEMS devices have to be customized due to their nondeterministic behavior and complexity.
The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device
to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed
on the device cost. This factor causes a delay in time-to-market.

1. Introduction

Since the mid-1970, MEMS (microelectromechanical sys-
tems) have emerged as an innovative technology by creating
new opportunities in physical [1], chemical [2], and biological
[3] sensors and actuator applications. Although MEMS tech-
nology emerges from IC fabrication techniques, test methods
[4] of both technologies significantly differ from each other.
This is because MEMS devices respond to both electrical
and nonelectrical (physical, chemical, biological, and optical)
stimuli.

MEMS devices are tested at different stages during
manufacturing processes. This testing is essential to verify
the performance metrics of the device, parametrically and
functionally. After wafer level fabrication, MEMS are tested
by measuring all AC and DC parameters at wafer level [5, 6]
using anATE (Automatic Test Equipment) [7].This test phase
sorts out the wafer for good and bad die by exploiting design
for testability circuitries within chip, for instance, self-test
mechanisms and scan chains, similarly to common integrated

circuits. This is followed by dicing and wire bonding to test
the electrical performance; at last, good devices are packaged.
In the final stage, these packaged devices are retested para-
metrically to confirm their overall functionalities. Functional
testing and calibration are essential for every MEMS sensor
before proper utilization.Therefore, some intrinsic constants
or values that belong to the device performance are captured
during calibration as reported in [8–10]. Functionality of the
device is measured by applying known physical and electrical
stimuli and comparing output responses of the device. If the
measured output values are different from the estimated one,
the device is considered as failed; otherwise, it is accepted as a
good device. Comprehensive details of infrastructures about
Automatic Test Stations and methods for MEMS testing are
reported in [11, 12]. As an example, the fabrication and testing
steps in detail for mass production of MEMS pressure sensor
are presented in Figure 1.

In MEMS manufacturing process, testing has an impor-
tant role in verifying performance and reliability of the
device; however, this testing process consumes a huge cost
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Figure 1: Steps for mass production of MEMS pressure sensor [13].

[14]. A plethora of work is reported on the cost of MEMS
testing process. Masi and Cortese [15, 16] reported that 25–
35% cost is consumed in overall testing process. According to
Texas Instruments [17], in case of testing digital micromirror
device, the cost of final test (packaged device testing) is
14% whereas the cost of wafer level test is 8%. MEPTEC
(Microelectronics Packaging and Test Engineering Council)
[18, 19] reported that the cost of MEMS testing is 20–45% of
the total device manufacturing cost. On the other hand, in
MEMS test standard report of MIG (MEMS Industry Group)
[20], testing cost at manufacturing level can accede up to
50% due to device complexity and maturity. Henttonen [21]
reported more than 60% testing cost of the device; the reason
of this huge cost is that testing systems are mostly associated
with automotive sensor testing which can be costly to be
adopted as testing systems for ordinary consumer MEMS
devices listed in [22].

Therefore, it is of utmost importance to find a suitable
alternate to reduce the huge cost of test. A work has been
reported on the reduction of testing cost. One way of cost
reduction technique is to increase the test throughput by
testing multiple DUTs (device under test) in parallel [23, 24].
Substantial research efforts have been practiced to reduce
test time and cost by examining various aspects of test [25].
These techniques of parallel testing have been widely used in
VLSI test areas [26]. However, these testing techniques are
not fully applicable toMEMS becauseMEMS devices operate
under working principle of different domains (electrostatic,
electromagnetic, electrothermal, piezoelectric, etc.).

The scope of this review is to highlight the issues of
MEMS testing at device and batch levels. The current batch
level technique is the parallel testing in which electrical
and nonelectrical test stimuli are used for the response of
multiple DUTs. Enhancing the parallelism of test system has
been tried to reduce the cost. However, these parallel test
techniques have issues and limitations that are discussed in
the following section. Section 2 differentiates the ICs and
MEMS test techniques while Section 3 highlights the failure
mechanism and defects in different categories of MEMS
devices. Section 4 presents customized testing techniques
and also describes the destructive and nondestructive test
techniques. Section 5 discusses the issues at device level
testing while Section 6 reports on issues in parallel testing
techniques in detail. Finally, some conclusions are extracted
at the end.

