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A novel, efficient, and accurate method to detect gear defects under a complex background during industrial gear production is
proposed in this study. Firstly, we first analyzed image filtering and smoothing techniques, which we used as a basis to develop a
complex background-weakening algorithm for detecting the microdefects of gears. Subsequently, we discussed the types and
characteristics of gear manufacturing defects. Under the complex background of image acquisition, a new model S-YOLO is
proposed for online detection of gear defects, and it was validated on our experimental platform for online gear defect detection
under a complex background. Results show that S-YOLO has better recognition of microdefects under a complex background
than the YOLOv3 target recognition network. The proposed algorithm has good robustness as well. Code and data have been
made available.

1. Introduction

In recent years, the demand for online quality inspection
of mechanical parts under high-efficiency, high-precision
manufacturing conditions has continued to grow with
the rapid development of the manufacturing industry.
Considering that a gear is a transmission part with a wide
range of applications in the machinery industry, gear quality
is particularly important in production. The development of
the gear industry currently faces great challenges. Complex
backgrounds, such as oil stains and dust particles, cannot
be avoided in the gear manufacturing line. Identifying ways
to accurately and efficiently identify gear surface defects in
complex backgrounds and improve the quality inspection
accuracy and production efficiency of gear production
lines is important to advance the level of the manufactur-
ing industry.

Traditional testing standards mainly detect the appear-
ance size [1] and shape error [2] of parts, among which the
error is maintained between 0.12mm and 0.23mm. In this
paper, the gear defect is located by a deep learning algorithm,
which lays a foundation for more precise quality inspection

such as the subsequent dimension measurement. The tradi-
tional detection of gear manufacturing defect detection is
based mainly on machine vision [3, 4], in which the contour
extraction algorithm is often used to extract the image fea-
tures of a single gear. After extracting the features, the gear
is detected and checked via template matching. This method
not only processes the image at a slow speed but also has low
detection efficiency because only one gear sample can be
detected in each feature image. In the case of insufficient illu-
mination or complex background, the traditional visual
detection method relies heavily on the light source, and the
background-weakening effect is poor. As a result, detection
accuracy is greatly reduced.

With the rapid development of deep learning in daily
life [5–7] and industrial fields [8, 9], many scholars
attempt to apply deep learning methods for detecting part
defects [10]. To ensure the quality of online defect detec-
tion, the network must exhibit fast positioning speed and
high classification accuracy. At present, the mainstream
target recognition networks include You Only Look Once
(YOLOv3) [11], FAST-RCNN [12, 13], SSD, and FPN
[14]. No complicated computation is required because
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the YOLOv3 target detection network uses an end-to-end
method to regress features. Previous research shows that
YOLOv3 is faster than SSD, FPN, and other target recog-
nition networks. However, the direct application of the
YOLOv3 method to detect gear defects cannot satisfy the
high accuracy requirements in industrial production.
Therefore, the k-means clustering method is adopted to
obtain the most suitable anchor to improve the positioning
and detection accuracy of YOLOv3 for detecting gear
defects. The background is weakened and denoised via
image filtering and smoothing under the complex back-
ground of gear manufacturing, thereby improving the
accuracy and detection efficiency of online gear defect
detection. The proposed algorithm provides reference for
the gear manufacturing industry to improve production
efficiency, enhance product quality, and strengthen quality
control capabilities.

A defect detection algorithm based on the deep learning
algorithm of YOLOv3 for 62 gear line surface manufactur-
ing is proposed in this study, which has the following
main contributions:

(1) By analyzing image filtering and smoothing tech-
nology aimed at the microdefects of gears under
a complex background, this study proposes a com-
plex background-weakening algorithm based on
image filtering and smoothing, which weakens the
background noise of oil and dust, among others

(2) This study designs and opens source gear defect data-
sets for common defects, including missing teeth,
broken teeth, surface scratches, and normal gear

(3) This study proposes an improved network for online
gear defect detection called S-YOLO. This network is
created by combining the types and characteristics of
defects during the actual manufacturing of gears
under the complex background of image acquisition
on the factory production line. S-YOLO improves
detection accuracy

The main structure of this paper is as follows. The second
section mainly describes the related works on gear
manufacturing defects and sorts the techniques of gear
running fault and fatigue damage defect detection. The
third section proposes a background-weakening algorithm
for the complex background in gear manufacturing. The
fourth section introduces the deep learning network target
detection model, which is based on the YOLOv3 model for
improvement and model training. The fifth section designs
and manufactures an online detection platform for indus-
trial defects. The sixth section designs and makes the gear
defect dataset and compares and analyzes the experimental
results. The final section summarizes the research content.

