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Biometric face recognition is becoming more frequently used in different application scenarios. However, spoofing attacks with
facial disguises are still a serious problem for state of the art face recognition algorithms. This work proposes an approach to face
verification based on spectral signatures of material surfaces in the short wave infrared (SWIR) range. They allow distinguishing
authentic human skin reliably from other materials, independent of the skin type.We present the design of an active SWIR imaging
system that acquires four-band multispectral image stacks in real-time. The system uses pulsed small band illumination, which
allows for fast image acquisition and high spectral resolution and renders it widely independent of ambient light. After extracting
the spectral signatures from the acquired images, detected faces can be verified or rejected by classifying the material as “skin”
or “no-skin.” The approach is extensively evaluated with respect to both acquisition and classification performance. In addition,
we present a database containing RGB and multispectral SWIR face images, as well as spectrometer measurements of a variety of
subjects, which is used to evaluate our approach and will be made available to the research community by the time this work is
published.

1. Introduction

Face recognition is a very important aspect for biometric
systems and a very active research topic [1]. The human
face has advantages over other biometric traits, as it can
easily be captured in a nonintrusive way from a distance
[2]. Consequently, biometric face recognition systems are
becoming more frequently used, for example, at airports in
the form of automated border control systems, for access
control systems at critical infrastructure, or even for user
log-on and authentication in computers or modern smart-
phones. However, despite the significant progress in the
field, face recognition still faces serious problems in real-
world scenarios when dealing with changing illumination
conditions, poses, and facial expressions, as well as facial
disguises (“fakes”), such as masks [3].

To overcome the problem of changing illumination con-
ditions, the use of infrared imagery has been proposed in the
recent years. Frontal illumination of faces with near infrared

light that is invisible to the human eye helps to reduce the
influence of ambient light significantly without distracting or
blinding the subjects [4].

For the detection of fakes, also referred to as liveness
detection, at least three forms of spoofing have to be consid-
ered: photographs, prerecorded or live video (e.g., shown on
amobile device), and partial or complete facial disguises such
as masks. The impact of such attacks on face recognition has
been researched in several studies, for example, in the context
of the research project TABULA RASA [5]. Although some
countermeasures for such attacks have been proposed [6–8],
especially the attacks with facial disguises andmasks, they are
still a problem for state of the art face recognition systems.

Masks can bemanufactured using very differentmaterials
with varying textures and surface properties, for example,
paper, latex, rubber, plastics, or silicon. Due to the variations
found in human skin color and texture, distinguishing any
possible material from genuine human skin using only the
visual domain is a very difficult task [9].
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Figure 1: Spectral remission intensities of skin and different fake
materials.

To overcome these problems, the use of infrared imag-
ing has been proposed in prior work. Jacquez et al. [10]
have shown that human skin has very specific remission
characteristics in the infrared spectral range: the spectral
remission of skin above 1200 nm is widely independent of the
skin type and mainly influenced by the absorption spectrum
of water. In addition, the spectral remission of most other
materials differs strongly from that of skin: Figure 1 shows
the remission intensities of human skin in the visual and
infrared spectral range up to 1700 nm for six different skin
types, denoted as skin types 1 (very light colored) to 6
(very dark colored) after Fitzpatrick [11], compared to the
remission spectra of materials that might be used to create
facial disguises.

In the literature, the infrared spectrum below 1400 nm
is commonly referred to as the near infrared (NIR) band
and the spectrum between 1400 nm and 3000 nm as the
short wave infrared (SWIR) band. This work focuses on the
spectral range of 900 nmup to 1700 nm.Whendescribing this
wavelength range, most researchers use only the term SWIR
in order to distinguish it from work limited to the NIR range
below 1000 nm. This paper will adopt this simplification and
also use only the term SWIR in the following to describe this
wavelength range. The existing approaches that make use of
the SWIR spectral range can be classified into four groups:
multispectral image acquisition using multiple cameras with
band pass filters [9, 12], hyperspectral imagers [13], single
cameras using filter-wheels with band pass filters for sequen-
tial multispectral image acquisition [14], and, more recently,
single cameras with Bayer-like band pass filter patterns
applied directly on the sensor [15]. All of these systems are
passive (filter-based) and require sufficient illumination by
daylight or external lighting. They will be discussed in detail
in Section 2.

In our previous work, we presented an active multispec-
tral point sensor for contactless skin detection which can be
used for both safety and security applications, as well as a
“proof of concept” of an active multispectral imaging system

[16, 17]. Both the sensor and the imaging system acquire a
“spectral signature” of object surfaces: a specific combination
of remission intensities in distinct, narrow wavebands that is
used for the classification of the object’s surface material.

The contributions of this work are twofold.

(1) Based on our prior work, we present an improved sys-
tem design of an active multispectral camera system
optimized for face verification. The system acquires
four-band multispectral image stacks in the SWIR
range in real-time. The main improvements are

(i) optimized illumination homogeneity,
(ii) extensive camera system calibration,
(iii) compensation of motion artifacts,
(iv) advanced classification methods,
(v) an elaborate evaluation regarding both skin

detection and face verification.

(2) We present data from a study with more than 130
participants (at the time of writing) that combines
spectral measurements at several points on faces and
limbs with pictures taken with both an RGB camera
and the presented multispectral camera system. A
subset of this database, reduced by the images of
participants that did not agree to publication, will
be made available to the research community on our
website (http://isf.h-brs.de/) by the time this work is
published. We expect the published database to con-
tain spectrometer data from at least 120 participants
and image data from at least 50 participants.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the related work. Section 3
presents the design of the proposed camera system with a
focus on hardware. Sections 4 and 5 describe the methods
applied for image preprocessing and analysis. In Section 6,
the camera system and the proposed skin and fake detection
method are evaluated. For this purpose, a database of spec-
trometer measurements, as well as multispectral SWIR and
RGB images, is presented. Section 7 concludes the paper.

2. Related Work

In the following, we will focus on work that is directly related
to our approach, that is, based on the SWIR spectral range. A
more general, comprehensive overview of methods for face
recognition in the infrared spectrum, including the thermal
infrared range, can be found in [3].

Taking advantage of the specific remission character-
istics of human skin in the SWIR spectral range for its
detection is not a new idea, but this approach has (to the
best of our knowledge) only rarely been researched in the
literature.

