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This paper proposes a 3D autonomous navigation line extraction method for field roads in hilly regions based on a low-cost
binocular vision system. Accurate guide path detection of field roads is a prerequisite for the automatic driving of agricultural
machines. First, considering the lack of lane lines, blurred boundaries, and complex surroundings of field roads in hilly regions,
a modified image processing method was established to strengthen shadow identification and information fusion to better
distinguish the road area from its surroundings. Second, based on nonobvious shape characteristics and small differences in the
gray values of the field roads inside the image, the centroid points of the road area as its statistical feature was extracted and
smoothed and then used as the geometric primitives of stereo matching. Finally, an epipolar constraint and a homography
matrix were applied for accurate matching and 3D reconstruction to obtain the autonomous navigation line of the field roads.
Experiments on the automatic driving of a carrier on field roads showed that on straight roads, multicurvature complex roads
and undulating roads, the mean deviations between the actual midline of the road and the automatically traveled trajectory were
0.031m, 0.069m, and 0.105m, respectively, with maximum deviations of 0.133, 0.195m, and 0.216m, respectively. These test
results demonstrate that the proposed method is feasible for road identification and 3D navigation line acquisition.

1. Introduction

Cultivated land in hilly regions accounts for 63.2% of the
total cultivated area in China and is an important agricultural
production base for various crops, such as grain, oil plants,
and tobacco [1]. The transportation of agricultural materials
and products on field roads, which accounts for 20% of the
total workforce of agricultural production, is one of the most
important tasks in agricultural production in hilly regions.
Autonomous transportation machines are urgently needed
in hilly regions due to the severe shortage of human labour
and the intense requirement to improve productivity. With
the development of rural construction, a large number of
field roads of cement pavement with widths of 1.2m to
2.5m have been built in the hilly areas of China, thus provid-
ing basic conditions for agricultural mechanization. In fact,
these field roads in hilly regions are often twisted, windy,
and rolling; these characteristics, coupled with occlusion by

different types of crops along both sides, make obtaining an
accurate guide path extremely difficult. As a result, the devel-
opment of automated field transport machines for field roads
in hilly regions has been limited to date.

Obtaining a navigation line for a field road is a prereq-
uisite for transport machines to drive automatically on the
road. To solve this task, an autonomous transport machine
must be equipped with a set of sensors that allow it to accu-
rately determine its position relative to the surrounding
limits. Currently, the most commonly used navigation sys-
tems for agricultural machines are the Global Navigation
Satellite System (GNSS), Machine Vision Navigation Sys-
tem, Light Detection and Ranging (LIDAR), and Combined
Navigation Systems composed of two or more subsystems
[2–7]. The most affordable sensor for direct measurement
of position, GNSS, does not reach this level of accuracy
[8]. Furthermore, GNSS suffers from occasional outages in
position due to communication link failures and loss of
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satellite lock due to occlusion by obstacles such as trees [9,
10]. LASER scanners (LIDAR), or laser rangefinders, are
commonly employed to obtain three-dimensional point
clouds of the area for off-road navigation [11], for urban
search and rescue, or for agricultural applications [12, 13].
LASER-based sensors are able to directly measure distances
and require less computer processing than vision-based
techniques [14]. However, a drawback of this kind of sensors
is that they are expensive. Therefore, the high cost of
real-time kinematic navigation sensors has limited the
commercialization of autonomously guided agricultural
machines [15].

Machine vision systems are very suitable tools for wide
perception of the environment, increasingly being used as a
lower-cost alternative to LIDAR. Cameras are very inexpen-
sive equipment. For example, the camera used in our proto-
type field road carrier costs 252 RMB in commercial shops.
Another interesting point is that images convey a huge
amount of information. In particular, binocular vision has
good environmental perception ability [8, 16]. The guide
path for autonomous transport machines can be extracted
through recognizing the driving range, road conditions, and
surroundings by binocular vision. Therefore, binocular
vision can be used as one of the main methods of navigation
line detection for autonomous field transportation machines
in hilly regions.