2. Related Work

In the research on fault diagnosis during gear runtime,
Mączak and Jasiński [15] discussed the simulation model
of the helical gearbox and analyzed a phenomenon during

the tooth-meshing process in the presence of manufactur-
ing and assembly errors. This work proposed a kind of
gear fault diagnosis method based on the model. The
detection method is simple, and the detection speed is fast.
However, the effect of gear detection in large-volume
motion on the production line is unknown. Gandarias
et al. [16] took pressure reading as a standard image pro-
cessing technique with the new high-resolution pressure
sensor. It connects the tactile sensor with the robot detec-
tor with high resolution and realizes the image recognition
of the contact object via a convolutional neural network
(CNN) and migration learning. Lu et al. [17] applied the
improved CNN model to an embedded system composed
of signal acquisition and processing circuits and proposed
a method for on-site motor fault diagnosis. A heteroge-
neous computing framework was proposed, and an inte-
grated embedded system was designed based on the
analysis of different motor signals. This method uses arti-
ficial intelligence technology to provide a solution for the
field motor fault diagnosis on small, flexible, and conve-
nient handheld devices. Cheng and Hu [18] proposed a
method based on a physical model to detect the damage
quantification of the planetary gear set. The performance
of the feature in the damage evolution tracking was ana-
lyzed via the double-sample test method, and the state
monitoring of the planetary gear transmission system
was realized. Nabih et al. [19] experimentally verified the
dynamic model of the single-stage gear transmission sys-
tem and analyzed the effect of the perforation on TE.
The results proved that a simple perforation model can
reproduce the actual vibration caused by the failure of
the perforation surface. Younes et al. [20] proposed a vibra-
tion acoustic signal analysis theory. The theory uses the fea-
ture extraction and classification of acoustic signals to
accurately identify the defects of gears and bearings, but its
algorithm cannot identify the exact location of the defects.

In research on gear defect detection through data
acquisition and signal processing during gear operation,
Zhao et al. [21] proposed a gearbox health evaluation
framework based on R/C (run-up/coast-down) signal anal-
ysis by studying the mechanical vibration information. A
feature enhancement scheme based on sparse guidance
was proposed to extract the weak phase jitter associated
with gear defects and detect the damage position of the
gear. Kidar et al. [22] provided the crack characteristics
in the vibration signal through the numerical model of
the data. The analysis of the phase estimated using the
Hilbert method and the signal parameters estimated via
the sliding window-based rotation invariant technique
were compared to achieve the detection of gear cracks. A
sensor position optimization method based on finite ele-
ment analysis and spectrum analysis was proposed in
[23]. The existing two nonlinear models of mechanical
rotating parts were solved, and the dynamic response of
the whole system under defect excitation was used to
determine the predictive maintenance for defect detection
in the optimal sensor location. The defect of mechanical
rotating parts was accurately detected. Moreno et al. [24]
proposed various signal processing strategies for the
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detection and quantification of early gear defects. A compar-
ison among the early detection capabilities of the micro-
phone, accelerometer, and LDV sensors verified that the
acoustic signal was the first method to detect the initial pro-
gressive crack of the gear (detecting a 1.3mm long crack).
Using a microphone signal had obvious advantages, but the
result was sensitive to speed and torque. The pitting of gears
was tested, and the vibration data was recorded in [25]. The
application of vibration-based time, frequency, cepstrum,
wavelet transform, and other methods in each set of experi-
mental data, pitting fault, and the progress of pitting failure
in gears were reviewed as well.