2. Difference between ICs and MEMS Testing

MEMS have to face many testing challenges [27] due to their
multiphysics behavior. Similar to analog electronic systems,
themechanical components ofMEMS have nonlinear nature.
Therefore, analog and mixed signal tests [28] including
verification and calibration are essential for MEMS. The test
problem for MEMS is exacerbated due to their inherent
diverse properties. For example, the output of a MEMS based
device is electrical in nature; however, these signals come
from mechanical actuations under different domains. Thus,
the use of electrical signals for test was found helpful to
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Table 1: Comparison between ICs systems and MEMS.

Testing approach Integrated digital devices Analog mixed signal devices Microelectromechanical systems

Fault model

Assertion, gate delay, line delay,
redundant, path delay, behavioral,

branch, bus, cross-point,
stuck-open, stuck-at, stuck-on,

bridging, and so forth.

Hierarchical, behavioral, macro
model, transistor, physical,

catastrophic, and parametric faults
and so forth.

Behavioral, shorts and opens in
electrothermal and electromagnetic,
structural defect level, parametric,
functional, fatigue, and reliability

model.

Test technique

VHDL, HSPICE, fault dictionary,
probabilistic, signature analysis

method, LFSR (linear feedback shift
register), BIST (built in self-test),

and so forth.

Pole-Zero Analysis, artificial neural
network, HSPICE, SABER,

VHDL-AMS, ATPG, diagnosis of
soft faults based on fractional

correlation, BIST (built in self-test),
and so forth.

Neural network, VHDL-AMS,
device-level (FEM) and HDLs and

transposition of techniques
developed for microelectronics,

BIST (built in self-test).

an extent for controllability and observability of mechanical
components. Field of MEMS is relatively not as advanced
as ICs. MEMS testing and fault modeling [29] are a new
area as compared to MEMS manufacturing and designing.
Even thoughMEMSdevices have been introduced since 1970,
testingMEMS remained a big challenge. TestingMEMS at the
early stage can help in production, fabrication, and packaging
flow. The testing tools required to diagnose the origins of
MEMS failures are essential to upgrade and design.

Causes of failures [30] are as distinctive as the MEMS
devices. In ICs manufacturing, significant efforts are being
done in testing and handling to appropriately characterize
and judge the device performance in comparison with the
device specifications. The main differences in testing MEMS
and ICs are the environmental circumstances. For several
cases, integrated circuits are being analyzed in a variety
of environments under different conditions of temperature
and moisture. Relatively analogous testing and handling
measures [31] are being performed during manufacturing
process; however, essentially, the device is operated within
different environmental conditions. Any change in the test
environment can considerably affect the sensitivity and func-
tionality of the device.The additional complication regarding
mechanical motion demands extra heed during testing and
handling. Auspiciously, in case of MEMS analysis, there is a
plus point of utilizing testing techniques [32] leveraged from
IC industries. Although the variety of devices are growing
because of different applications, therefore, multidisciplinary
knowledge is deemed essential to properly identify the causes
of failures. Table 1 briefly summarizes the difference of fault
modeling and testing techniques of ICs and MEMS [33].

3. A Comprehensive Study on Failure of
MEMS Devices

MEMS devices have features of motion unlike ICs; therefore,
special techniques and tools are required for measuring
mechanical response on micro- and nanoscale. The device’s
behavior was analyzed in detail using these tools which
helped in providing feedback to improve the design. A
number of MEMS devices are used in a range of applications
across the world. In the past, it was considered that MEMS
devices belonged to ICs family and might have the same fail-
ure issues like ICs. Conversely, MEMS devices have different

failure mechanism due to complex mechanical geometry and
unique material and these have different biasing techniques.
The failure mechanisms due to complexity of these devices
are categorized in the following four groups.

Group 1 includes stationaryMEMS devices without mov-
ing parts, such as chemical sensor, microphones, and DNA
sequencers. The major source of failure in this group is the
particle contamination. The contaminated particles, which
are small in size and inherently nonelectrical, adversely affect
the device performance. The particle contaminations are
insulator in nature and these are unable to bridge the device
structure electrically and contaminants become difficult to
detect as short circuits.

Group 2 contains MEMS devices that have moving
structure without rubbing surfaces, such as comb drives
accelerometers and gyroscopes, whose components like
hinges and microcantilever yoke regions suffered from
fatigue failure. The fatigue (structural failure) is studied in
this group; electrostatically actuated comb fingers with a
perforated proof mass and a microcantilever with a notch are
the main constituents of this group. The increase in stress
levels at the notch initializes cracks on the surface of the
microcantilever that reduces device life and eventually causes
the failure of the device by fracture.

Group 3 consists of MEMS devices that have moving
structure with impact surfaces, such as relays, thermal actua-
tors, and valves. These devices are easily influenced by debris
created on the surfaces, fracture constituents, cracks [34],
and so forth. Fracture generated due to impact forces on the
opposite structure causes failure in the device.