The field roads in hilly regions are typically unstruc-
tured roads. For applications in vision navigation, the nav-
igation line of unstructured roads is usually acquired by
analyzing the differences in textures, colors, edges, and
other characteristics between the road and its surroundings
based on the assumption that the road surfaces are planar
or an idealized treatment [17–19]. Based on this idealized
approach, the feasible guide path for vehicles can be identi-
fied. Liu et al. [20] proposed an online classifier based on
the Support Vector Machine (SVM) to classify road scenes
under different weather conditions in different seasons and
presented an accurate road border model for the autono-
mous path detection of Unmanned Ground Vehicles
(UGVs) by using the AdaBoost algorithm and random
sample consensus (RANSAC) spline fitting algorithm.
Wang et al. [21] proposed an unstructured road detection
method based on an improved region growth with the Prin-
cipal Component Analysis-SVM (PCA-SVM) method. A
priori knowledge, such as the location of the road, the ini-
tial cell, and the characteristics of the road boundary cells,
was used to improve the region growth method, and the
classifier was used to select the cell growth method to elim-
inate the miscalculated area. Liu et al. [22] proposed an
unstructured road detection approach based on the color
of the Gaussian mixture model and the parabolic model.
First, based on a combination of averaging filtering and
subsampling, the color image was changed from high reso-
lution to low resolution and given illumination compensa-
tion. Then, a Gaussian mixture model was formulated
based on the K-means algorithm to obtain the optimized
clustering center of the road area and other areas, and the
parameters of the right and left road parabolic models were
solved by using the Least-Squares Method (LSM). Finally,

the road information was extracted after fitting the bound-
ary of the road.

Methods for acquiring unstructured road navigation
lines based on the plane assumption or idealized treatment
have limited the adaptability and effectiveness of automatic
driving machines in actual environments to some extent,
and the requirements of road models under complex condi-
tions have not yet been met. Multidimensional road percep-
tion models have been studied, but these models remain
mainly in the theoretical analysis stage. Jiang [23] proposed
horizontal and vertical methods of modelling the road
surface. In the horizontal direction, a 3D-parameterized
free-shape lane model was established according to the rela-
tionships between the 3D geometric points of the double
boundaries of the lane. In the vertical direction, 3D informa-
tion in the vertical direction of the road surface was obtained
using scale-invariant features. Wang [24] used two vertical
omnidirectional cameras to capture 3D information of road
images, establish a road space model, and calculate the road
width. Byun et al. [25] proposed a novel method for road
recognition using 3D point clouds based on a Markov Ran-
dom Field (MRF) framework in unstructured and complex
road environments. This method transformed a road recog-
nition problem into a classification problem based on MRF
modelling and presented guidelines for the optimal selection
of the gradient value, the average height, the normal vectors,
and the intensity value. Jia et al. [26] was concerned with the
road reconstruction problem of on-road vehicles with
shadows. To deal with the effects of shadows, images were
transformed to the proposed illuminant invariant color
space and fused with raw images. The road region was
reconstructed from a geometric point of view. Deng et al.
[27] proposed a binocular vision-based, real-time solution
for detecting the traversable region outdoors. An appearance
model based on multivariate Gaussian was constructed from
a sample region in the left image. A fast, self-supervised seg-
mentation scheme was proposed to classify the traversable
and nontraversable regions.

In view of the characteristics of field roads in hilly
regions, such as the lack of lane lines, blurred boundaries,
and complex backgrounds, this paper proposed a new
method of 3D navigation line extraction in field roads to
obtain key information (i.e., the autonomous guide line and
slope gradient) based on a low-cost binocular vision system.
The modified methods of image processing, statistical feature
extraction and 3D reconstruction were studied in detail. The
novel features and contributions of this paper include the fol-
lowing: (i) the problem of image recognition with shadows in
the field roads was studied; (ii) according to the facts that the
field roads were characterized by nonobvious features, the
centroid points of the road area were used as matching prim-
itives; and (iii) the fitting curve of continuous centroid points
was used as the navigation line for unmanned agricultural
machinery on the field roads.

The object was to obtain the navigation line with 3D
coordination information. First, after obtaining the road area
by threshold segmentation and shadow recognition, the cen-
troid of the road area as its statistical feature was extracted
and then smoothed as the geometric primitives of stereo
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matching. Then, the homography matrix was solved through
Speeded-Up Robust Features (SURF) detection based on the
RANSAC algorithm, and the epipolar constraint was applied
to achieve accurate feature matching. Furthermore, the 3D
information of the navigation line was extracted from the
matched centroid points. Finally, an automatic driving test
of an autonomous carrier was conducted to verify the pro-
posed method.

2. Image Processing

2.1. Image Processing Method Architecture. The objective of
image processing is to distinguish the road area from its sur-
roundings. The proposed image processing procedure con-
sists of three main linked phases: (i) image segmentation,
(ii) identification of the shadow areas, and (iii) the integra-
tion operation. Figure 1 shows the full structure of the pro-
posed procedure as a flowchart.

