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Shoreline-mapping tasks using remotely sensed image sources were carried out using the machine learning techniques or using
water indices derived from image sources.This research compared two differentmethods formapping accurate shorelines using the
high-resolution satellite image acquired in Hwado Island, South Korea.The first shoreline was generated using a water-index-based
method proposed in previous research, and the second shoreline was generated using a machine-learning-based method proposed
in this research. The statistical results showed that both shorelines had high accuracies in the well-identified coastal zones while
the second shoreline had better accuracy than the first shoreline in the coastal zones with irregular shapes and the shaded areas
not identified by the water-index-based method. Both shorelines, however, had low accuracies in the coastal zones with the shaded
areas not identified by both methods.

1. Introduction

A coastal zone is defined as “the coastal waters (including the
lands therein and thereunder) and the adjacent shorelands
(including the waters therein and thereunder) strongly influ-
enced by each and in proximity to the shorelines of several
coastal states, and include islands, transitional and inter-
tidal areas, salt marshes, wetlands, and beaches” [1]. Coastal
erosions generally cause serious damage in the ecosystems
and human lives in coastal zones [2]. A shoreline is defined
as “the line along which a large body of water meets the land”
[3]. A shoreline-mapping task is critical for the prevention
of coastal erosion, the management of coastal zones, the
preservation of coastal properties, and the description of
the detailed coastal shapes [4, 5]. Historically, the shoreline-
mapping tasks have been carried out using the ground-
surveying methods, but due to the irregular coastal surfaces

and the huge size of coastal areas, the ground-surveying
method is not an efficient method for the shoreline-mapping
tasks [6].

Research on shoreline mapping using the remote sensing
datasets has been carried out because the utilization of such
datasets is efficient for acquiring the surface and geometric
information of wide coastal zones with high accuracy and
without human access [4–6]. Li et al. (2001) and Guariglia
et al. (2006) compared the multiple techniques for mapping
shorelines using the different datasets [7, 8]. Li et al. (2003)
used high-resolution satellite imagery formapping shorelines
by using the photogrammetry techniques [9]. Liu et al. (2009)
and Choung et al. (2013) used the airborne topographic
LiDAR (light detection and ranging) data for mapping
shorelines by using geometric analysis [4, 10]. Lee (2012)
utilized high-resolution satellite imagery for mapping shore-
lines by using the unsupervised segmentation method [6].
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Figure 1: Hwado Island, South Korea, selected as the study area.

Hannv et al. (2013) and Masria et al. (2015) utilized Landsat
imagery for mapping the shoreline by using the supervised
classificationmethods [11, 12]. Sekovski et al. (2014) and Shen-
bagaraj et al. (2014) used high-resolution satellite and Landsat
imagery, respectively, for mapping shorelines by using the
unsupervised classification methods [13, 14]. Maglione et al.
(2014) and Choung (2015) utilized a high-resolution satellite
image for mapping shorelines using a water index [15, 16].
Bouchahma and Yan (2012) and Choung and Jo (2015)
utilized Landsat imagery for mapping shorelines by using a
water index [5, 17].

A recent research on mapping shorelines using vari-
ous remote sensing data was carried out using two differ-
ent approaches: (1) mapping shorelines by the supervised
approach such as the machine learning techniques and (2)
mapping shorelines by the unsupervised approach based on
the water index derived from multispectral image sources.
A comparison of these two approaches for mapping shore-
lines using the high-resolution image sources, however, has
been limited. This research proposed a machine-learning-
based method and compared the proposed method with the
previous water-index-based method proposed by Choung
and Jo (2015) for mapping accurate shorelines using a high-
resolution satellite image.

2. Study Areas and Datasets

Hwado Island, South Korea, was selected as the study area in
this research due to the data availability (see Figure 1). The

coastal zones of Hwado Island have an approximately 7 km
total shoreline length.