Group 4 surrounds MEMS devices that have mov-
ing parts, rubbing, and impacting surfaces, for instance,
micromirror, optical shutter, and geared devices. Friction is
created due to rough surfaces of moving components that
create wear in material or debris initiating several failures,
such as (1) stiction of rubbing or contacting surfaces, (2) wear
created by particles that can change themotion tolerance, and
(3) particle contamination.

3.1. Reliability Test of MEMS Devices for Failure Analysis. The
functionality of MEMS devices depends upon its material of
structure, design, and actuating parts. Therefore, electronic
industry also prefers the reliability test of MEMS based prod-
ucts. Reliability test of MEMS devices is a major challenge in
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manufacturing at mass production level. In this test, failure
analysis of DUT is performed under certain conditions of
device application for a specific time period. The origins of
MEMS reliability failures highly depend upon product and
application environment. Reliability test also requires a cost-
effective technique for characteristic failure analysis in order
to understand the mechanical and electrical properties of
DUT.

It is perceptible that all kinds of MEMS devices have fail-
ure mechanisms due to particle contamination and stiction,
and so forth. It is, therefore, more important to understand
the origins of failure before finding the remedies of the
specific failure. MEMS sensors and actuators have different
and distinctive failure mechanisms by their classifications
and nature. In ICs, testing only electrical parameters is done
to find the fault, while in MEMS testing both the electrical
and mechanical parameters is to be done to deal with the
failure. MEMS causes of failures during reliability test are
summarized in Table 2.

3.2. Failures of MEMS Devices. MEMS structures consist of
flexible or rigid membranes or beams such as cantilever
and bridges, and some contain perforation on its surface.
These devices also contain insulated or conductive flat layers,
gears, cavities, and hinges integrated with an electronic
readout circuit. On the other hand, more than one device is
being integrated in a single chip. Single axis moving MEMS
structures have been upgraded to multiaxis movements.
MEMS are gettingmoremultifaceted design features to fit for
more applications. The failure analysis helps to understand
the basic reasons of faulty behavior of device during testing
process from wafer level to the final device packaging.
Failure mechanism due to defective interconnects and low
compatibility results in poor performance of the device.
Table 3 indicates the foremost mechanical failures of MEMS
devices. Generally,MEMS failures are not only related to only
mechanical parts of the device; however, electrical failures
cannot be ignored.These are originated due to contact failure,
electromigration, and dielectric degradation. Table 4 shows
common electrical failures of MEMS devices.

MEMS devices due to multiphysics behavior are the
hardest to test. Recently, the devices are being tested on the
base of functional specifications. Variations inmanufacturing
process of device may alter its specs, which is the disadvanta-
geous scenario inMEMS testing, as a number of errors can be
induced due to process fluctuations. Moreover, the specifica-
tions of the device are multifarious and its measurements at
several testing stages may increase the test time. Therefore,
quite different test techniques are required to measure the
performance parameters of various devices, which forces the
manufacturer to procure different test equipment for different
products. Fast transient test methodologies are required to
check the DUT specifications. In multistructured complex
devices, specifications are disturbed mostly due to drifts in
the fabrication process and defects. For the devices that were
designed near the specification limits, the violations in the
specifications occurred due to normal process variations.
Drifts in processes were identified at initial stage in the
production phase by the process monitoring systems. Defects

become the reasons of catastrophic failures that were detected
by tests of parametric and functional failure analysis.

4. Development of Different Testing
Techniques for MEMS Devices

The development of cost-effective testing techniques is the
major challenge for MEMS. A number of techniques and
methodology have been reported in literature. Table 5 shows
the list of destructive and nondestructive testing techniques
that are being implemented for MEMS measurements elec-
trically and mechanically [72]. Jeffrey et al. [73] reported
an online monitoring technique which is based on bias
superposition for MEMS integrated sensors. They injected
the test stimuli into biased conductance sensor and analyzed
the structural integrity of the device and interface on the
base of signal injection and signal extraction. Islam [74]
reported optical techniques to test MEMS structures at
wafer level. They utilized microscopic interferometry and
computer microvision to perform MEMS measurements for
analyzing static and dynamic properties. Biswas et al. [75]
developed statistical based 𝜀-SVM model for testing MEMS
accelerometer to eliminate redundancy.Their work disclosed
that, with the help of specification based tests, the redundancy
in test can be statistically identified with minor error. When
hot and cold tests are performed for the accelerometer,
they observed the defect escape of 0.2% and yield loss of
0.1. Dumas et al. [76] developed online testing technique
for sensors using superposition of the test stimuli on the
specifications. They utilized the signal processing technique
to reduce the fluctuations of test output by encoding the test
stimulus through pseudorandom sequence.They also studied
the overall test time and level of perturbation rejection.