Field roads in hilly regions are irregular and have
blurred boundaries. These characteristics, coupled with the
complex surface status, surroundings, such as trees and
crops, covering the two sides of the road, and various water
stains and shadows smearing the surface, makes acquiring
information on field roads through original images
extremely difficult. Therefore, the multiprocessing of origi-
nal images is required to recognize field roads from their
surroundings. First, the V component in the HSV color
space is separated to perform Otsu threshold segmentation
and postprocessing, and the obvious road area and nonroad
area are obtained. Then, by selecting appropriate parame-
ters, the S and V components are each subjected to point
calculation and then weighted and merged according to dif-
ferent weights to extract the shadow features. Finally, the
shadow area and the nonshadow road area are combined
and postprocessed again to obtain the complete road area
in a binary image.

2.2. Segmentation. Hundreds of field road images were cap-
tured at Chongqing, China, which is a typical hilly area.
The Otsu threshold segmentation effects of these images
in RGB, Lab, HSV, and HSI color spaces were compared.
The results showed that the V component in the HSV
color space has a better adaptation to the influence of
water stains and weeds on roads, while the S component
is insensitive to shadows on the road. Therefore, Otsu
threshold segmentation based on the V component in the
HSV color space was adopted to detect the road area.
Because the target of image segmentation is the road scope,
which is relatively large, and there is no detailed require-
ment for small parts, the morphological operations and
connected region area treatment are gradually introduced
to segment a road from its surroundings.

In morphological operations, the opening and majority
operations (size 3 × 3) are applied to remove insignificant
small patches and spurious pixels over the binary image.
Then connected domains are labeled with the 4-adjacent
Seed-Filling method, and their areas are calculated. The con-
tours of the connected domains with a small areas is dis-
carded. The contour curves of the connected domains with

larger areas are redrawn with the polygon fitting method.
Then, the obvious road area and nonroad area are obtained.

2.3. Shadow Processing. Usually, crops or trees along both
sides of the road will cast shadows on the surface with var-
ious shapes during different periods, which will hinder the
road from being distinguished. The V component in the
HSV color space has good adaptability to recognize the road
areas inside the image but is not effective in identifying the
shadows that are often classified as a part of the background.
This inability directly affects the integrity of the road
information; thus, recovery of the road area with shadows
is particularly important. In this paper, the characteristics
of the S component are utilized because the S component
in the HSV color space is not sensitive to shadows. By
selecting appropriate parameters, the S and V components
are each subjected to point calculation and then weighted
and merged according to different weights to extract the
shadow features.

Image display effect can be changed by point calculation.
Define A x, y as the input image and B x, y as the output
image; the point calculation is then

B x, y = k × A x, y + b, 1

where k is the coefficient, b is the intercept, and x, y are the
pixel coordinates.

This paper chooses the straightforward method of
Weighted Averaging (WA) to fuse the S and V components.
Although this method weakens the details of the image to a
certain extent, it is easy to implement, fast, and can improve
the signal-to-noise ratio of the fused image. Let the image of
the V component after the point operation be src1, the image
of the S component after the point operation be src2, and
the weighted and fused image be dst, then the mathematical
expression between the images is

dst = src1 I ∗ α + src2 I ∗ β, 2

where I is the index value of the multidimensional array
element; α is the weight of the src1 matrix element; and β
is the weight of the src2 matrix element.

In order to better obtain the k of the S and V component
point operations and the α and β of the weighted fusion,
Table 1 was designed to perform point operations and
weighted fusion under different k, α and β. Then, the thresh-
old segmentation processing results were evaluated and rep-
resented on a scale of 1 to 10, where 1 indicates the worst
effect and 10 indicates the best effect. The appropriate k, α,
and β values were selected by analyzing and comparing the
processing results.

After a large number of experiments, the V component
point operation slope k1 = 0 5, the S component point opera-
tion coefficient k2 = 8, the weight of the src1 matrix element
α = 0 5, and the weight of the src2 matrix element β = 0 5
were finally selected for shadow processing of the road. The
road shadow detection results are shown in Figure 2.
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It can be seen from Figure 2 that for the road shadows
of different depths and areas, the weighted fusion shadow
processing algorithm can extract the road shadows effec-
tively and accurately and obtain a complete shadow area.
In addition, the algorithm is simple to use without partic-
ular limitations on the scene composition of the original
image, and thus has a broad application scope.

2.4. Image Merging. At this stage, the road area segmented by
the V component and the area recovered from shadow recog-
nition are merged through logic integrated operations and
morphological operations. Then, the complete road area is
distinguished from the nonroad area and presented as a
binary image.