The orthorectified high-resolution satellite image was
acquired by the WorldView-2 satellite on October 11, 2011.
The given WorldView-2 image consists of the four available
spectral bands (blue: 450–510 nm; green: 510–580 nm; red:
630–690 nm; and NIR (near infrared): 770–895 nm), and the
ground resolution of the WorldView-2 image is 50 cm [18].
The horizontal datum of the given WorldView-2 image is
WGS (WorldGeodetic System) 84, and the RMSE (rootmean
square error) of the image is 25 cm.

3. Methodology

This section illustrates the water-index-based method, the
previous method, and the machine-learning-based method,
the proposedmethod, formapping shorelines using the given
WorldView-2 image. Figure 2 presents a flowchart showing
the procedure for mapping shorelines using the two different
methods. In the water-index-based method, the NDWI
(normalized-difference water index) image was generated
from theWorldView-2 image, and then the first binary image
separating the land and water features was generated from
the NDWI image by an adaptive thresholding method. In
addition, the first shorelinewas extracted from the first binary
image by selecting the boundary between the identified land
and water features. In the machine-learning-based method,
the coastal-surface classification map was generated from the
given WorldView-2 image by the support vector machine
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Figure 2: Flowchart showing the procedure for mapping shorelines
using the two different methods.

(SVM) classifier, and then the second binary image was
generated from the coastal-surface classification map by
grouping the land (rock, vegetation) and water features.
Morphological filtering was applied to refine the boundary
between the land and water features in the second binary
image, and then the second shoreline was extracted from
the refined second binary image by selecting the boundary
between the identified land and water features. Finally, the
accuracy of both generated shorelines was measured using
the checkpoints to select the most appropriate approach for
the shoreline-mapping task using the given WorldView-2
image.

3.1. Water-Index-Based Method for Mapping the First Shore-
line. NDWI is a remote-sensing-derived index for detecting
water features such as oceans, rivers, lakes, and reservoirs
from multispectral image sources by using their spectral
bands [5, 16, 19, 20]. As the water features are enhanced
while other features (e.g., land or vegetation features) are
suppressed in NDWI, it is a widely used index for detecting
water features from multispectral image sources [17–19]. In
this study, the NDWI image was generated using the green
and NIR bands of the WorldView-2 image given by (1) [19–
22].

NDWI image =
𝐵𝐺 − 𝐵NIR
𝐵𝐺 + 𝐵NIR

, (1)

where 𝐵
𝐺 and 𝐵NIR are the reflectance of the green and

NIR bands of the given WorldView-2 image, respectively.
The generated NDWI image is shown in Figure 3. As the
NDWI image is the ratio image in which one pixel of one
spectral band is divided by the corresponding pixel of the
other band, the minimum value in the NDWI image is −1,

and the maximum value is 1. As can be seen in Figure 3, the
pixels representing the water features (ocean) have relatively
high values close to 1 while the pixels representing the land
features (vegetation, roads, buildings, etc.) have relatively low
values close to −1.

The next step was to convert the NDWI image into the
first binary image separating the land and water features.
In the water-index-based method, the adaptive threshold
derived from the adaptive thresholding method is used to
separate the land and water features in the NDWI image
because it chooses an adaptive intensity threshold in the
NDWI image for minimizing the intraclass variance of the
white and black pixel groups in the converted binary image
[5, 23]. Hence, the adaptive thresholding method was also
used in this research to convert the NDWI image into the
first binary image separating the land (the black pixels) and
water (the white pixels) features (see Figure 4). As in the
methodology proposed by Choung and Jo (2015), the first
binary image was converted from the NDWI image using
the adaptive thresholding method through the Matlab� pro-
gram (Matlab 2013b,Mathworks, Inc., Natick, Massachusetts,
USA). Figure 4 shows the first binary image converted from
the NDWI image by the adaptive thresholding method.

Finally, the first shoreline was extracted from the first
binary image by selecting the boundary between the land
and water features. Figure 5 shows the first shoreline gener-
ated from the first binary image by selecting the boundary
between the land and water features.