In 2000, Pavlidis and Symosek [9] demonstrated that
the SWIR range has many advantages for face detection in
general and for disguise detection in specific. They proposed
a dual band camera system, consisting of two coregistered
cameras, with one camera having a spectral sensitivity below
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Figure 2: Building blocks of the proposed approach.

1400 nm (ideally 800 nm to 1400 nm) and the second camera
having a spectral sensitivity above 1400 nm (ideally 1400 nm
up to 2200 nm). Their system can work with either sunlight
or artificial illumination and it uses a fusion algorithm based
on weighted differences to detect skin in the acquired images.
Depending on the spectral distribution of the illumination
source, theweighting factors have to be adapted, as the system
is not independent of ambient light. The authors conclude
that their system achieves very good face and disguise detec-
tion capabilities compared to systems in the visual spectrum,
only limited when it comes to the detection of surgical face
alterations, where they see an advantage of systems using
the thermal infrared range. In a later publication [18], they
presented an extension of the system with a third camera
for the visual spectrum and a more advanced face detection
approach that includedmultiband eye and eyebrowdetection.
Their system uses beam splitters to allow all cameras to view
the scene from the same vantage point in order to avoid
problems with image registration.

At the U.S. Air Force Institute of Technology, Nunez
and Mendenhall [12, 13] researched the use of hyperspectral
SWIR imagery to detect skin for remote sensing applications.
The authors acquired images in 81 narrow spectral bands
between 900 nm and 1744 nm with a hyperspectral camera
and introduced a detailed reflectance model of human skin
based on this data. For real-time and in the field use, the
authors propose a multicamera system to acquire images in
distinct narrow wavebands using different band pass filters
on each camera. To avoid problems with image registration,
this system uses dichroic mirrors to split up the beam so that
all cameras share one single lens and view the scene from the
same vantage point.

More recently, Bourlai et al. [14] presented amultispectral
SWIR image acquisition system using a single camera with
an attached rotating filter wheel. The filter wheel is equipped
with five band pass filters with a full width at half maximum
(FWHM) of 100 nm around the peak wavelengths 1150 nm,
1250 nm, 1350 nm, 1450 nm, and 1550 nm. By synchronizing
the camera’s integration time to the filter wheel, the system
can capture all five waveband images within 260ms (i.e., at a
rate of ≈3.8 frames per second (FPS)).

Bertozzi et al. [15] propose a camera with a broadband
sensor for both the visual and SWIR spectral range (i.e.,
400 nm to 1700 nm) that is equippedwith a Bayer-likemosaic
filter pattern directly on top of the pixel array. One clear
filter (full bandwidth) is combined with three high pass filters
with cut-off wavelengths of 540 nm, 1000 nm, and 1350 nm.
By subtracting the acquired values of neighboring pixels with
different filters, multispectral images in the four wavebands
of approximately 400–600 nm, 600–1000 nm, 1000–1300 nm,
and 1300–1700 nm can be calculated.

Due to the passive (filter-based) system design, the
spectral distribution of the ambient illumination has a strong
influence on the multispectral images acquired by any of
these systems. In contrast to this, the approach proposed
in this work uses active small band illumination instead
of filters and is widely independent of ambient light. It
combines a comparably high acquisition speed with high
spectral resolution and robust detection.

3. Camera System Design

The approach described in this work is composed of three
major building blocks illustrated in Figure 2, which we
explain in sequential order. This section describes the design
goals and decisions for the camera system with a focus on the
hardware. Section 4 presents the low-level image processing
methods, while Section 5 will focus on higher level image
processing and analysis.

3.1. DesignGoals. In general, face detection approaches in the
context of biometric applications have strong requirements
with respect to robustness and speed of the detection. Here,
robustness includes both accurate detection under varying
external conditions such as lighting and a reliable exclusion
of spoofing attacks.

Even though we do not tackle any specific application
scenario, we formulate the following, rather generic design
goals that allow the realization of various applications.

(i) The imaging system should be independent of ambi-
ent light.The spectral distribution or any flickering of
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Figure 3: Schematic of the camera system setup.

the light sourcemust not distort the extracted spectral
signatures.

(ii) The acquisition time of a complete multispectral
image stack should be as short as possible.

(iii) Moving objects must not lead to false classifications.
(iv) Face and disguise detection must work independent

of a subject’s skin type, age, or gender.
(v) The operation range should be oriented at typi-

cal cooperative user scenarios with short ranges of
several meters (as opposed to long range imaging
scenarios with distances of more than 100 meters
[19]).

(vi) The system should require only one single camera.
This avoids the need to align the optical path of mul-
tiple cameras or to apply complex image registration
methods and reduces the costs of the imaging system,
as SWIR cameras are still very expensive.

None of the existing approaches described in Section 2
can reach all of these goals.

3.2. System Setup. Based on the specified design goals, we
propose a system setup consisting of a single SWIR camera
sensitive to a spectral range of 900–1700 nmwith an attached
LED ring light that illuminates the face of a subject in
four distinct narrow wavebands within this spectral range
(one at a time), as illustrated in Figure 3. A microcontroller
system, which is embedded into the ring light module,
triggers short pulses in alternating distinct wavebands and
signals the camera to start and stop the exposure of a new
image synchronized to the light pulse. The camera transmits
the acquired images to a connected computer via Gigabit
Ethernet, which in turn is connected to the microcontroller
system viaUSB in order to configure and start the acquisition.
We also developed a special software tool that allows a user to
control the image acquisition and to perform all related image
processing and analysis tasks with a graphical user interface.

3.3. Design of the LED Ring Light. Using LEDs to implement
the illuminationmodule is an obvious choice, as they produce

Table 1: Number (𝑛), peak wavelength (𝜆𝑝), FWHM (Δ𝜆0.5),
radiated power (Φ𝑒), and total radiated power (∑Φ𝑒) of the LED
types used on the ring light.

𝑛 𝜆𝑝 [nm] Δ𝜆0.5 [nm] Φ𝑒 [mW] ∑Φ𝑒 [mW]
10 935 65 30 300
30 1060 50 5.5 165
20 1300 70 8.5 170
30 1550 130 5.0 150

rather narrow band illumination and can be pulsed with
high intensities and variable frequencies. Based on findings
in our previous work [16], we selected four wavebands for
our current setup that are well suited for skin detection and
designed an LED ring light with 90 LEDs. The number of
LEDs for each waveband is shown in Table 1 and was chosen
with regard to both the expected radiated power of each LED
and a uniform distribution of the LEDs on the ring light.