The results of the shadow recognition and image merging
are shown in Figure 3.

3. Navigation Line Extracting

3.1. Extraction of Statistical Features. The rural field road has
no obvious features and also has little difference of the gray
value. Under such conditions, the centroids of the road area
are extracted as the road’s statistical feature points and as
the stereo matching primitive in this paper. Moreover, these
centroids are smoothed by the LSM to eliminate the distur-
bance factor in road area recognition.

The binocular camera used in this study was mounted on
the front of a field transportation machine. Two digital

Field road image

�reshold segmentation and
selection in different color spaces

Color space conversion (RGB to HSV)

HSV channel segmentation

Otsu threshold segmentation
of V component

Otsu threshold segmentation

Shadow
processingImage post

processing

Fusion with weight
coefficients

Connected domain processing

Point opetation of S and
V components

Morphological filtering

Logic operation

Image postprocessing

Road and nonroad

Figure 1: Proposed field road image processing method.

Table 1: Pixel point operation and weighted fusion processing results.

Slope of point
operation

Results
α = 0 1
β = 0 9

α = 0 2
β = 0 8

α = 0 3
β = 0 7

α = 0 4
β = 0 6

α = 0 5
β = 0 5

α = 0 6
β = 0 4

α = 0 7
β = 0 3

α = 0 8
β = 0 2

α = 0 9
β = 0 1

k1 = 0 5
k2 = 2 3 3 7 1 3 1 1 1 1

k2 = 4 4 3 8 8 4 2 2 2 2

k2 = 8 4 4 4 6 9 5 6 5 6

k1 = 0 25
k2 = 2 3 7 1 1 2 1 1 1 1

k2 = 4 3 8 8 2 3 2 2 2 2

k2 = 8 4 3 6 5 6 6 6 5 5

Note: k1 is the coefficient of the V component point operation, and k2 is the coefficient of the S component point operation.
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images of the road and its surroundings were captured by the
left and right cameras, respectively. In fact, only a reduced
area inside the image is of interest either for applying
site-specific treatments or as a reference for guiding, namely,
the region of interest (ROI). The two-thirds area from the
bottom to the upper portion of the binary image is specified

as the ROI based on the camera installation and shooting
angle. The ROI is divided into 12 equidistant segments by
horizontal lines along the vertical direction of the image,
and the pixel coordinates of the road area in each segment
are extracted. Then, the centroid of the ROI is calculated.
Let the target area (road area) be A of each segment inside

Origina image point operation of the S components point operation of the V components weighted fusion threshold segmentation

(a) Shallow shadow

Origina image point operation of the S components point operation of the V components weighted fusion threshold segmentation

(b) Deep and discontinuous shadow

Origina image point operation of the S components point operation of the V components weighted fusion threshold segmentation

(c) Shadow with small areas

Origina image point operation of the S components point operation of the V components weighted fusion threshold segmentation

(d) Shadow with large areas

Figure 2: Shadow processing results based on Weighted Average methods.

(a)

(b)

(c)

Figure 3: Field road shade processing and region segmentation results. (a) Original images. (b) Shadow recognition. (c) Integrated road area.
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the binary image. The formulas for calculating the coordi-
nates (xi, yi) of the centroid of area A are as follows:

xi =
∑x∈Ax
n

,

yi =
∑y∈Ay

n
,

3

where n is the total number of pixels in area A, and x and y
are the pixel coordinates.

The extracted centroids are shown in the original RGB
image, such as Figure 4(a).

As shown in Figure 4(a), the centroids of the extracted
road area can accurately express the direction and, to some
extent, the midline of the road if being connected continu-
ously. However, due to the influence of irregular factors, such
as weeds and water stains, the distinguished field road area
may be inaccurate, thus causing the road area centroids
extracted through the above method to deviate from the
actual centerline. Since the path of the actual field road is
continuous, the line connected continuously by all centroids
should be smooth. Therefore, the extracted centroids are
smoothed through the following phases: (i) least-squares
curve fitting for the centroid points, (ii) obtaining the fitting
function, and (iii) recalculating the new abscissa value
corresponding to the original ordinate of each centroid
using the fitting function. This method can ensure the
continuity of the path and eliminate the impact of incor-
rect path information. Figure 4(b) shows the reacquired cen-
troids of the original images in Figure 4(a). Then, the
reacquired centroids are taken as the statistical feature points
of the road areas.