3.2. Machine-Learning-Based Method for Mapping the Sec-
ond Shoreline. Machine learning is defined as “a branch of
artificial intelligence in which a computer generates rules
underlying or based on the raw data that have been fed into
it,” and the machine learning technique is defined as “the
ability of a machine to improve its performance based on
previous results” [24]. Machine learning has multiple advan-
tages because it is useful for high-value prediction and real-
time smart decision-making without human intervention
[25]. The machine learning technique is generally used in
many applications, such as fraud detection, face recognition,
spam filtering, stock trading, and text categorization [26].
Recently, the machine learning techniques have been used
in the remote sensing applications, for detecting important
features and for classifying land covers from the remote
sensing datasets [27].

Machine learning is classified into several methods
according to the type of learning algorithm used, such as the
supervised learning technique operated with training sam-
ples and the unsupervised learning technique not requiring
training samples [28]. SVM, a machine learning technique, is
a supervised learning algorithm for finding the appropriate
hyperplane that maximizes the margins between the two
classes in 𝑛-dimensional spaces [29]. The SVM classifier
has been widely used for the land cover classification tasks
using the remote sensing datasets because it produces a
very accurate classifier and avoids classification noises by
using a hyperplane [30]. Considering these advantages, the
SVM classifier was utilized in this study for generating the
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Figure 3: NDWI image generated from the given WorldView-2 image.
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Figure 4: First binary image converted from the NDWI image through the adaptive thresholding method.

coastal-surface classificationmap from the givenWorldView-
2 image. As can be seen in Figure 1, the coastal zones
in Hwado Island consist of multiple land covers, such as
rocks, artificial structures (buildings, harbors, roads, seafarm
facilities, ships, etc.), water, and vegetation. It was assumed
that the main surfaces of the artificial structures were similar

to the rock features. Hence, three training sample groups
for rocks, water, and vegetation were generated, respectively,
as the main objects in the coastal zones, and each training
sample group was set to include the 15000 pixels for each
land cover. Then the coastal-surface classification map was
generated by the SVM classifier using ENVI 4.5 (Exelis
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Figure 5: First shoreline extracted from the first binary image by selecting the boundary between the land and water features.
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Figure 6: One section of the generated coastal-surface classification map: (a) one section of the given high-resolution satellite image; (b) one
section of the generated coastal-surface classification map.

Visual Information Solution, Inc., Boulder, Colorado, USA).
Figure 6 shows one section of the generated coastal-surface
classification map.

The next step was to convert the coastal-surface clas-
sification map into the second binary image. As the rock

and vegetation features represent the land features, these
features were grouped into the land features in the converted
binary image. Figure 7 shows the second binary image
converted from the coastal-surface classification map. As
seen in Figure 7, the land features were manually set to be
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Figure 7: Second binary image converted from the coastal-surface classification map.

the white pixels while the water features were also manually
set to be the black pixels, respectively, in the second binary
image.

In the second binary image, the land features (the white
pixels) often include small holes and gaps (the black pixels)
due to the irregular shapes of the coastal zones, the continu-
ous wave actions, or the misclassification errors of the SVM
classifier, and they generally cause errors inmapping accurate
shorelines. Hence, in this research, morphological filtering
was applied on the second binary image to remove the small
holes and gaps existing in the land features and to preserve
the shapes of the land features. Morphological filtering is an
image-processing technique for modifying the shapes of the
input objects by running the structure elements with specific
shapes over the input objects [31, 32]. It was recently used
to create new shapes for the input objects for extracting the
accurate boundaries of the important features from remote
sensing datasets [32]. In this research,morphological filtering
was done to remove the small holes in the land features and
to preserve the land feature shapes through the two following
steps (see Figure 8). In the first step, the image dilation filter
was applied to the original binary image shown in Figure 8(a)
to remove the small holes in the land features by expanding
the land features using the structure element. As can be seen
in Figure 8(b), the land features were expanded, and the
small holes in the land features were removed by the image
dilation filter. In the second step, the image erosion filter was
applied to the dilated image for eroding the outside of the
expanded land features to preserve their shapes using the
same structure element. Finally, as can be seen in Figure 8(c),
the outside of the expanded land features was eroded, and

the shapes of the land features were preserved. The shape of
the structure elements is also significant for reshaping the
original objects through morphological filtering [32]. As the
shorelines have a linear structure, the shape of the structure
elements was set as a square. Also, the width of the structure
element was set as 2m based on empirical analysis. In this
research, the entire process of the refinement of the second
binary image by the morphological filtering was carried out
using the Matlab program (Matlab 2013b, Mathworks, Inc.,
Natick, Massachusetts, USA).