In research on detecting small defects of gears, Liu
et al. [26] aimed to address the high cost, low efficiency,
slow speed, and low precision of manual detection of auto-
mobile bevel gear surface defects and dimensional mea-
surement. They studied and analyzed the three effective
algorithms—neighborhood means difference method, cir-
cular approximation method, and fast rotation positioning
method. A comprehensive bevel gear quality detection sys-
tem was developed based on multicamera vision technology,
which could simultaneously detect and measure the size of
bevel gear surface defects. Fedala et al. [27] aimed to improve
the detection and recognition ability of gear defects by
extracting the features of the angular frequency domain of
angular acceleration sampling, transmission error, and
instantaneous angular velocity. SVM was then used to clas-
sify and realize gear fault detection under normal and non-
stationary states. To isolate the defect signal from the
measured signal, Djebala et al. [28] proposed a gear defect
detection method based on wavelet multiresolution analysis
and Hilbert transform. Experiments show that, in contrast
with the commonly used analysis tools, this new method
can isolate defect frequency, which enables the detection of
small or combined defects. Focusing on the internal meshing
gear defects, Zhang and Fan [29] proposed a universal for-
mula for the identification and conducted the closed defects
of the N-lobed noncircular gears (N-LNG) positioning func-
tion. The closed condition of the positioning function was
satisfied by introducing two correction parameters: propor-
tional and controllable. The controllable correction parame-
ters were further verified and improved on the basis of the
relationship between the inner pitch curve and the curvature
radius of the outer pitch curve of the inner meshing of N-
lobed noncircular gears. The method was applied in several
numerical examples, and the simulation results showed that
the method can effectively identify and conduct the closed
defects of the N-LNG positioning function.

In the field of gear defect detection, many scholars con-
ducted relevant theoretical research on gear operation faults,
surface defects, and other aspects. However, research on sur-
face manufacturing defects during the manufacturing of
gears and high-speed online defect detection with numerous
parts requires further improvement.

3. Complex Background-Weakening Algorithm

Substantial oil, dust, and other debris accumulate on the con-
veyor during gear production, and they complicate the back-

ground of the gear image sample to be tested. Accurately
identifying the minor manufacturing defects on the gears,
such as scratches and pinion broken teeth, is difficult. Such
defects are called background noise. The images collected
by the camera also generate noise due to the randomness of
the photon flux and the fact that the gears are in motion on
the conveyor belt. If the real pixel value gr,c is disturbed by
the noise nr,c, the gray value obtained is as follows:

ĝr,c = gr,c + nr,c: ð1Þ

Noise nr,c is assumed to be smooth in the whole picture;
that is, the noise is independent of the position of the pixels
on the image. This noise, which is called stationary noise, is
equally distributed for each pixel in the picture.

Two methods are commonly used to weaken the two
kinds of noise in the picture collected during gear produc-
tion: time-domain average denoising [30] and spatial average
denoising [31]. Time-domain averaging captures and aver-
ages multiple images of the same scene. If n images are col-
lected, then time-domain average is obtained as follows:

gr,c =
1
n
〠
n

i=1
ĝr,c;i, ð2Þ

where ĝr,c;i denotes the grayscale value at position ðr, cÞ on
the i image. The time-domain average method effectively
reduces noise, and the variance of the noise is reduced to
original 1/n. To suppress noise, the method must collect
images in the same scene. For online defect detection, the
acquisition of multiple images in the same scene improves
the accuracy of defect identification. However, it greatly
increases the running time of the algorithm, thereby reducing
the overall detection efficiency.

Therefore, the spatial average is used for denoising by
taking a filter with a pixel of ð2n + 1Þ × ð2m + 1Þ and tra-
versing the same image. Depending on the operation and
the filter, the filtering algorithm includes meaning filtering,
block filtering, Gaussian filtering, and median filtering.
Among them, mean filtering and Gaussian filtering are
the most commonly used filtering algorithms. Mean filter-
ing can be expressed as

hr,c =
1

2n + 1ð Þ × 2m + 1ð Þ rj j ≤ n ∧ cj j ≤m

0Other

8><
>: , ð3Þ

where ðr, cÞ denotes the pixel position of the image and
m and n are the parameters that determine the length
and width of the filter.