The dynamic Electrostatic Force Microscopy is used in
[77] to characterize the beam resonators. The resonator was
actuated by placing probe cantilever above the beam. Then,
modulated signal was applied to the probe cantilever. The
resonance frequency response of the test beams was analyzed
by studying coupled electrostatic interaction between the
conductive beams. Izadian and Famouri [78] developed fault
diagnostic system for MEMS using multiple model adaptive
estimation technique. They used Kalman filters to model
and diagnose the fault in MEMS in real time application.
Lateral comb MEMS resonators are fabricated to validate
the fault diagnosis unit in multiple model adaptive estima-
tion technique. They also developed another fault diagnosis
technique [79] for MEMS resonator by combining least
square forgetting-factormethod andmultiplemodel adaptive
estimation method. This technique identified the parameters
of slowly time-varying systems. Another work developed by
Izadian [80] is the self-tuning-based parameter estimation
technique for fault diagnosis of MEMS. He used this tech-
nique to recognize the parameters of system and generation
of residual signals. Repchankova [81] developed an antistic-
tion and self-recovery mechanism in order to recover the
functioning of RF-MEMS switches in case of malfunctioning
due to stiction. An effective heat-based mechanism was
designed in order to release the stuck component. Reppa [82]
developed a fault detection and diagnosis (FDD) technique
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Table 2: Summary of failures, their causes, and procurement for various MEMS devices.

Group Causes of failures Reliability test
Group 1
Chemical sensor
nozzles
microfluidic
DNA sequencers

Dielectric breakdown

The reliability test of flagellar microfluidic motors was performed
in environmental conditions. Probabilistic mathematical model
was used to analyze the rotational behavior. The decay time of 55 h
was predicted for the bacterial motor [35].

Group 1 or Group 2

Accelerometers
Fracture, fatigue, mechanical
wear, charging, and change in

friction

(1) Accelerated life time of devices was tested experimentally for
1000 hours at about 145∘C to 200∘C [36].
(2) Tytron 250 was used to test fatigue. The experiment showed
fatigue life between 7.78 × 104 and 1.48 × 107 cycles when the
stresses increased from 2.05 to 2.83GPa [37].
(3) Sandia National Laboratories developed the SHiMMeR (Sandia
High Volume Measurement of Micro Machine Reliability) that can
simultaneously control and test up to 256 MEMS parts [38].
(4) Fatigue and creep were observed by using X-rays diffraction.
Wear was analyzed through DLC coating (Diamond Like Carbon),
stiction was observed by using MIL-STD-883F (Military Test
Standard Device) and SAM (Scanning Acoustic Microscope) was
used for contamination [39].

Group 2

Pressure Sensors Vibrations, shock Fatigue,
fracture, and change in friction

The fatigue was detected in the fabricated sensors operating below
the stress level; it is observed that fatigue can occur at equal stress
and fracture levels [40].

Gyroscopes Vibrations, shock, and charging

(1) The reliability assessment of a three-axis gyroscope was
performed under several shock loading conditions [41].
(2) The temperature degradation and variations in signal to noise
ratio were also reported [42].

Group 3

Thermal actuators Vibration, shock, and mechanical
wear

(1) Weibull statistics was used to analyze the fracture tests on the
beam by applying different loads.
(2) Experimental technique was proposed for micro switches to
observe malfunctioning due to charging and creep [43, 44].
(3) The effects of pull-in voltages were observed during bending
and torsional modes of beams. Mechanical wear and fatigue tests
were performed to predict the life time [45].

Micro relays
Fatigue, fracture, mechanical
wear, shock, vibrations, and

charging

Effects of stiction and welding failure were performed at 109 on/off
switching cycles [46, 47].

Group 4

Electrostatic
actuators

Charge in friction, fatigue,
fracture, mechanical wear, shock,

and vibrations

Stochastic method was used to analyze the pull-in and pull-out
voltages for prediction of device life time [48, 49].

Mirror devices
Optical degradation, fatigue,

fracture, mechanical wear, shock,
and vibrations

Texas Instruments (TI) developed the optical inspection tool for
DMD devices that examines each pixel of the DMD array [50].