A uniform distribution of the LEDs around the camera
lens, as well as similar viewing angles and radiant pat-
terns of the different LED types, is very important in
order to achieve a homogeneous illumination. Otherwise,
the extracted spectral signatures of an object would differ
depending on the object’s position in relation to the ring
light. To avoid this problem, we selected LEDs of the
same model and manufacturer (Roithner-Laser ELD-935-
525, ELD-1060-525, ELD-1300-535, and ELD-1550-525) and
performed optical simulations to find the optimal distribu-
tion of the different numbers of LEDs per waveband. For
this purpose, we modeled the single LEDs as light sources
using the FRED Optical Engineering (Photon Engineering
LLC, http://photonengr.com/) software by specifying their
typical peak wavelengths, spectral and radiant power distri-
butions as defined by their datasheets. FRED performs ray
tracing to simulate the propagation of light from each light
source to a virtual target plane. It also provides a scripting
language and batch processing capabilities to run a series of
simulationswith different parameters.Thisway,we compared
different placement patterns and varying positions for the
LEDs by simulating the resulting intensity distribution for
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Figure 4: Distribution of the different LED types on the ring light (a) and resulting illumination distribution and homogeneity (b) projected
on a virtual analysis plane in 5m distance.

each waveband on the target plane. Ideally, the normalized
intensity distributions of all wavebands should be identical,
leading to a homogeneous “color” on the target. The best
solutionwe found and the illumination distribution it created
are shown in Figure 4. Due to the visualization of the four
SWIRwavebands in yellow, red, green, and blue, the resulting
(mixed) color is a soft yellow. Inhomogeneities would be
noticeable by local changes in the color tone but cannot be
observed.

3.4. Eye Safety Evaluation. Eye safety is a critical aspect
of high power SWIR illumination sources, as radiation
with a wavelength of up to 1400 nm can still penetrate
the human eye and cause thermal damage to the retina.
The directive 2006/25/EG of the European Union defines
binding permissible limits for illumination systems with
pulsed light sources, which should be measured as specified
by the applicable standards. For our camera system, this is
DIN EN 62471. The directive defines limits for the effective
radiance 𝐿𝑅 on the retina, which is weighted by a factor
depending on the wavelength of the radiation, and the total
irradiance 𝐸IR on the cornea in a measurement distance of
𝑑 = 0.2m.

As the necessary measurement setup was not available to
us, we analyzed the incident power of the SWIR radiation
on the eye of an observer standing in the “sweet spot” of
the ring light based on the optical simulation. Assuming a
pupil diameter of 7mm, the maximum incident power at a
distance of 𝑑 = 0.2m is achieved by the 935 nm waveband
and reaches a level of 𝑃eye = 0.69mW. This corresponds to a
total irradiance of 𝐸IR ≈ 17.3W/m2.

Table 2: Effective radiance and total irradiance of the ring light’s
most critical waveband (935 nm) on the eye of an observer in a
distance of 𝑑 = 0.2m for short and very long observation times.

𝐿𝑅 [W/(m2
⋅sr)] 𝐸IR [W/m2]

Simulation — 17.3
Worst case scen. 1,355 25
Limit 𝑡 > 1000 s ≈545,000 100
Limit 𝑡 ≤ 10 s ≥2.5 ⋅ 106 ≥3,200

Using a model of our ring light that is simplified in
the “safe direction”, we cross-checked this result using the
specifications given in the LEDs datasheet.The typical radiant
intensity of one 935 nmLED is given as 𝐼𝑒 = 0.1W/sr. Nowwe
assume (at worst case) that all LEDs for the 935 nmwaveband
are continuously powered and directly adjacent, so that the
combined radiant intensity of 𝑛 LEDs can be approximated
as 𝐼 ≈ 𝐼𝑒 ⋅ 𝑛 and the radiating surface as 𝐴 ≈ 𝑛 ⋅ 𝐴LED. Now
we can calculate 𝐿𝑅 and 𝐸IR as follows:

𝐿𝑅 =

𝐼

𝐴

⋅ 𝑅 (𝜆)

𝐸IR =

𝐼

𝑑
2

(1)

with 𝑅(𝜆) being a correction factor according to directive
2006/25/EG and 𝑑 = 0.2m being the distance of an observer
according to DIN EN 62471.

Table 2 shows both our results and the limits defined by
the EU directive. As expected, the total irradiance calculated
using the simplified “worst case” model is a little higher than
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the results from simulation, showing its plausibility. Still, the
calculated values are by far below the permissible limits, even
if the observer stares right into the ring light for a very long
time. This leaves some headroom for further increases of the
ring light’s output power.

3.5. Image Acquisition Principle. In practice, the ring light is
working as a pulsed light source. The microcontroller system
enables its different wavebands one after the other in a fixed
order and simultaneously triggers the camera exposure. To
remove the influence of ambient light, in each acquisition
cycle an additional camera exposure is triggered without the
ring light flashing. This reference image is subtracted from
each of the other images in preprocessing, so that only light
emitted by the ring light in one single waveband remains on
these images, which we call waveband images. Each set of
waveband images and its corresponding reference image are
combined in a multispectral image stack. This method works
well for ambient light from continuous light sources, such
as daylight. Here, all light sources with intensity variations
that are either very slow or very fast compared to one full
acquisition cycle can be regarded as continuous. However,
“flickering” or pulsed light sources, changing their intensity
with frequencies in a magnitude similar to the acquisition
frequency, might cause distortions of the spectral signatures.
In practice, most flickering light sources are incandescent
or fluorescent lamps, flickering at twice the local power
line frequency of 50Hz or 60Hz, therefore having periods
of 10ms or 8.3ms, respectively. By using exposure times
matching this period or any multiples of it, their influence
can easily be reduced to a negligible level.

Our current setup is based on an Allied Vision Goldeye
G-032 SWIR camera, which is equipped with an indium
gallium arsenide (InGaAs) sensor and features a maximum
frame rate of 100 frames per second (FPS) at its full resolution
of 636 ⋅ 508 pixels with 14-bit A/D conversion. Due to
the camera’s very short readout time, it can be operated
at this frame rate with an exposure time close enough to
10ms to remove the effect of flickering lamps. Figure 5
illustrates the chronological order of the signals given by the
microcontroller system within one full acquisition cycle of
50ms, resulting in an effective frame rate of 20 FPS.