3.2. Characteristics Matching. Stereo matching is a critical
step of the three-dimensional navigation information extrac-
tion of field roads. Based on image preprocessing, five
sequential processed are carried out for characteristics
matching: (i) first process the left image, extract and smooth
the centroid points of the road area; (ii) then use SURF to
detect the automatic matching of multiple sets of corre-
sponding points in the left and right images to find the
homography matrix; (iii) use the homography matrix and
the centroid points extracted from the left image to find the
correspondence points in the right image; (iv) perform the
epipolar constraint test; and (v), use the obtained pairs of
the corresponding centroid points in the right and left images
to perform 3D reconstruction.

For a binocular camera, each actual centroid of the road
corresponds to two related pixels, namely, one inside the left
image and the other inside the right image. The relationship
between the two pixels is described by the homography
matrix. The matching relationship of the road area centroids
in the left image and those in the right image can be obtained
by solving the homography matrix.

Suppose that p = u, v, 1 T is the homogeneous coordinate
of a 3D point P in an image, and p′ = x, y, 1 T is the homoge-
neous coordinate of the corresponding point of point P in the

matching image. The transformation from point p to its cor-
responding point p′ can be obtained through the homogra-
phy matrix H[28, 29]:

p′ =Hp 4

The homography matrix H describes the transformation
relationships of an actual point in two images, namely trans-
lation, rotation, and scaling. To obtain the relationships
between the statistical features of two images of a field road
more precisely, Speeded-Up Robust Features (SURF) detec-
tion based on the RANSAC algorithm [30] is used to match
the corresponding feature points. The homography matrix
H is then calculated by finding the relationships between
multiple pairs of matching points. In this case, the procedure
is as follows:

(a) The Hessian matrix of each pixel is constructed, and
each pixel point processed by the Hessian matrix is
compared with points in the neighborhoods of the
2D image’s spatial and scale spaces to initially locate
the key points. Then, the key points with weak energy
and fault localization are removed, and the final sta-
ble feature points are filtered out.

(b) The main direction of the feature point is selected
according to the Haar wavelet feature of the cycler
neighborhood of the feature point, and the descriptor
is determined.

(c) The feature points are matched by the Euclidean dis-
tance and the Hessian matrix trace between two fea-
ture points, and the RANSAC algorithm is used to
remove the pseudomatched points to ensure the
effectiveness of the match. The matching results of
an image in Figure 3(b) with its corresponding image
captured by the other camera of the binocular are
shown in Figure 5.

(d) The homography matrix H is calculated using
the findHomography function in the OpenCV
visual library.

(e) The unique matching point in the right image corre-
sponding to each statistical feature point of the road
area (reacquisition centroid) in the left image is cal-
culated according to Equation (4). The matching
results of the road centroids in Figure 4(b) are shown
in Figure 4(c).

Usually homography is estimated between points that
belong to the same plane. This paper uses the SURF algo-
rithm for feature matching and uses the RANSAC method
to remove mismatched points in the whole image plane based
on the following considerations. (1) At present, China’s hilly
field roads have basically been cement hardened, and the dif-
ferences in gray scale and texture of the road surface are
small, with no obvious structural features. If the homography
is limited to the road plane, the matching accuracy may be
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reduced. (2) It is difficult to recognize and mark the bound-
aries of the field roads because the boundaries are nebulous.
If the acquisition of the homography matrix is limited to
the road plane, the image processing needs to be increased,
such as dividing the boundaries of the road, and thus the time
for image processing will be increased.

3.3. Validation of Matching Pairs. In an unknown environ-
ment, the disturbances are complex and changeable, and
the single constraint may not accurately match feature
points. Therefore, the epipolar constraint is introduced to
further validate the matching pairs.

The epipolar constraint describes the constraint of the
point to a line in two images, thus reducing the search for
the corresponding matching point from the entire image
to a line [31, 32]. Figure 6 shows two pinhole cameras, their
projection centers, Cl and Cr, and image planes Il and Ir.
The vectors pl and pr refer to the projections of P onto the
left and right image planes, respectively, and are expressed

in the corresponding reference frame. The line ClCr con-
necting the projection centers of the two cameras is the
baseline. The plane defined by P, Cl, and Cr is called the epi-
polar plane π. The intersection points el and er of the base-
line and the two camera planes are the epipoles. The
intersection lines elpl and erpr between the polar plane and
the two camera planes are the epipolar lines, defined as ll
and lr, respectively.