Gear devices
Charge in friction, fatigue,

fracture, mechanical wear, shock,
and vibrations

Sliding surfaces were analyzed through simulations to prevent
adhesion and wear [51].

for MEMS. Parametric faults can be captured, isolated, and
identified with the help of this technique. This technique
depends on estimation of parameters arrayed in a set mem-
bership identification framework. Zheng et al. [83] developed
a characterization technique of computer microvision for
microresonator.Themethod of video imaging is used for this
technique to measure the in-plane motion of MEMS device.
The blur image synthesis technique is used to obtain the
magnitude of displacement.

5. Issues in Device Level Testing

MEMS devices are categorized in six different classes. The
classification is based on their operating mechanism and
applications are discussed in this section.

MEMS sensors [84, 85] are designed and fabricated for
sensing multiple environmental changes. The sensors are
capable of sensing behavior of fluids, force, inertia, gas, and
so forth. Testing this category of devices has many challenges
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Table 3: MEMS mechanical failures.

Mechanical fracture
Failure Shock Overload Fatigue Corrosion

Causes

Mechanical
interference
disorder,
excessive

loading, and
drops

Excessive stress
Structural

damage due to
cyclic loading

Oxidation,
chemical
reaction

Stiction

Failure Capillary forces Vander Waals
forces Residual stress Chemical

bonding
Electrostatic
charging

Causes

Monolayer of
moisture or
lubricants on
the surfaces
prompting

capillary force

Interaction of
atoms or

molecules at the
surface of close

contact

Bending and
deformation of
structure during

the release
process

Chemical bond
between contact

surfaces

Potential
difference at two
closed surfaces

Wear
Failure Surface fatigue Corrosion Abrasion Adhesion

Causes
Cyclic loading
instead of

smooth surfaces

Chemical
interaction
between two
surfaces

Material loss
due to sliding of

different
surfaces

Pull-in
interaction
between two

surfaces during
sliding due to
surface forces

Creep and fatigue
Failure Thermal stress Intrinsic stress Applied stress
Causes Overheating Residual stress Applied stress

Table 4: MEMS electrical failures.

Electric short and open circuit
Failure Oxidation Electromigration ESD, high electric field Dielectric material degradation
Causes Environmental Mismatch load Excessive load Capacitive discharges

Contamination
Failure Usage environment Intrinsic (crystal growth) Manufacturing-induced
Causes Low and high temperature and humidity Environmental Rough handling in industry

due to complex sensing functionality and a variety of designs.
The test mechanism developed for theses sensors also has
issues of fault detection as reported in [86–88], because each
device required individual test bench to analyze the sensing
environment. As these tools and testing techniques have been
leveraged from the IC technology, therefore, these were help-
ful in resolving various fault mechanisms to an extent. The
major dilemma was to discover the faulty origins in multiple
devices that were put together on single test bench for mass
production. Recently existing tools [89] have limitations to
test specificMEMS devices electrically andmechanically.The
emerging challenge is to analyze and identify unique source
of failure during assessment of multiple die on single test
stage.

In the development of a test bench for gas sensors,
the main obstacle was the chamber designing for chemical
environment for the device sensibility. Mechanical sensors

[90, 91] that are designed to sense physical changes like
motion and pressure are relatively easy to test or characterize,
while chemical sensors have issues of selectivity in case of
sensing targeted gases. Carbonmonoxide CO andH

2
sensors

are operated in a variety of challenging environments of
industries. Fast response is the critical requirement for theses
sensors; therefore, readoutmechanism of testing system faces
high level of noise signals because detecting device signal at
ppm (part per million) level to find the selectivity of these
gases is very cumbersome effort. [92] reported the sensitivity
issues in ethanol sensors during the device analysis; without
readout circuitry interface on chip, these sensors become
difficult to characterize.

The packaged devices that have specific environment,
any change in the environment, or defective packaging
may cause incorrect outcomes and induce additional faulty
behavior during testing. In MEMS analysis reported in [93],
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Table 5: Destructive and nondestructive techniques for MEMS testing.