4. Image Preprocessing

Each image acquired by the SWIR camera is transmitted to a
PC via Gigabit Ethernet. Simultaneously, the microcontroller

system tells the PC which waveband of the ring light has
been active during the exposure via USB connection. Given
this information, the software running on the PC performs
several preprocessing steps to optimize andmatch the images
in order to compose a multispectral image stack.

4.1. Fixed Pattern Noise Correction. Despite the camera’s
internal two-point nonlinearity correction (NUC), underex-
posed images show significant fixed pattern noise depend-
ing on the actual pixel intensity. As the system design
requires taking one reference image without flashing the
ring light, this noise will have an influence on images taken
in dark environments. To analyze the sensor’s behavior in
detail, the sensor area was homogeneously illuminated using
an adjustable quartz halogen lamp through an integrating
(Ulbricht) sphere and 70 images with increasing brightness
were taken.This image data is used as a look up table to apply
a multiple-point nonlinearity correction to every single pixel.
Figure 9 demonstrates the effectiveness of this method.

4.2. Motion Compensation. In the next step, the waveband
images of one acquisition cycle are combined with a mul-
tispectral image stack. As the waveband images have been
acquired sequentially, the positions of any moving object or
person in the scene might have changed between each image
of the stack. In practice, this will lead to motion artifacts and
potentially cause false classifications due to distorted spectral
signatures. This problem is common to all approaches that
need to coregister sequentially acquired images, such as filter
wheel camera systems [14].

To solve this problem, we propose a frame interpolation
method based on motion estimation and compensation
techniques to properly align all edges in every image of the
stack. For this purpose, optical flow methods have proven to
be a very effective, but computationally expensive approach
[20]: sufficiently high performance for real-time applications
can currently only be achieved by implementations using
graphics hardware (GPUs). Hoegg et al. [21] demonstrated
that this approach can also be used to compensate motion
in coregistered sequential images acquired by a time of flight
camera.

However, optical flow cannot be applied on our data
directly, as illumination conditions and intensity values of
object surfaces might differ strongly between the waveband
images. In particular the first step in image merging, the
subtraction of the (not actively illuminated) reference image,
might cause problems: properly exposed image areas with



Journal of Sensors 7

ti,0 ti,1 ti,2 ti,3 ti,4

t

Ii,0 Ii,1 Ii,2 Ii,3 Ii,4

Mi Mi+1

Δt
T = 5 · Δt

ti+1.0 ti+1.1 ti+1.2 ti+1.3 ti+1.4

Ii+1.0 Ii+1.1 Ii+1.2 Ii+1.3 Ii+1.4

Figure 6: Image sequence of two successive multispectral image stacks 𝑀𝑖 and 𝑀𝑖+1 with 𝑛 = 5 images.
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Figure 7: Optical flow between waveband image 𝐼𝑖,1 and its reference image 𝐼𝑖,0 (a) and between 𝐼𝑖,1 and its successor 𝐼𝑖+1,1 (b). Colored pixels
represent detected motion.

much detail in the actively illuminated waveband images
might be completely dark and without detail in the reference
image.

Therefore, we use the following approach to motion
compensation: consider a full multispectral image stack 𝑀𝑖,
with 𝑖 ∈ N being a sequential number, consisting of 𝑛 images
𝐼𝑖,𝑤, acquired at times 𝑡𝑖,𝑤, 𝑤 = 0, . . . , 𝑛 − 1. Furthermore,
we assume a discrete and equidistant acquisition time Δ𝑡 =

𝑡𝑖,𝑤+1 −𝑡𝑖,𝑤 for each image 𝐼𝑖,𝑤 and a constant acquisition time
𝑇 = 𝑡𝑖+1,0 − 𝑡𝑖,0 = 𝑛Δ𝑡 for the full image stack, as illustrated in
Figure 6.

As we cannot successfully apply optical flow directly to
the sequence of images, that is, between 𝐼𝑖,𝑤 and 𝐼𝑖,𝑤+1 as
shown in the upper row of Figure 7, we also consider a
subsequent multispectral image stack 𝑀𝑖+1 and apply optical

flow for corresponding images, that is, between 𝐼𝑖,𝑤 and
𝐼𝑖+1,𝑤, 𝑤 = 1, . . . , 𝑛 − 1 in a bidirectional manner resulting
in a set of displacement maps (vector fields). Consider

Forward flow: 𝐹(𝑖,𝑤)→ (𝑖+1,𝑤), 𝑤 = 1, . . . , 𝑛 − 1

Backward flow: 𝐹(𝑖+1,𝑤)→ (𝑖,𝑤), 𝑤 = 1, . . . , 𝑛 − 1.

(2)

As 𝐼𝑖,𝑤 and 𝐼𝑖+1,𝑤 have both been acquired with the same
illumination conditions, the results of this operation are
much better, as shown in the lower row of Figure 7. Assum-
ing a constant and linear motion between corresponding
images 𝐼𝑖,𝑤 and 𝐼𝑖+1,𝑤, every vector 𝐹(𝑖,𝑤)→ (𝑖+1,𝑤)(𝑥, 𝑦) in the
displacement maps describing the movement of pixel (𝑥, 𝑦)

between 𝐼𝑖,𝑤 and 𝐼𝑖+1,𝑤 can be regarded as a linear combi-
nation of 𝑛 identical partial vectors (1/𝑛)𝐹(𝑖,𝑤)→ (𝑖+1,𝑤)(𝑥, 𝑦)



8 Journal of Sensors

describing a pixels movement between 𝐼𝑖,𝑤 and 𝐼𝑖,𝑤+1. Based
on this assumption, we now apply the forward and backward
displacement maps partially to estimate the images ̃

𝐼𝑖+1,𝑤 at
intermediate times 𝑡𝑖+1,0, resulting in

̃
𝐼𝑖+1,𝑤 =

(𝑛 − 𝑤)

𝑛

𝐹(𝑖,𝑤)→ (𝑖+1,𝑤) [𝐼𝑖,𝑤] +

𝑤

𝑛

𝐹(𝑖+1,𝑤)→ (𝑖,𝑤) [𝐼𝑖+1,𝑤] ,
(3)

where 𝐹(𝑗,𝑤)→ (𝑘,𝑤)[𝐼𝑗,𝑤] indicates the application of displace-
ment map 𝐹(𝑗,𝑤)→ (𝑘,𝑤) to image 𝐼𝑗,𝑤.