Consider the triplet P, pl and pr, and if pl is given, P can lie
anywhere on the ray from Cl through pl. However, since the
image of this ray in the right image is the epipolar line
through the corresponding point pr, the correct match must
lie on the epipolar line [32]. Lines ll and lr are called a pair
of polar lines and constitute the epipolar constraints of the
matching points. The epipolar constraint between two
images can be described by the fundamental matrix F.

Define pr and pl as the points in the pixel coordinates
corresponding to pl and pr in the camera reference frame.
According to epipolar geometry, for point pl on the left

(a)

(b)

(c)

Figure 4: Results of road area centroids extracting and processing. (a) Extracted centroids of the road area in the left image; (b) reacquisition
results of the extracted centroids after being smoothed; and (c) corresponding matched points in the right image.

Figure 5: SURF detection and matching result.

Epipolar line Il Epipolar line Ir

Epipolar line

xl

Cl

yl

el

Pl

Il

Pl Pr

yr

Crxr
Ir

er

pr

P

Figure 6: Point correspondence geometry in binocular vision.
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image, the corresponding epipolar line on the right image can
be expressed as follows:

lr = Fpl 5

Correspondingly, for point pr on the right image, the
corresponding epipolar line on the left image can be
expressed as follows:

ll = FTpr 6

If the corresponding point pl in the left image is pr in the
right image, point pr must be on line lr and satisfy the fol-
lowing condition:

pTr Fpl = 0 7

The key to obtaining the epipolar lines is the calculation
of the fundamental matrix F. The fundamental matrix is a
3 × 3 matrix, which represents the correspondence between
the matching points and includes the information of the
camera’s internal and external parameters. The matrix forms
the foundation for the camera’s matching, tracking, and
three-dimensional reconstruction.

Suppose that (ul, vl) and (ur, vr) are the coordinates of pl
and pr, respectively, which can be written as (ul, vl, 1) and
(ur, vr, 1) in the homogeneous reference frame. Then, accord-
ing to equation (7), we have

ul, vl, 1 ∗ F ∗

ur

vr

1
= 0 8

To rewrite the elements of the fundamental matrix F into
a column vector FT = f11, f12, f13, f21,… , f33 , we use

ulur vlur ur ulvr vlvr vr ul vl 1

⋮

f11

f11

⋮

f33

= 0

9

Let A be the coefficient matrix of the equation (9); then,

AF = 0 10

Thus, the fundamental matrix F can be obtained
through the eight-point algorithm [32] based on equation
(10). By utilizing the multiple correspondence points
obtained from the SURF detection based on RANSAC,
the fundamental matrix F is obtained through the

findFundamentalMat function in the OpenCV visual
library. Then, according to equation (5), the corresponding
epipolar line in the right image of any point in the left
image is obtained, and the search range of its matching
point is reduced to a line.

After obtaining the epipolar line, an additional step is
applied to extend the unique matching point obtained by
the homography matrix processing to a rectangle, and
then estimate the positional relationship between the rect-
angle and outer epipolar line. As shown in Figure 7, if
the epipolar line intersects the rectangle, the matching
point is retained. If it is not intersected, the point is
eliminated due to the larger matching error. Therefore,
the matching pairs obtained by the homography matrix
processing are validated through the epipolar line con-
straint processing.

After homography matrix processing and epipolar line
validation, the matching results of the field road’s statistical
feature points of images in Figure 4(c) are as shown in
Figure 8.

The matching results of the images in Figure 8 are
evaluated by the matching error and running time of the
program. The matching error includes two parts: (i) hori-
zontal matching error: the ratio of the pixel difference and
total pixel points in the horizontal direction and (ii) verti-
cal matching error: the ratio of the pixel difference and
total pixel points in the vertical direction. The pixel differ-
ence is defined as the difference value between the match-
ing point and the precise position. The evaluation results
are shown in Table 2.

Figure 8 and Table 2 show that the proposed matching
method based on the homography matrix and epipolar line
constraint has good matching accuracy, a good matching
effect, and a fast matching speed due to the fewer matching
primitives. Furthermore, more processing results of other
images demonstrate that this method has good perfor-
mance in suppressing noise, anti-interference, and is robust
in image transformation.

0 50 100 150 200 250 300
0

50

100

150

200

Figure 7: Position between the rectangular region of the centroids
and the polar lines.
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3.4. 3D Reconstruction. Most roads in hilly regions fluctuate
due to the rugged terrain. The 3D information of the naviga-
tion line not only provides the changes in the direction of a
field road but also offers gradient variation, which has a con-
siderable influence on the control of an autonomous trans-
portation machine. According to the principle of binocular
vision [33], the three-dimensional coordinate information
of the road’s statistical features can be extracted through
the LSM processing of the intrinsic parameters and the
extrinsic parameters obtained by calibration and the coordi-
nates of the statistical feature points of the road obtained
from stereo matching. This process is also called 3D recon-
struction of the binocular vision [34].