Technique Observation Mode
Optical microscopy Stains, debris, fracture, and abnormal displacements [52]. Nondestructive
Scanning laser microscopy Extended depth-of-focus, abnormal vertical displacements [53]. Nondestructive
Scanning Electron
Microscopy (SEM) Imaging defects at high magnification [54]. Nondestructive

Focused Ion Beam (FIB) To image structures, to cross-section elements of concern, and to cut
elements free for subsequent examination [55]. Destructive

Laser-Doppler Vibrometer To measure out of plane motion [56]. Nondestructive
Computed tomography
(CT) Visualizing 3D internal structures [57]. Nondestructive

Interferometry To detect the tilt or deflection of a sample [58]. Nondestructive
Transmission electron
microscopy (TEM) To observe thin films deposited on MEMS [59]. Nondestructive

Energy dispersive X-ray
spectroscopy (EDS) To analyze chemical composition of surface coating [60]. Nondestructive

Wavelength dispersive
X-ray spectroscopy (WDS) To analyze chemical composition of surface coating [61]. Nondestructive

Atomic force microscopy
(AFM) Topographic images and surface traces [62]. Nondestructive

Auger electron
spectroscopy (AES)

To perform qualitative and semiquantitative compositional analysis of
surface of materials [63]. Nondestructive

Secondary ion mass
spectroscopy (SIMS)

Compositional analysis of the sample with sensitivities in ppm to ppb,
removing material from the device [64]. Destructive

Thermally induced voltage
alteration (TIVA) To identify electrical failure mode [65]. Nondestructive

Resistive contrast imaging
(RCI) To identify electrical failure mode [66]. Nondestructive

Infrared Microscopy To construct thermal images based on the infrared radiance emitted
from the structures [67]. Nondestructive

Light emission To observe MEMS optical devices [68]. Nondestructive
Acoustic emission To observe running device within package [69]. Nondestructive
Laser cutting To impart elements of device such as gears and links [70]. Destructive
Lift-off technique Accumulation of wear debris at the surfaces [71]. Nondestructive

lid removing changed the device environment and caused
change in functionality. It was observed that device had
to face the malfunctioning due to contaminant particles,
environmental change, and other potential defects.

MEMS actuators [94, 95] generate power using any
electrical or physical stimulus.Thesemechanical components
generate power and motion for other MEMS components.
A variety of devices, for example, BioMEMS, RF MEMS,
microfluidic, or optical MEMS, need some forms of actu-
ations to interact with another microstructure, in moving
a fluid or a micromirror. MEMS actuators are stimulated
under different electrical domains. Electrothermal actuators
exploit heat producing due to power dissipation in the device.
The increase in temperature causes expansion in the struc-
ture; then, necessary displacement is induced for motion.
In electrostatic actuators [96], electric field is involved to
attract other parts of device to generate motion. Prevailing
fault modes of stiction [97] and particle contamination
were observed in both thermal and electrostatic actuators.
Actuators can contain rubbing surfaces which may result in

formation of wear or debris. The major concerns for testing
of MEMS actuators must be nondestructive regarding fault
analysis of stiction films and coatings, and functional testing
of multiple devices in parallel. Every type of actuator may
have distinctive failure mechanisms and tribulations for fault
analysis.

Thermal actuators face the typical fault mechanisms of
thermal degradation [112, 113]. The side effects of electrother-
mal cycles in these devices are under observations. Faults
under stress [114] were analyzed by introducing permanent
deformation in the mechanical structure. Structural defect is
produced out of plane nonlinear motion of thermal actuator
and due to increase in temperature; actuator was welded to
the substrate. Analyzing thermal behavior of dynamic struc-
tures is a difficult task. Techniques involved in generating
thermal actuations were destructive; they slowed down the
motion of actuator.The significance of understanding heating
effect of a thermal actuator and occurrence of localized heat
can support thermal behavior modeling and reduce the fault
mechanisms.
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Table 6: Common testing issues in different category of MEMS devices.

Category Source of failure Testing issues Observations

RF MEMS
Switches,
resonators,
lab-on-chip,
capacitor,
varactor,
sensors, and
filters.

Stiction failure,
surface
contaminations, and
accumulation of
charges in the
dielectric part.

A short occurred when two parts of the
device stick to one another.
Major issue was because leftover charge
in the dielectric causes increase in voltage
required for the device actuation and
signal transmission.
Other issues of catastrophic failure
occurred due to constant increase in
voltage that causes the dielectric
breakdown.
Crack initiated due to high stress in the
structure.
Breakage of structure due to impact with
the substrate.

A challenge in RF MEMS testing
was to analyze stiction failure
nondestructively.
Tracing the genuine adhesion point
without removal of any part or
component was challenging.
Hillocks and high roughness of
contact area created gap between
contact surfaces.
Issues about contact area, geometry
and the asperity in contact area
were highlighted to understand RF
MEMS [98–101].

Optical
MEMS
Sensor,
resonator,
optical
buffers,
mirrors and
filters

High surface
roughness,
stiction, and
accumulation of
charges.