Finally, for all ̃
𝐼𝑖+1,𝑤, 𝑤 = 0, . . . , 𝑛 − 1, the positions of

moving objects will match their position in the reference
image 𝐼𝑖+1,0. Thus, any further processing, that is, subtracting
𝐼𝑖+1,0 from every waveband image 𝐼𝑖+1,𝑤, 𝑤 = 1, . . . , 𝑛 − 1,
and merging the images in one multispectral image stack,
can be applied on this motion-corrected waveband images.
For this application, the optical flow algorithm by Brox et
al. [22], running on a GPU using a CUDA implementa-
tion, was found to be the best choice as it delivers very
good results combined with acceptable run-times. Results
of the motion compensation approach are presented in
Section 6.

4.3. Calibration. With the multispectral image stack being
properly aligned and the ambient illumination subtracted
from all waveband images, lens distortion and differences
in the illumination intensities can be corrected as last step
in the image preprocessing. For this purpose, three sets
of multispectral image stacks are recorded for each lens.
A checkerboard calibration pattern is used to calculate a
correction matrix for the lens distortion for every waveband
individually to compensate for different distortion charac-
teristics due to lateral chromatic aberration of the lens.
Additionally, a plain white surface is used to measure both
vignetting of the lens and light distribution of the ring light
for each waveband and to calculate a respective correction
matrix that normalizes the illumination intensity over the
image area. Finally, a “white reference” tile with uniform
remission characteristics in the SWIR spectral range is used
to measure absolute differences in illumination intensities
between the wavebands, which are stored as a vector of
correction factors for each waveband.This waveband specific
correction data is applied on every image of the multispectral
image stack after the reference image has been subtracted.

5. Image Analysis

The multispectral image stacks acquired by the camera
system are automatically analyzed by software in two steps:
first, a skin classification method analyzes the spectral sig-
nature of each pixel to detect areas that show human skin.
Second, a face detection algorithm searches for faces in the
1060 nm waveband image, as this waveband is very well
suited for this purpose: the remission intensity of skin is
comparably high, with eyes and mouth appearing darker.
Finally, the locations of detected faces are matched against
the results of the skin classification in order to verify their
authenticity.

5.1. Skin Classification. To optimize both classification accu-
racy and run-time performance, the skin classification
method consists of two algorithms, one for coarse-grained
and one for fine-grained classification. Both algorithms
perform pixelwise classification using the spectral signatures
of the individual pixels as follows:

⃗𝑠 (𝑥, 𝑦) = (𝑔1, . . . , 𝑔𝑛−1) , (4)

with each 𝑔𝑤, 1 ≤ 𝑤 < 𝑛, being the greyscale value
of the examined pixel (𝑥, 𝑦) in spectral image 𝐼𝑖,𝑤 of the
multispectral image stack 𝑀𝑖, which consists of 𝑛 spectral
images.

For each pixel (𝑥, 𝑦), the first algorithm calculates nor-
malized differences 𝑑[𝑔𝑎, 𝑔𝑏] for all possible combinations of
greyscale values 𝑔𝑤 within ⃗𝑠(𝑥, 𝑦) as follows:

𝑑 [𝑔𝑎, 𝑔𝑏] = (

𝑔𝑎 − 𝑔𝑏

𝑔𝑎 + 𝑔𝑏

) (5)

with 1 ≤ 𝑎 < 𝑛−1 and 𝑎 < 𝑏 < 𝑛. So for 𝑛 = 5, we get a vector
of normalized differences ⃗

𝑑 with

⃗
𝑑 = (𝑑 [𝑔1, 𝑔2] , 𝑑 [𝑔1, 𝑔3] , 𝑑 [𝑔1, 𝑔4] , 𝑑 [𝑔2, 𝑔3] ,

𝑑 [𝑔2, 𝑔4] , 𝑑 [𝑔3, 𝑔4])

(6)

for each pixel (𝑥, 𝑦). The normalized differences range from
−1 ≤ 𝑑[𝑔𝑎, 𝑔𝑏] ≤ +1. In contrast to the values of the spectral
signatures, they are independent of the absolute brightness of
the analyzed pixel (𝑥, 𝑦), which differs with the measurement
distance. This allows for a robust and fast classification of
skin-like materials by specifying upper and lower thresholds
for each normalized difference. However, this “difference
filter” algorithm is not capable of distinguishing skin from
materials that are very similar to skin, such as some kinds of
silicon used for the creation of masks.

Therefore, a second classification algorithm is applied on
the samples classified as “skin-like.” Based on results of our
previous work [23], we use support vector machines (SVMs)
for this fine-grained classification. The SVMs were trained
using normalized difference vectors ⃗

𝑑, which were calculated
(as described above) based on spectral signatures extracted
from multispectral images of skin, skin-like materials, and
other materials acquired with the presented camera system.
As shown in Section 6, the SVM classifier performs much
better than the difference filter but has a much higher
computational complexity. Limiting the SVM classification
to those samples that have been positively classified by the
difference filter significantly reduces the typical run-time
of the skin detection. In addition, outliers and “unknown”
material samples (samples that were not included in the
training data) are less likely to create false positives when
using two different classifiers. All pixels classified as skin are
stored in a binary image 𝐼Skin with 1 representing skin and 0

representing no-skin.

5.2. Face Detection. In the second step of the image analysis,
we apply state of the art face detection algorithms on the
1060 nm waveband image to detect faces. We tested both
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Figure 8: The multispectral image stack acquired by the camera system and an RGB counterpart.
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Figure 9: False color representation of the waveband images 1060 nm, 1300 nm, and 1550 nm with and without fixed pattern noise (FPN)
correction.

the proprietary FaceVACS software from Cognitec Systems
GmbH and an open source implementation of a local binary
pattern histogram (LBPH) based face recognizer for this
purpose. The result of the skin classification can optionally
be used to improve the performance of the face detection
algorithm by limiting the search for faces to areas in which
skin has been detected. To verify the faces found in the
image, their locations are matched with the result of the skin
detection method. A face is verified as authentic if the ratio
of “skin” to “no-skin” pixels within the facial area is above a
specified threshold.