After the eroded image was generated through the
morphological filtering process, the second shoreline was
extracted from the eroded image by selecting the boundary
between the land and water features (see Figure 9).

4. Results

4.1. Accuracy Measurement of the Coastal-Surface Classifica-
tion Map. In this section, the accuracy of the coastal-surface
classification map is assessed using the 100 checkpoints,
defined as the first checkpoint group, generated by manual
digitization located around the second shoreline. Table 1
shows the accuracy of the identified coastal surfaces classified
by the SVM classifier.

In the generated coastal-surface classification map, there
were some misclassification errors owing to the following.
First, some water features were misclassified into rock fea-
tures due to the coastal materials located under the shallow
water surfaces. Second, some rock features were misclassified
into water features due to their similar reflectance character-
istics caused by the shadows on the rock surfaces.Third, some
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Figure 8: Process showing morphological filtering applied to the second binary image: (a) one section of the original binary image; (b) one
section of the dilated image; and (c) one section of the eroded image.

Table 1: Accuracy of the coastal surfaces classified by the SVM
classifier.

Overall accuracy 89%
Producer’s accuracy User’s accuracy
(Error of omission) (Error of commission)

Water 70% Water 74%
Rock 96% Rock 93%
Vegetation 75% Vegetation 86%

vegetation features were misclassified into water features or
vice versa, also due to their similar reflectance characteristics

caused by the shades on their surfaces and so forth. Figure 10
shows examples of the misclassification errors that occurred
in the coastal-surface classification map. Figure 10(a) shows
an example of the misclassification in the region where
the water features were misclassified into rock features,
Figure 10(b) shows an example of the misclassification in
the region where the rock features were misclassified into
water features, and Figure 10(c) shows an example of the
misclassification in the region where the vegetation features
were misclassified into water features.

4.2. Accuracy Measurement of the First and Second Shorelines.
In this section, the accuracy of the two shorelines generated
by the water-index- and machine-learning-based methods,
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Figure 9: Second shoreline extracted from the eroded image by selecting the boundary between the land and water features.

Table 2: Accuracy of the first shoreline generated by the water-
index-based method and the second shoreline generated by the
machine-learning-based method.

Accuracies of both shorelines First shoreline
(m)

Second shoreline
(m)

Mean 2.62 0.79
Standard deviation 5.27 2.99
Maximum 28.60 25.02

respectively, was measured through the following steps. First,
100 checkpoints, defined as the second checkpoint group,
were generated by manual digitization, and the average
distance of these checkpoints was 70m (see Figure 11).

Then the accuracy of both shorelines was assessed by
measuring the shortest distance from the checkpoints of the
second checkpoint group to the first and second shorelines,
respectively. Table 2 shows the accuracy of both shorelines
generated by the water-index- and machine-learning-based
methods, and Figure 12 shows the line graphs of the shortest
distances from each checkpoint to the shorelines generated
by the different methods.

5. Discussions

As can be seen in Table 2, the second shoreline generated
by the machine-learning-based method had better overall
accuracy than the first shoreline generated by the water-
index-based method. For a detailed examination of the
comparison results, checkpoint indices located in the regions