Roughness of micromirror surface,
stiction due to the accumulation of
charges that caused stuck in actuation.
Tracing faults of shorts and stiction
beneath the mirror surface.
Cracks initiated during detachment of the
micromirror while doing failure analysis
under the mirror surface.
Structure breakage during handling.

Surface roughness of single mirror
was determined feasibly and it takes
time for analysis of various mirror
locations.
The surface roughness analysis of
arrays of mirrors was not reasonable
using current AFM techniques.
Parallel test technique provided
satisfactory results in determining
surface roughness of entire array or
collection of mirrors [102–104].

Microfluidics
Lab-on-chip,
flow sensors,
micro
channel,
and micro
needles.

Fluid contamination,
leakage,
no compatibility with
MEMS,
short-circuit defect,
and
catastrophic and
parametric faults due
to structural defects.

Device was flushed of fluid before
analysis; this effort negotiated the failure
mechanism and induce erroneous
outcomes.
The common issues are fluid
contamination, deprocessing, leak
detection and compatibility with MEMS.
The fluid flowing under electrostatic
domain was stuck due to opposite
charged molecules causes channel
blockage.
Channel with the rough walls caused a
turbulent flow of fluid sample.

During typical analysis using SEM,
the device was flushed of fluid
before analysis.
High quality resolution was
required for microfluidic systems
during an analysis of pressure or
flow sensor exclusive of flushing the
device.
Therefore in verification of device
functionality, purpose of using test
fluid was helpful in tracing the
movement of the fluid during
operation. The approach of using
diagnostic fluid also proved helpful
to trace the breakage, leakage or
cracks in the device [105–108].

BioMEMS
Lab-on-chip,
biosensors.

Fluid contamination,
leakage,
blockage of channel,
cracks,
and material
compatibility.

Analogous tribulations with the existence
of additional biological materials was
experienced during testing.
In the analysis of DNA purification, the
surface area of channel was limited.
Sample clogging occurs in the channel
during testing [109–111].

Challenges of functional testing
were device deprocessing and
biocompatibility.

Electrostatic actuators typically have single cantilever,
bridge, or two sets of comb fingers; the actuator is derived
due to the change in polarity of the electric fields at the
opposite fingers. Releasing of multistructure MEMS devices
[115] is also a challenging job; occurrence of structural defects
in comb fingers was found as one of the origins of failure.
Rapid identification of failure mechanism of microstructures

is essential. Table 6 briefly describes the failure analysis
reported for different categories of MEMS devices.

6. Issues in Parallel Testing

In the previous researchwork, a lot of discussions [16, 88, 116–
121] have been made to cope with the challenges and issues in
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Figure 2: Efforts of reducing MEMS testing cost.

MEMS testing and its requirement. MEMS final testing has
limited visibility in the literature from industries that have
successfully manufactured MEMS devices such as humidity
sensors, pressure sensors, andmagnetic field sensor.This type
of trend shows an indication of custom nature of test for
MEMS. According to MIG’s (MEMS Industry Group) MET-
RIC (MEMS Technology Roadmap and Industry Congress)
[20, 122], there are no agreed testing standards and this is the
major limitation for the industries growth and innovation.
The flow chart in Figure 2 shows the efforts of developing
and improving the MEMS test systems to reduce the cost of
testing.

A very few test systems are commercially available [123]
and are limited to test specific commercial devices, that is,
accelerometers, gyroscope, pressure sensors, microphones,
combo sensor, proximity sensor, and magnetic sensor. This
section discusses the limitation and issues of test systems
reported in literature. An attempt was made by Maudie
et al. [124] to improve ATE (Automated Test Equipment)
for testing accelerometers in parallel. Variations in elec-
trical parameters occurred from device to device in case
of producing MEMS devices in bulk. ATE was unable to
perform proper calibration of these devices due to lack of
modularity and flexibility. ATE was improved by changing
electrical and nonelectrical interfaces of DUT (device under
test). Moreover, these efforts and test system were limited to
accelerometers only.

Various approaches to test MEMS optical devices and
flow sensors were reported by Kerkhoff [10]. Packaging of
flow sensor altered the device specifications due to change
in environment. The test system had to face issues in
handling mechanism of nonelectric input for flow sensor.
That increased the testing time; therefore, test handlers
required improvement to reduce test time and to enhance
parallelism. This test system was limited to the specific
devices. Chen reported an effort of improving traditional test
system in [125].The technique was able to test only 16 devices
(motion sensors) in parallel. They used the QSPI (quad
serial port interface) to enhance the parallelism. However,
test system had to face the high noise effects in case of
enhancing parallelism. [126] presented a test methodology
for microfluidics biochips using linear programming model.
They investigated the problems in detection catastrophic
faults in these devices. They tried to minimize the test time
through linear programming model.