6. Results and Discussion

The results of our work are separated into four subsections:
first, we present images acquired with our multispectral cam-
era system and the results of the image processing methods.
Second, we describe the design of a study with (by the time of
writing) more than 130 participants and present the acquired

data, consisting of both spectrometer data and multispectral
images. Based on this data, the performance and robustness
of the proposed skin detection and classification approach
are analyzed. Finally, the performance of the fake detection
approach is evaluated.

6.1. Acquisition Quality and Performance. Figure 8 shows
an example of the multispectral image stack acquired by
our camera system after image processing, consisting of
four waveband images and the reference image used to
compensate for ambient light, as well as a color image taken
with a high quality RGB camera for comparison.

Due to insufficiently corrected axial chromatic aberra-
tions of the camera’s lens leading to a focus shift with
increasing wavelengths, it is impossible to have all waveband
images perfectly focused at the same time. This effect can
only be reduced by stopping down the lens to a smaller
aperture. As only the 1060 nm waveband image is used for
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Table 3: Signal to noise ratio (SNR) of the ring light illumination for different target distances and ambient lighting conditions.

Distance [m] Ambient light SNR [dB]
935 nm 1060 nm 1300 nm 1550 nm

1.5 Dark 58 66 66 64
Bright 34 42∗ 42∗ 41

2 Dark 53 62 62 60
Bright 32 39 38 36

3 Dark 47 57 56 54
Bright 23 33 32 30

4 Dark 44 53 52 51
Bright 21 31 30 28

Values marked with ∗ have been cut off due to sensor saturation.

face detection, we focus on this waveband image and accept
a slight falloff in sharpness on the other waveband images.

6.1.1. Influence of Ambient Light. To evaluate the influence
of ambient light on the camera system, a series of images
of a reference target positioned in a distance of ≈1.5m was
taken with varying illumination conditions. The averaged
illumination intensities measured on the reference target are
shown in Figure 11. In this measurement, the ambient light is
not yet subtracted from the signal pulses. Fluorescent lamps
are barely visible for the SWIR camera, while daylight and
incandescent lampsmight increase the overall brightness sig-
nificantly. Evenwithout reaching saturation, the sensor shows
some nonlinear behavior with increasing brightness levels:
the actual signal strength, that is, the difference between
the remission intensities with active ring light illumination
and ambient light only, decreases by up to ≈20% between
dark and bright ambient illumination. However, the relative
intensity differences between the wavebands stay almost
the same and the influence on the normalized differences
between the wavebands is only very small as long as the
sensor is not saturated. Saturation can be avoided easily by
dynamically reducing the exposure time. However, this will
also reduce the acquired remission intensity of the SWIR
pulses. Therefore, ambient light can be widely neglected but
might reduce themaximum operation distance of the camera
system.

6.1.2. Operation Range. The maximum operation distance
of the camera system depends on several factors. The most
important one is the radiated power of the ring light: with
increasing distance to a target, the acquired remission inten-
sities (the “signal”) will strongly decrease until they can no
longer be distinguished from noise. In addition, as described
before, with increasing ambient light the signal strength
slightly decreases, while the absolute (shot) noise increases
[24]. To evaluate the quality of the signal, we measured both
the noise level in the reference image and the signal amplitude
for a target at different distances in both dark and bright

environments and calculated the signal to noise ratio (SNR)
according to [25] as follows:

SNR =

𝜇Signal

𝜎Ref
(7)

with 𝜇Signal being the average signal amplitude on the target
and 𝜎Ref being the standard deviation within the same area
in the reference image. Results are presented in Table 3.
In our experiments, a SNR ≥ 20 dB was enough to ensure
reliable skin classification. Therefore, even in bright daylight
conditions (overcast sky at noon), the system can operate at
distances of up to at least 4 meters.

Besides the signal to noise ratio, the resolution and field
of view of the camera system also put a limit on the operation
range. For reliable face detection and recognition, current
state of the art algorithms require the image of a face to have
an eye-to-eye resolution of≥ 60pixels [4] or≈1 pixel/mm. For
our camera, we selected a lens with a focal length of 50mm,
which results in an angle of view of AOV ≈ 18

∘ and an
operation distance of 𝑑min ≈ 0.7m ≤ 𝑑 ≤ 𝑑max ≈ 2m.

6.1.3. Calibration Results. Figure 9 shows the effectiveness of
the fixed pattern noise correction method: it presents a “false
color” representation of the upper three wavebands before
and after correction. The 1060 nm waveband is mapped to
the red (R), the 1300 nm waveband to the green (G), and the
1550 nm waveband to the blue (B) channel.

An evaluation of the illumination intensity and homo-
geneity of the ring light showed some unexpected results.
First, the 935 nm waveband appears much darker than the
other wavebands, although the combined radiated power
of all 935 nm LEDs is much higher than that of the other
wavebands. A likely explanation is the characteristic of the
camera’s sensor, which is less sensitive in this waveband.
Second, despite coming from the same manufacturer and
having similar packages, the different LED types have slightly
different radiant patterns. Therefore, in practice, the light
distribution is not as good as the simulated distribution.
However, both the absolute intensity differences and the
inhomogeneity can be corrected by applying the calibration
data, as shown in Figure 12.
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Figure 10: Results of the motion compensation method.

Dark room
Fluorescent lamp

Daylight (dark)
Daylight (medium)

Daylight (bright)
Incandescent lamp

0

10000

20000

30000

40000

50000

60000

In
te

ns
ity

 (a
.u

.)

Reference
935nm
1060nm

1300nm
1550nm

Figure 11: Remission intensities of the SWIR light pulses with
increasing ambient light.

6.1.4. Motion Compensation. The results of the motion com-
pensation approach are shown in Figure 10, with the original
image on the left and the corrected image on the right,
both represented as false color images with 3 wavebands.
With a GPU-accelerated implementation using CUDA, the
method based on the dense optical flow algorithm by Brox
et al. [22] currently requires ≈110ms to process the 3 images
on our machine (intel Core i7 4771 CPU, nVidia GTX 780
graphics card, Ubuntu Linux 14.04 64 bit, GCC5.3, CUDA
6.5). When motion compensation is applied in real-time on
a stream of acquired images, it becomes the bottleneck of the
entire image processing chain and limits the frame rate of the
camera system to currently ≈9 FPS with 3 or ≈6.5 FPS with 4
wavebands.Without motion compensation, the performance
is only limited by the camera system’s maximum frame rate
of 25 FPS with 3 or 20 FPS with 4 wavebands.