If the original image matrix is

A =
α1,1 α1,2 ⋯ α1,k

⋮ ⋱ ⋮

αj,1 αj,2 ⋯ αj,k

2
664

3
775, ð4Þ
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then the filtered matrix is

B =
β1,1 β1,2 ⋯ β1,k

⋮ ⋱ ⋮

βj,1 βj,2 ⋯ βj,k

2
664

3
775: ð5Þ

In the actual operation process, the input image is usually
a square, so m = n. The pixel αp,q in matrix A is then proc-
essed through the mean filter with the size of ð2n + 1Þ ×
ð2n + 1Þ to obtain βp,q in B:

βp,q =

αp−n,q−n ⋯ αp−n,q+n

⋮ ⋱ ⋮

αp+n,q−n ⋯ αp+n,q+n

2
6664

3
7775

2n+1ð Þ 2n+1ð Þ

× 1
2n + 1ð Þ2

1 ⋯ 1

⋮ ⋱ ⋮

1 ⋯ 1

2
6664

3
7775

2n+1ð Þ 2n+1ð Þ

:

ð6Þ

As shown in Formulas (3) and (6), the averaging filter
actually averages the pixels in the effective calculation
range and assigns them to the middle value of the filtering
window. For the oil stain and dust background of the gear
production workshop, the mean filter averages pixel
values, such as oil and dust, with the surrounding back-
ground pixels. It blurs the oil, dust, and other small parti-
cles. It also highlights the position and feature information
of the gear in the whole image to prepare for subsequent
feature extraction.

Although the mean filter weakens small particles, such as
oil stains and dust in the background, most of the stationary
noises in the image due to the principle of lens imaging
appear in the form of high-frequency fluctuation of gray
value. The suppression of high-frequency noise via filtering
is not satisfactory. Therefore, to maximize the suppression
of the influence of high-frequency stationary noise, the
Gaussian filter is used for secondary image smoothing. As
such, the eigenvalue of the processed image becomes easy
to extract. The 1D Gaussian filter can be expressed as

gσ xð Þ = 1ffiffiffiffiffiffi
2π

p e−x
2/ 2σ2ð Þ: ð7Þ

The two-dimensional Gaussian filter applied to image
processing can be expressed as

gσ r, cð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e− r2+c2ð Þ/ 2σ2ð Þ = gσ rð Þgσ cð Þ: ð8Þ

After the first mean filtering of complex background
images, the effect of oil, dust, and other abrupt noises in the
background is weakened. The high-frequency noise in the
complex background of the image is weakened after the sec-
ond Gaussian filtering, and the gear body in the relative

image is highlighted, allowing for the easy extraction of the
gear body’s features.

4. Improved Construction and Training of
YOLOv3 Network

4.1. Characteristics of YOLOv3 Network Structure. The
YOLOv3 network model uses an end-to-end network archi-
tecture implemented in a CNN. The basic network structure
is shown in Figure 1.

Its network first divides the input image into S × S grids
and the image by clustering. If the center point of an object
in the image falls in the YOLO-divided grid, then the grid
is responsible for predicting the object. Each grid is responsi-
ble for predicting B bounding boxes and the confidence of the
bounding boxes. The confidence reflects the probability of
containing objects in the bounding box predicted by the net-
work model and the accuracy of the predicted position of the
bounding box, which can be expressed as

Confidence = Pr Objectð Þ × IOU truth
pred , ð9Þ

Type Filters Size Output

Convolutional

Convolutional

32 3 x 3 256 x 256

64

32

64

3 x 3 /2 128 x 128

1 x 1

3 x 3
128 x 128

Convolutional

Convolutional

Convolutional

Residual

Convolutional

Convolutional

Convolutional

Residual

Convolutional

Convolutional
Residual

Convolutional

Convolutional
Residual

Convolutional

Convolutional
Residual

128 3 x 3 /2 64 x 64

64 x 64

64 1 x 1

128 3 x 3

256 3 x 3 /2 32 x 32

32 x 32

128 1 x 1

256 3 x 3

Convolutional 512 3 x 3 /2 16 x 16

16 x 16

256 1 x 1

512 3 x 3

Convolutional 1024 3 x 3 /2 8 x 8

8 x 8

512 1 x 1

1024 3 x 3

Avgpool Global

Connected 1000

Softmax

1 x

2 x

8 x

8 x

4 x

Figure 1: YOLOv3 basic network Darknet-53 [11].
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where IOU (Intersection over Union) represents the intersec-
tion ratio of the real target bounding box and the predicted
target bounding box, which can be represented by Figure 2.
If an object exists in the grid, PrðObjectÞ = 1, then

Confidence = IOU truth
pred : ð10Þ

Otherwise, PrðObjectÞ = 0, that is,

Confidence = 0: ð11Þ

In the YOLOv3 network, each bounding box predicts five
values, including (x, y,w, h) and confidence, where x, y rep-
resents the coordinates of the center point of the predicted
bounding box and w, h are the width and the height of the
bounding box. Confidence is the IOU that predicts the
bounding and the real bounding boxes.