As previously described, the pixel positions in the right
and left cameras of point P are pl and pr, which can be
obtained through characteristic matching. The projection
matrixes for the right and left cameras, namely M1 and M2,
can be achieved by camera calibration.

The relation between the pixel coordinate andworld coor-
dinate of the left camera image can be expressed as follows:

Zc1
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v1

1
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m1
11 m1
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13 m1

14

m1
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22 m1
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Yw

Zw

1

11

Similarly, the corresponding relationship for the right
camera image can be expressed as follows:

Zc2

u2

v2

1
=

m2
11 m2
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14

m2
21 m2

22 m2
23 m2
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33 m2

34

Xw

Yw

Zw

1

12

where Zc1
and Zc2

are the coordinate values of P on the two
respective optical axes; (u1, v1, and 1) and (u2, v2, and 1) are
the homogeneous coordinates of pl and pr in the image refer-
ence frame, respectively; (Xw, Yw, Zw, and 1) is the homoge-
neous coordinate of P in the world reference frame; and
mk

ij k = 1, 2 ; i = 1, 2, 3 ; j = 1,… 4 is the ith row and jth col-
umn element ofMk.

From equations (11) and (12), four linear equations
about Xw, Yw, and Zw are obtained:

Table 2: Evaluation of the matching results.

Serial number of
images

Time
(s)

Horizontal
matching error

Vertical
matching error

1 0.322 3.72% 2.66%

2 0.406 4.01% 3.75%

3 0.294 2.79% 3.11%

4 0.381 1.04% 1.59%
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Figure 8: Results of the field road statistical feature matching. (a) Road area statistical feature points in the right image. (b) Epipolar line
validation in the left image.
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The coordinate values of P can be obtained by equa-
tion (13) because 3D point P is the intersection of Crpr
and Clpl (see Figure 6). In order to reduce the influence
of data noise, LMS method is applied. Equation (13) can
be rewritten as follows:

AX = B, 14

where

A =
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X =
Xw

Yw

Zw

,

B =

m1
14 − u1m

1
34

m1
24 − v1m

1
34

m2
14 − u2m

2
34

m2
14 − v2m

2
34

16

According to the LSM, the following equation can
be obtained:

X = ATA
−1
ATB 17

According to equation (17), the 3D coordinates of the
extracted road area centroids can be solved. Thus, the line
that continuously connects all the extracted centroids can
be used as the navigation line of the field road.

Furthermore, the slope gradient of the road can be calcu-
lated using the 3D coordinate information of the extracted
road area centroids. The three-dimensional information can
provide the vehicle with the slope change of the road, which
has a great influence on the vehicle control of the carrier.
Figure 9 shows a slope model in a vehicle reference frame.
If calculated along the column indicated by the dotted line
p1p2 on the image, the obtained relative variation of the coor-
dinate is the slope along the intersection of the surface OV
P1P2 and the ground, which represents the fluctuation of
the road to be driven in front of the vehicle.

From the geometric relationship, the slope component
along the Yv direction is

Sv =
ΔZv

ΔYv
18

The slope component along the Xv direction is

Sv =
ΔZv

ΔXv
19

The horizontal distance of the two spatial points P1 and
P2 is △X2 +△Y2, then the slope can be calculated as

S = ΔZ

ΔX2 + ΔY2
, 20

where ΔX, ΔY , and ΔZ are the coordinate differences
between two road centroids in the vehicle reference frame,
in which Yv is the direction of motion.

Using the three-dimensional coordinates of the road’s
centroid point, the fluctuations of the road can be clearly
obtained, providing data support for the subsequent vehicle
control of the carrier. Figure 10 shows the 3D coordinates
of the road area centroids and their connecting line extracted
from the images in Figure 4. Table 3 shows the calculated
slope gradient of the roads in Figure 4 and its error with
the actual slope gradient of the road.

As shown Figure 10 and Table 3, the three-dimensional
coordinates of the extracted road area centroids can clearly
describe the fluctuations of the road, with the reconstruction
error of the slope gradient remaining below 10%. In fact,
many factors affect the accuracy of 3D reconstruction,
including the accuracy of the intrinsic parameters of the cam-
era, changes in the calibration environment, collocation and
position of the camera, three-dimensional model of the cam-
era, matching accuracy, and target size [35].