6.2. Study Design. In order to evaluate the robustness of our
approach to skin detection and to gather training data for
the classification algorithms, we designed a study to acquire
images of a representative number of persons with both our

49/107/93/93
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76/180/1627/162

(a)

165/159/160/159
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159/159/158/158

159/159/158/159
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Figure 12: Ring light homogeneity before (a) and after (b) cor-
rection. Values represent pixel intensities in 935/1060/1300/1550 nm
wavebands.

camera system and anRGB camera (Canon EOS 50D), as well
as spectrometer (TQ irSys 1.7) data in the spectral range of
660 nm to 1700 nm. By the time of writing, the study is still
ongoing. A subset of the resulting database, reduced by the
images of participants that do not agree to publication, will
be made available to the research community by the time this
work is published.

In the following, we present data from 135 participants.
Multispectral SWIR images were taken of all 135 persons
(76 women, 59 men), while RGB images and spectrometer
measurements have only been acquired for 120 of them
(73 women, 47 men). As the study was conducted at our
university, the most common skin types were 2 and 3 and
most of our participants were between 20 and 29 years old
with an average of≈28.The respective frequency distributions
are shown in Tables 4 and 5. It has to be noted that several
of our participants have been wearing make-up. As this will
be a common situation in real-life applications, testing the
influence of make-up was part of this study.

For each subject, spectrometer data was acquired at 16
measuring points on face and arms: 5 points on the face
(forehead, nose, cheek frontal and sideways, and the chin),
3 at the neck (front, sideways, and back), 2 at the ear, 4 at the
arm (front and back of both upper arm and forearm), and 2
at the hand (palm and back). These points have been chosen
as they cover all skin regions that are typically expected in the
field of view of a camera meant for face detection.

With both the RGB camera and the multispectral camera
system, 7 portrait pictures were taken for each subject: three
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Table 4: Age distribution of participants.

Age <20 20–29 30–39 40–49 50–59
𝑁 18 73 21 12 10

Table 5: Skin type distribution of participants.

Skin type 1 2 3 4 5 6
𝑁 3 44 75 9 3 1

frontal shots with different facial expressions, two shots from
an angle of ±45

∘, and two profile shots from an angle of ±90

∘.
Subjects wearing glasses were asked to take them off for these
shots. In this case, we added an additional image with glasses
on for comparison.

In Figure 13, we present both RGB and (false color)
multispectral SWIR portrait images of six participants of our
study representing the skin types 1 to 6 after Fitzpatrick [11].
As expected, the obvious differences of the skin color in the
RGB images are almost neglectable in the SWIR images.

6.3. Robustness of Skin Detection and Classification. In the
following, wewill analyze both spectrometer and camera data
in detail in order to prove the validity of our approach to skin
detection.

6.3.1. Spectrometer Data. For this evaluation, we used spec-
trometer data from only 8 of the 16 measuring points of 101
subjects, leaving out hands, arms, and ears, resulting in a total
of 808 skin samples. We combined these samples with 336
samples of different materials (including different plastics,
textiles, metal, and wood) and transformed the spectrometer
data by applying a model of the ring light’s LEDs in order
to simulate the expected spectral signatures ⃗𝑠

󸀠 of the camera
system. For this purpose, each samples’ reflectance spectrum
is convoluted with each LED’s emission spectrum [26].

We calculated the normalized differences ⃗
𝑑

󸀠 between all
wavebands of the spectral signatures ⃗𝑠

󸀠 for all samples and
applied a principal component analysis (PCA) on the data set.
Figure 14 presents a plot of the two main components, which
already separate most of the samples. Using difference filters
by specifying minimum and maximum thresholds for each
normalized difference in ⃗

𝑑

󸀠, all skin samples can be separated
perfectly from all material samples, as shown in Table 6.

6.3.2. Camera Data. To analyze the data acquired with the
camera system, we extracted the spectral signatures of skin
and a variety of other materials from the images taken
during the study. Pixels showing skin are stored as positive
examples and “no-skin” pixels as negative examples. Similar
to the spectrometer data, we applied a PCA on this data set.
The two main components are illustrated in Figure 15 and
perfectly separate the two classes. However, the difference
filter classifier cannot separate all skin samples from all

Table 6: Confusion matrix of the difference filter classifier applied
to the spectrometer data set.

Predicted class
Skin Material

Actual class Skin 808 0
Material 0 336

Table 7: Confusion matrix of the difference filter classifier applied
to the camera data set.

Predicted class
Skin Material

Actual class Skin 77771 0
Material 1561 99773

Table 8: Confusion matrix of the SVM classifier applied to the
camera data set.

Predicted class
Skin Material

Actual class Skin 77771 0
Material 0 101334

material samples, as shown in Table 7: some material sam-
ples belonging to “CP-Flesh,” a silicon mixture specifically
designed to imitate human skin, show up as false positives.
Therefore, we used LibSVM to train a SVM classifier on the
data set. To evaluate the SVM’s performance, we applied a
tenfold cross validation, with each fold randomly choosing
90% of the samples for training and 10% for testing. The
results of the SVM are shown in Table 8: skin and material
can be separated perfectly.

By analyzing the data and reviewing the acquired images,
we did not find a significant influence of make-up on the skin
classification results. Therefore, we asked one subject to use
very large amounts of make-up and powder and acquired
additional images. We found that only very thick layers of
powder, which are clearly visible in both the RGB and the
SWIR images, could influence the spectral signatures enough
to lead to false negative results. Therefore, our approach to
skin detection proves to be robust against different skin types,
typical make-up, and varying measurement conditions.

6.4. Evaluation of Face Verification. To analyze the face
verification performance of the presented camera system,
we first evaluated the usability and quality of the acquired
images for face detection. Then, we tested the skin classifi-
cation performance of our approach on different fakes and
compared the results to the acceptance rate of state of the art
face recognition software.