Each grid predicts the probability of C condition catego-
ries, that is, the probability of the mesh containing objects
belonging to a certain category. PrðClassi ∣ObjectÞ. Finally,
the conditional probability is multiplied by confidence, and
the probability that a certain type of object appears in the
box and the degree of fit of the bounding box to the object
are obtained:

Pr Classi ∣Objectð Þ × Pr Objectð Þ × IOU truth
pred

= Pr Classið Þ × IOU truth
pred :

ð12Þ

In the design of loss function, the YOLO network
takes the form of a weighted summation of the partial loss
functions. By weighing the coordinate error, IOU error,
and classification error and summing them, the total loss
function is calculated and can be expressed as

loss = 〠
s2

i=0
coordErr + iouErr + clsErr: ð13Þ

The loss of the predicted center coordinates is
expressed as

λcoord 〠
s2

i=0
〠
B

j=0
ℓobjij xi − xi∧ð Þ2 + yi − yi∧ð Þ2� �

: ð14Þ

The loss of the width and the height of the predicted
bounding box is expressed as follows:

λcoord 〠
s2

i=0
〠
B

j=0
ℓobjij

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffiffiffiffi
wi∧

p� �2 + ffiffiffiffi
hi

p
−

ffiffiffiffiffiffiffi
hi∧

p� �2
	 


ð15Þ

where λcoord denotes the weight factor of the coordinate
error in the overall loss function.

The loss made to the forecast category is expressed as

〠
s2

i=0
ℓobji 〠

B

j=0
pi cð Þ − pi∧ cð Þð Þ2�

: ð16Þ

The loss of confidence in the prediction is expressed as
follows:

〠
s2

i=0
〠
B

j=0
ℓobjij ci − cI∧ð Þ2� �

+ λnoobj 〠
s2

i=0
〠
B

j=0
ℓobjij ci − cI∧ð Þ2� �

, ð17Þ

where C is the confidence score; Ĉ is the intersection of the
predicted bounding box and the basic fact, when an object

exists in a cell; and ℓobjij is equal to 1; otherwise, it is 0; λnoobj
represents the confidence weight when no object exists in
the bounding box [10].

4.2. Improved YOLOv3 Network. The original YOLOv3 net-
work uses a CNN, so the image is extracted through multiple
convolutional layers for abstract feature extraction. Finally,
the image is classified and predicted. Combining the types
and characteristics of defects during actual gear manufactur-
ing and the complex background of image acquisition on the
factory production line, an improved online defect detection
network for YOLOv3 gear is proposed. This network is called
S-YOLO, which stands for smoothing-YOLOv3. The net-
work structure is shown in Figure 3.

In the network structure of S-YOLO, the end-to-end
Darknet-53 convolutional network formed in YOLOv3 is
maintained. Moreover, an image-smoothing layer is added
at the front end of the network to weaken the background
noise of gear image collection during production.

In the smoothing layer, an average filter with pixel 8 × 8 is
used to filter and smoothen the collected image for the first
time. This process is aimed at weakening the influence of
impurities, such as oil and fine dust particles, in the image.
A Gaussian filter with a pixel of 3 × 3 is then used for the sec-
ondary smoothing of the image. This filter mainly reduces

IOU =
Area of overlap

Area of Union

Poor

Good Excellent

Figure 2: IOU evaluation diagram.
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the high-frequency noise in the collected image and further
reduces the influence of oil, dust particles, and other impuri-
ties in the gear production workshop.