where the first or second shoreline had significant errors were
selected (see Figure 13(a)). In Figure 12, the first shoreline
had serious errors in checkpoint indices 1, 18, 23, 24, 42, 43,
52, 55, 56, 70, 71, 76, 79, 85, 98, and 99 while the second
shoreline had serious errors in checkpoint indices 24, 52,
and 55. In general, both shorelines had high accuracy in the
well-identified coastal zones where the boundary between
land and water was easily recognized in the given high-
resolution satellite image. The selected Region 1 shows an
example of the coastal zones where both shorelines had high
accuracy (see Figure 13(b)). The second shoreline generally
had better accuracy than the first shoreline for the following
reasons: (1) the irregular coastal shapes that were hardly
recognized in the NDWI image due to the continuous wave
actions and so forth (checkpoint indices 1, 18, 85, and 99) and
(2) the shaded areas that were not identified in the NDWI
image but were identified in the coastal-surface classification
map generated by the SVM classifier (checkpoint indices
23, 42, 43, 56, 70, 71, 76, 79, and 98). The selected Region
2 (checkpoint index 85) shows an example of the coastal
zones where the second shoreline had better accuracy than
the first shoreline for the first reason (see Figure 13(c)), and
the selected Region 3 (checkpoint indices 42 and 43) shows
an example of the coastal zones where the second shoreline
had better accuracy than the first shoreline for the second
reason (see Figure 13(d)). Both shorelines, however, had low
accuracy in the regions where the coastal zones were hardly
identified due to the shaded areas that were identified neither
in the NDWI image nor in the coastal-surface classification
map (checkpoint indices 24, 52, and 55). The selected Region
4 (checkpoint index 24) shows an example of the coastal zones
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Figure 10: Examples of themisclassification errors that occurred in the coastal-surface classificationmap: (a) example of themisclassification
in the region where the water features were misclassified into rock features; (b) example of the misclassification in the region where the rock
features were misclassified into water features; and (c) example of the misclassification in the region where the vegetation features were
misclassified into water features.
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Figure 11: Locations of the second checkpoint group for the measurement of the accuracy of both shorelines.
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Figure 12: Line graphs of the shortest distance from each checkpoint to the shorelines generated by the different methods.

where both shorelines had low accuracy due to the shaded
areas not identified in both the NDWI image and the coastal-
surface classification map (see Figure 13(e)).

In conclusion, both shorelines had high accuracy in
the well-identified coastal zones while the second shoreline
generated by the machine-learning-based method had better
accuracy than the first shoreline generated by the water-
index-based method in the coastal zones with irregular
shapes, light shades, and so forth. Both methods, however,
showed inefficient performance formapping the shorelines in
the coastal zones with significant shades that were not iden-
tified in the NDWI image or the coastal-surface classification
map. In general, the pixels representing the shaded areas have

the intensity values lower than other pixels in allmultispectral
bands [33], and it causes the errors for identifying the features
in the NDWI image or the coastal-surface classification map
generated by using the multispectral bands of the image
sources. Hence, the additional data not affected by the
shadows would be needed for mapping the shorelines in the
shaded areas.

6. Conclusions

The shoreline-mapping task using remotely sensed image
sources is efficient for the estimation of the shoreline posi-
tionswithout human access.This research compared different
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Figure 13: Detailed examination of comparison results: (a) locations of the selected Regions 1, 2, 3, and 4 in the entire study area; (b) Region
1, where both shorelines had high accuracy; (c) Region 2, where the second shoreline had better accuracy for the first reason; (d) Region 3,
where the second shoreline had better accuracy for the second reason; and (e) Region 4, where both shorelines had low accuracy due to the
shaded areas that were not identified in the NDWI image or the coastal-surface classification map.
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methods (the water-index-based method and the machine-
learning-based method) for mapping accurate shorelines
using a high-resolution satellite image. The water-index-
based method is useful for separating the land and water
features from multispectral image sources, but it is limited
for identifying the various land covers that constitute the
coastal zones. The machine-learning-based method is useful
for identifying these various coastal features with different
spectral-reflectance characteristics, which means that using
the machine-learning-based method is better than using
the water-index-based method for mapping shorelines using
multispectral image sources. There are significant improve-
ments required, however, in future research for the develop-
ment of an automatic shoreline-mapping process and the esti-
mation of shoreline positions in various coastal zones. First,
different machine learning algorithms or any other technique
should be applied to generate a more accurate coastal-surface
classification map for mapping accurate shorelines in various
coastal zones. Second, additional datasets not influenced by
the shadows should be integrated into the image sources for
mapping accurate shorelines not only in the well-identified
coastal zones but also in the shaded coastal zones. Third,
the ground truths acquired by the ground-surveying method
would be used for measuring accuracies of the generated
shorelines and the coastal-surface classification map.
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