6.4.1. Usability of SWIR Images. To evaluate the usability of
the SWIR images, we trained both the proprietary state of the
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Figure 13: RGB and SWIR portrait images of skin types 1 to 6 according to Fitzpatrick [11].
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Figure 14: Two main components (PCA1/PCA2) of a principal
component analysis applied to normalized differences ⃗

𝑑 of the
spectrometer data.

art FaceVACS and the openCV implementation of the LBPH
face recognizer with the RGB face images acquired in the
context of our study.Thenwe fed the algorithms with the face
images acquired with the multispectral camera system and
tried to identify and verify the faces using only the 1060 nm
waveband image.

FaceVACS identified all faces correctly. Furthermore, it
verified 73%of all faceswith a probability score of PS ≥ 99.9%
and 92% with PS ≥ 98%. Only < 4% of all faces were verified
with a probability score of PS < 90%, with PSmin = 76%
being the minimum. These rare examples of low probability
have been investigated in detail andmight be caused by strong
highlights in the eyes (reflections from the ring light) or
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Figure 15: Two main components (PCA1/PCA2) of a principal
component analysis applied to normalized differences ⃗

𝑑 of the
camera data.

differing head poses. However, the acceptance threshold of
70% was met by all test images.

In contrast to this, the LBPH face recognizer did a
surprisingly bad job: it identified only 22%of all 1060 nm face
images correctly and calculated very low confidence values
for those that it actually verified. We compared this result
to its performance when trained on additional SWIR images
(which were not part of the test samples) and got a much
better result of 92% with much better confidence values for
the verified test images. We conclude that the classifier used
by this face recognizer uses features that are not invariant to
absolute greyscale values and excluded this algorithm from
the further evaluation.
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(a) (b)

Figure 16: RGB (a) and SWIR false color (b) image of a subject wearing a mask created using a 3D printer.

6.4.2. Fake Detection Performance. In the context of a pre-
vious research project together with the German Federal
Office for Information Security (Bundesamt für Sicherheit
in der Informationstechnik, BSI), several photo-fakes and
masks, which mimic the face of one of our test subjects, were
manufactured in order to test the vulnerability of face recog-
nition systems and to develop respective countermeasures.
Different materials have been used for these masks, including
special silicon mixtures, plastics, hard resin, textiles, and
paper. Make-up and paint have been applied to the masks
to make them more realistic. With the genuine face of the
subject enrolled in FaceVACS, all fakes and masks achieved
a probability of more than 70% in verification when pictured
using an RGB camera and were accepted, except for the
paper mask. In particular photo-fakes and prints on t-shirts
achieved very high scores in FaceVACS due to a missing
liveness detection.

Using images acquired with our camera system, most
of the fakes achieved much lower scores in FaceVACS even
without skin classification, because the colorants used are less
visible in the SWIR range. This applies to most of the photo-
fakes and prints, as well as plastics and hard resin masks:
verification scores drop from 99.9% down to less than 20%.
Figure 16 shows RGB and SWIR (false color) images of a
subject wearing a mask created using a 3D printer, which is
much easier to detect in the SWIR image. Transparent silicon
masks, however, are still a significant problem.

Adding spectrometer measurements of all fakes to our
database and training a new difference filter classifier showed
that none of the skin-like fakes, such as the silicon masks,
could be separated from skin easily. The same holds true for
the camera data: we added images of the fakes to our data
set and applied the difference filter classifier on it. The results
are shown in Table 9: with this data set, more than 10% of
the material samples are classified as skin, namely, all of the
silicon masks. Fortunately, a SVM classifier produces a much
better result and achieves a precision of 99.968% in a tenfold

Table 9: Confusion matrix of the difference filter classifier applied
to the camera data set including fakes.

Predicted class
Skin Material

Actual class Skin 146821 0
Material 22933 227104

Table 10: Confusion matrix of the SVM classifier applied to the
camera data set including fakes.

Predicted class
Skin Material

Actual class Skin 146734 87
Material 40 249997

cross validation, as shown in Table 10: 87 (0.059%) of the skin
samples are rejected, but only 40 (0.016%) of the material
samples are classified as skin. As each sample is a single pixel
of an image, this error will not have a big influence in reality.

Finally, we tested the classifiers with a new data set. We
took images of two subjects with and without silicon masks
and applied both the difference filter and the SVM classifier
successively on the images. The results of the difference filter
are shown in the upper half of Figure 17: the classifier detects
all skin pixels correctly but also classifies most of the fake
pixels as skin.

A set of both true and false positive samples from the
results of the difference filter classifier was annotated with
correct classes and used as test set for the SVM classifier.
The results are almost perfect, as shown in Table 11: only 16
samples (=pixels) of the fake material are still classified as
skin, while no true skin pixels were rejected.These results also
hold true in practice, as shown in the lower half of Figure 17:
only pixels showing uncovered skin are left in the image,
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Figure 17: Resulting images after difference filter (top) and SVM
classifier (bottom) on a face image without (left) and with (right) a
silicon mask.

Table 11: Confusion matrix of the SVM classifier applied to the fake
testing data set (prefiltered by the difference filter classifier).

Predicted class
Skin Material

Actual class Skin 76783 0
Material 16 47995

while the mask pixels are rejected. Thus, the detected faces
without masks are verified as authentic with a very high ratio
of skin to no-skin pixels within the facial area, while the faces
with masks are reliably rejected as fakes.

7. Conclusions

Weproposed an activemultispectral SWIR camera system for
real-time face detection and verification.The system acquires
four-band multispectral image stacks within an acquisition
time of 50ms. The extraction of spectral signatures from the
acquired images allows for reliable skin detection indepen-
dent of skin type. Our approach requires only one SWIR
camera and uses active small band illumination based on

pulsed LEDs, making it widely independent of ambient
light. Motion artifacts at moving objects due to sequential
acquisition of waveband images are effectively removed by
using optical flow based motion compensation techniques.
The system can be used for a variety of application scenarios
without the need for regular calibration.

For the application of face detection, recognition, and
verification, the active frontal SWIR illumination ensures
robust face detection and extraction of facial features. Based
on the acquired multispectral images, the proposed analysis
methods allow detecting spoofing attacks using fakes or facial
disguises such as silicon masks, which are still a big problem
for state of the art face recognition systems, with significantly
improved reliability.

In addition to the camera system, we presented a database
of face images from several subjects in different poses and
perspectives, acquired with both our camera system and
an RGB camera, supplemented by spectrometer data in
the wavelength range between 660 nm and 1700 nm. This
database will be made available to the research community
on our website by the time this work is published.
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