After passing the smooth layer, the pixel size and gear
defect characteristics remain unchanged. The following
YOLOv3 network uses three different scale feature maps
for defect detection. As shown in Figure 3, a scale detection
result is obtained through several yellow convolution layers
after the 79th convolutional layer. The input image size
during the experiment is 416 × 416 pix. Hence, the feature
image pixel size at this time is 13 × 13 pix. The receptive
field of the feature map is relatively large at this time
because the downsampling factor is high, which is suitable

for detecting relatively large defect size in the image. The
network starts upsampling from the feature map of the
79th layer. It then fuses with the 61st layer feature map to
obtain the 91st layer of the finer-grained feature map. After
several convolution layers, the feature map 16 times of the
input image is obtained. It has a medium-scale receptive
field and is suitable for detecting objects with medium
defect size. Finally, the 91st layer feature map is again
upsampled and merged with the 36th layer feature map to
obtain a feature map that is downsampled for eight times
from the input image. It has the smallest receptive field
and is suitable for detecting small defect sizes.

4.3. k-Means Clustering-Based A Priori Box Acquisition.
Although the YOLO network itself can improve the value

+

+

⁎

Concatenation

Addition

Further layers

Residual block

Up sampling layer

Detection layer

36 61
79

91

82
Scale1

Scale2
Stride:32

Stride:16

Scale3
Stride:8

94

106

 Down sampling
multiple

  
 

Image
smoothing

layer

Network
layer

 

⁎ ⁎

Figure 3: S-YOLO detection principle.

Sports gear
Industrial

camera

Computers

Motion
control card

LED Light
source EncoderServo motor

Normal gear

Gear defect

Figure 4: Flow chart of the experimental platform.

MindVision high-
speed industrial

camera

Speed-adjustable
conveyor belt Gear motor

Raspberry Pi B3

LED light

Special ring light
source 

Visual screen

Figure 5: Experimental platform.
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of the IOU and constantly adjust the size of the bounding box
via training, allowing the network to modify through a large
amount of data will slow down the network training and
prevent the value of the IOU from gaining substantial
improvement. With the gear training dataset as a basis,
the k-means method is used to find the anchors of the
a priori box that best fits the size of the gear defect.
The standard k-means method uses Euclidean distance,
and this usage will result in large boxes that generate
more errors than small boxes. Therefore, Formula (18)
is used to represent the distance and obtain a large
IOU value in network prediction:

d box, centroidð Þ = 1 − IOU box, centroidð Þ: ð18Þ

5. Online Platform for Industrial
Defect Detection

Figure 4 depicts the system flow chart of the online testing
platform for gear manufacturing defects designed by the
research group. Figure 5 is an online test platform for gear
manufacturing defects built by the research team [10, 32].
This platform includes the conveyor belt, data processor,
data acquisition sensor, light source, and other mechanical
supports, wherein the touch display for inputting and dis-
playing data is the 32-inch industrial touch screen. The vision
sensor device uses the MindVision high-speed industrial
camera with an electronic rolling shutter, which can collect
high-speed moving samples for real-time testing. The data
processor is the Raspberry Pi B3. To ensure sufficient light
in the system box, a band-shaped ambient light source LED

with adjustable brightness is installed. A dedicated circular
light source of Microscope LED Ring Light is installed out-
side the industrial camera to fill the test sample with light
and to obtain a clear sample image. The device uses a variable
speed motor to drive the conveyor belt. The outside of the
box is equipped with a display for visualizing the test results.
The Dell workstation of GPU1080 graphics card, which is
mainly used for data analysis, is used to reduce the compu-
tational load of data processor. At the same time, Raspberry
PI B3 has a wireless communication module, which can
realize end-to-end communication between the test experi-
mental platform and the workstation. The SQL SERVER
2008 R2 database is installed on the workstation to realize
real-time local data capturing and automatic real-time data
storage in the cloud.

The gear is transported to the field of view of the
industrial camera’s lens through the conveyor belt. After
detecting the gear passing, the fiber optic sensor sends a
trigger pulse to the image acquisition part. The image
acquisition part then sends a start pulse to the industrial
camera and the illumination system according to the pre-
set program and delay. Industrial cameras begin to capture
images, and the Microscope LED Ring Light’s dedicated
ring light source provides illumination that matches the
exposure time of the industrial cameras. After capturing
the image, the image acquisition of the camera receives
the analog signal and digitizes it via an analog to digital
conversion. The image acquisition part stores the digital
image in the processor or computer memory. The proces-
sor then processes, analyzes, and recognizes the collected
gear image. It then obtains and saves the detection result.