A case study based on accelerometers testing was
introduced by Ciganda et al. [127]. In conventional tester,

interfaces of DUTs were connected through wires, which
were being stretched and twisted due to mechanical move-
ment of test stage. Some DUTs suffered through the lack
of signal communication during testing process, resulting
in raising the test time and reducing the parallelism. Then,
an enhanced architecture was proposed which was able
to implement calibration and testing process by hardware,
serial interface module (SIM), reducing the amount of tester
internal wires. In [128], Ciganda Brasca et al. also used
the FPGA technique in conventional testing machine of
MEMS devices. Lengthy communication distance and wires
between tester and DUT interface were the limiting issues
in ATE, tending to limit the electrical stimulation frequency,
which ultimately slowed down the test process. High testing
parallelism was achieved to overcome such limitations using
FPGA module. This technique was used on commercial
gyroscopes and accelerometers.

Several MEMS test systems introduced by [129] have the
ability to test multipleMEMS applications like accelerometer,
gyroscope, pressure sensor, magnetic sensor, and micro-
phone. These systems are capable of testing the devices
in parallel. Schaeffel et al. in [130] introduced the design
of interferometry test station for parallel testing of optical
MEMS. They tested up to 100 DUTs simultaneously through
this inspection technique, as optical test systems had the
ability to test devices serially, which consumed a lot of
testing time and costs. Another technique was reported by
Oesterle et al. [131] for a massive parallel test of MEMS
microphones. A reconstruction method was adopted by
utilizing techniques of tomographic imaging. The specific
parameters of all parallel connected DUTs are superimposed
through one signal and the DUT response was read out with
the reference of single measurement of device.

Testing of singleMEMSdevice is also a challenging task; it
is drastically escalated in cost in case of simultaneous testing
of multiple devices. The cost of test station for high volume
production can accede to millions of dollars. The main tools
for these test systems are common including physical, electri-
cal, and temperature stimulus. The modular fixtures perform
different measurements (acceleration, pressure, etc.). These
modular testers are basic requirement for the industries.
Figure 3 shows a general schematic of MEMS tester. Most of
efforts are being emphasized onmodification of conventional
test systems. Issues in parallel testing are summarized as
follows:

(i) There is lack of signal communicationwhen a number
of DUTs are increased to an extent.

(ii) Noise level is increased with the increase in test
sockets.

(iii) One type of devices is tested at one time.

(iv) DUT handler has to modify if device is different.

(v) There is limitation of test coverage.

(vi) Test algorithms are different for dissimilar devices.
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(vii) Different test programs have to be designed for
electrical and mechanical domains.

(viii) Test redundancy is required in case of simultaneous
fault detection of multiple DUTs.

The test systems reported in this section utilize both electrical
and nonelectrical stimuli for final testing and calibration.
But the nonelectrical stimuli such as humidity, pressure, and
motion are intrinsically slower than electrical signals and, as
a result, they take long test time and they also affected the
cost. Ongoing changes inMEMSmarket are the warnings for
future testing issues and challenges. A lack of test standards
[122] has a negative indirect effect on the business of MEMS.
There is still need of cost-effective parallel test methodology.
Testing imposes large direct costs on the product as test
equipment is expensive and test programs are limited to test
specific devices.

7. Conclusion

MEMS devices are enormously dissimilar in their application
and function. Various limited tools and techniques leveraged
from the IC technology are being utilized in MEMS testing;
however, there is need of developing new test tools for
the diagnosis of different faults. Several classes of devices
discussed in this literature have common issues related to
MEMS testing.MEMS can only be penetrated as an emerging
technology until the cost of testing is reduced substantially
and valued added technique is applied at the early stage of
the market. MEMS testing is fetching difficult challenges, for
the reason that conventional electrical testing is unable to
comprehend the mechanical behavior of a MEMS device. In
addition, mechanical behavior requires different technique
to test it (e.g., flow, movement, and pressure). Therefore,
integration of multifunction in devices increases the testing
problems as a function of the device complexity. Techniques
of MEMS testing are different in development processes,
that is, design, prototype, and production. The Design for
Test (DFT) is becoming a paramount as MEMS designers
are facing the pressure of more cost and time-to-market. In
the design phase, it is essential to know the requirements of
device testing and it should be cost-effective and reliable as a
predictor of device performance.
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