(a) (b)

(c) (d)

Figure 6: Common defects in the gear manufacturing process. (a) Break. (b) Lack. (c) Scratch. (d) Normal.

Table 1: Distribution of common manufacturing defect datasets for gears.

Defect type Broken tooth Missing tooth Scratch Normal

Number of images
Test Train Test Train Test Train Test Train

100 900 100 900 100 900 100 900
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6. Experimental Results and Analysis

6.1. Production of Gear Datasets. During gear manufactur-
ing, the bluntness of the turbine hob or the uneven mate-
rial of the gear billet often causes gear tooth surface tear,
tooth fracture, and gear surface scratches, among others,
as shown in Figure 6.

Gear defect datasets P = fL, B, S,Ng are collected accord-
ing to the types of defects commonly found in gear produc-
tion. The four types of datasets are broken tooth image set
B = fB1, B2,⋯,B300g, missing tooth image set L = fL1, L2,⋯,
L300g, gear surface scratch image set S = fS1, S2,⋯,S300g,
and normal image set N = fN1,N2,⋯,N300g.

Data enhancements can enrich small datasets or poorly
diverse datasets. Common data enhancement methods
include color jittering, PCA jittering, random scale, random
crop, and horizontal/vertical flip. After collecting 300 pieces
of gear data for each type of gear through industrial cameras,
the images are rotated at random angles to achieve data
enhancement. Finally, 1000 pieces of image data for each type
are obtained, thereby collecting a total of 4000 pieces of gear
image data. The specific data distribution is shown in Table 1.

6.2. Double Filtering Background Weakening. The effect of
mean filtering on image noise removal in the complex back-
ground is considered. As shown in Figure 7, the original gray-
scale image has background noises, such as dust and oil
stains, as illustrated in Figure 7(a). These noises have a cer-
tain influence on the later gear feature extraction. After the
mean filtering operation, as shown in Figure 7(c), the back-
ground noise is partially weakened, and the degree of weak-
ening depends on the convolution kernel size of the mean
filter. After the mean filtering operation, the entire part of
the gear still has all the features required for defect detection.
As indicated in the comparison between Figures 7(b) and
7(d), the smoothness of the image increases after mean filter-
ing. Moreover, the overall pixel gradient tends to be smooth,
which is a good data condition for defect recognition and
classification via the deep learning algorithm.

The comparison in Figure 8 shows that the high-
frequency noise in the image is suppressed after the second-
ary filtering by the Gaussian filter, and the low-frequency
part of the image is highlighted. Thus, the effect of the main
part of the gear in the protruding image is achieved, which
lays the foundation for the following feature extraction.
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Figure 7: Comparison of image smoothness after mean filtering. (a) Original grayscale image. (b) The pixel gradient of the original grayscale
image. (c) Image after mean filtering. (d) Image pixel gradient after mean filtering.
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6.3. Experimental Results under Different k-Means. To con-
stantly adjust the size of the bounding box, the value of the
IOU must be increased. Under the parameter settings in
Table 2, the clustering effect of different k values on training

data in different k-means algorithms is tested. The experi-
mental results are listed in Table 3.

The clustering effect is conducive to the gear defect situ-
ation. S-YOLO allocates three different sizes of a priori boxes

(a) (b)
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Figure 8: Comparison with the Fourier transform of the Gaussian filtered image. (a) Original. (b) Gaussian filtered. (c) The original Fourier
transform. (d) The gaussian filtered Fourier transform.

Table 2: Training part of the main parameter settings.

Parameter Numerical value Parameter Numerical value Parameter Numerical value Parameter Numerical value

Batch 64 Angle 0 Burn_in 2000 Scales 0.1, 0.1

Subdivisions 32 Saturation 1.5 Max_batches 50000 Learning_rate 0.001

Momentum 0.9 Exposure 1.5 Policy Steps Random 1

Decay 0.0008 Hue 0.1 Steps 4000, 4500 Jitter 3

Table 3: The effect of different k values on the clustering effect of datasets.

k value 5

Accuracy 82.32%

Boxes (47, 42), (68, 45), (40, 60), (37, 25), (31, 43)

Ratios [0.67, 0.72, 1.12, 1.48, 1.51]

k value 7

Accuracy 82.32%

Boxes (72, 37), (37, 25), (46, 36), (39, 60), (66, 52), (42, 44), (50, 43)

Ratios [0.65, 0.95, 1.16, 1.27, 1.28, 1.48, 1.95]

k value 9

Accuracy 86.06%

Boxes (39, 61), (58, 53), (54, 38), (33, 25), (43, 45), (41, 26), (31, 41), (46, 40.5), (73, 38)

Ratios [0.64, 0.76, 0.96, 1.09, 1.14, 1.32, 1.42, 1.58, 1.92]
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for each scale when performing three-scale feature detection.
When the k value is equal to 9, nine kinds of a priori boxes
are available for allocation. Hence, when assigning, three a
priori boxes may be assigned for each scale feature. Details
are shown in Table 4.

At the smallest feature map 13 × 13 (larger receptive
field), the larger priority box (58, 53) (54, 38) (73, 38) is
applied to the feature map, which is suitable for detecting
surface scratches with large defect sizes. Medium feature
map 26 × 26 (medium receptive field) applies a medium

Table 4: A priori boxes for different receptive field assignments.

Feature map 13 × 13 26 × 26 52 × 52
Receptive field Big Medium Small

Prior box (58, 53) (54, 38) (73, 38) (39, 61) (43, 45) (46, 40.5) (33, 25) (31, 41) (41, 26)
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Figure 9: Comparison between the detection speed and accuracy of YOLOv3 and other algorithms [11].
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priority box (39, 61) (43, 45) (46, 40.5), which is suitable for
detecting objects of medium-size defects. A smaller priority
box (33, 25) (31, 41) (41, 26) is applied on the larger feature
map 52 × 52 (small receptive field), which is suitable for
detecting objects with small defect sizes, such as broken and
missing teeth. When training, the model training using the
cluster generated by k = 9 can significantly shorten the model
training time and improve the model IOU value.

6.4. Analysis of Gear Defect Detection Results. Figure 9 shows
the combined performance of the YOLOv3 object detection
network and other mainstream networks on the COCO data-
sets. After modifying the YOLOv3 model, the S-YOLO target
detection model is trained. Through model training, the gear
defect detection verification is finally performed on the detec-
tion platform. Figure 10 shows the detection of the S-YOLO
model in the absence of complex background conditions,
such as oil stains and dust particles. Figure 11 depicts the test-
ing situation of the S-YOLO model when oil and dust parti-
cles are filled in the background in the simulation of the
actual factory production on the platform for high-speed
gear manufacturing defect testing. The experimental test
results are provided in Table 5.

A comparison between Table 5 and Figure 11 shows that
proposed network S-YOLO increases the complex back-

ground of gear manufacturing while retaining the advantages
of traditional YOLOv3, which are detection speed and
multiscale prediction. The image-smoothing layer and k
-means clustering method are used to assign the most pri-
ority box to multiscale detection, which greatly inhibits the
influence of the complex background on the detection
effect of the model. It also makes the model lose stability
and improves the average IOU value during training. S-
YOLO is applied to the high-speed gear manufacturing
defect detection experimental platform. Its classification
effect reaches 100% accuracy, and the average confidence
reaches 93.96%. The algorithm has good robustness.

7. Summary

Themanufacturing defects in the gear manufacturing process
were analyzed and studied. A dual-filtering background-
weakening algorithm was proposed to address oil pollu-
tion, dust, and other complex backgrounds during produc-
tion. Combined with the deep learning algorithm and
target detection network model of YOLOv3, the network
model of S-YOLO for gear manufacturing defect detection
was proposed. Nine optimal anchor values were obtained
via k-means clustering, which reduced the declining fluctu-
ation of loss during model training and improved the
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Scratch

Scratch

Scratch

Scratch
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Figure 10: S-YOLO network test results without background interference.
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average IOU value of the model. The gear manufacturing
defect dataset was established using the data enhancement
method.The applicationof theproposed algorithmandmodel
was verified by building an online platform for industrial
defect detection. The results showed that the proposed algo-
rithm can meet actual production requirements.

Data Availability

Code and data have been made available at https://github
.com/Yuli-Ya/Detecting-Gear-Surface-Defects.
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