4. Experimental Results and Discussion

4.1. Methods. To verify the feasibility and accuracy of the pro-
posed method to extract the navigation line, an autonomous
field road carrier with a binocular vision navigation system
was built, as shown in Figure 11. The length of the field road
carrier is 1.13m, with a wheelbase of 0.76m, a tread of
0.45m, and a maximum load of 150 kg. The experimental
field road is 1.2m wide with a significant change in altitude
and curvature. The speed of the carrier is 2m/s.

A low-cost binocular vision system, model RER-720P2
CAM-90 by RERVISION Technology Co., Ltd. (Shenzhen,
China), was mounted on the front of the carrier at a height
of 0.8m from the ground and with the optical axis inclined

 

 

Direction of motion

Image

IntersectionZ
v

X
v O

v

P1

p1

p2 P2

Yv

ΔX
vΔY

v

ΔZ
vx

o

y

Figure 9: Slope model in vehicle reference frame.
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to 25°with respect to the ground and without lateral displace-
ments. This device was equipped with two 640 × 480 pixel
cameras with a center spacing of 62mm. The images were
processed by OpenCV using the Microsoft Visual Studio
(2010) integrated development environment (IDE). A
high-accuracy real-time kinematic-global positioning system
(RTK-GPS), which included a fixed base station and a rover
on the carrier to reduce the carrier’s position error, was used
to collect the real-time location coordinate information. The
positioning accuracy of the RTK-GPS is 2 cm.

The images were obtained with the two cameras of the
binocular vision system. A personal computer (PC) was used
for image processing, road feature extraction, stereo match-
ing, and 3D reconstruction. On this basis, the extracted 3D
navigation line of the road was applied as the reference of
the path tracking while the carrier automatically drives on
the field road. Using a USB2UIS adapter board, the PC sent
the navigation information to the carrier controller by
RS-232 serial communication. The carrier controller directly
controlled the steering servo motor and the drive motor of
the carrier to realize the automatic driving of the carrier. A

fuzzy neural network control algorithm was adopted to real-
ize path tracking [36]. During visual navigation driving, an
image frame was captured every 0.2 s and then the navigation
line was extracted. Based on the navigation line, the lateral
deviation, heading deviation, and path curvature were calcu-
lated and taken as the input parameters of the neural network
controller. The output parameter of the controller was the
turning angle of the carrier. Figure 12 shows a flowchart of
the entire process.

To study the deviation between the carrier’s automatic
travel trajectory and the actual midline of the road under
various conditions in hilly regions, three types of field
roads—straight, complex multicurvature, and fluctuating
roads—were selected as test roads, as shown in Figure 13.
The carrier drove twice on the same road.

In the first instance, the carrier drove accurately along the
actual midline of the road by manual operation, and the tra-
jectory and coordination values of the carrier were measured
by the RTK-GPS; these values were taken as the midline of
the road. To do so, first, we marked the actual midpoint every
10 cm on the road using a ruler to measure the width of the
road; second, we drove the carrier along these midpoints at
a low speed of 2m/s. A rod was installed in front of the carrier
head to mark the central position of the carrier. As the carrier
drove, the steering was accurately controlled so that the
marking rod passed through the midpoints of the road. In
this way, the carrier was driven along the middle of the road
with minor deviations. Accordingly, the collected coordi-
nates could be taken as the ground-truth and used to validate
the visual navigation approach.

In the second instance, the carrier drove automatically
along the road under the guidance of the extracted 3D
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Figure 10: 3D coordinate information of the extracted centroids. (a) Uphill road. (b) Downhill road. (c) Undulating road. (d) Flat road.

Table 3: Slope gradient of different roads.

Image
number

Calculated slope
gradient

Actual slope
gradient

Error

a 5.47° 5° 9.4%

b 5.66° 6° 5.7%

c 9.95° 10° 0.5%

d 1.06° 1° 6%
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navigation line, and the travel trajectory and coordinate
values of the center point of the carrier were measured
by the RTK-GPS; these values were taken as the automatic
travel trajectory of the carrier. The coordinate deviations
between the midline of the road and the real-time travel-
ing trajectory of the carrier were recorded and compared
using MATLAB.

4.2. Results and Discussion. The midline of the road, the
automatic travel trajectory of the carrier and the deviation
between the midline and the travel trajectory for the
straight road condition, the complex multicurvature road
condition, and the fluctuating road condition are shown

in Figures 14–16, respectively. The deviation includes a left
deviation and a right deviation. The left deviation value is
positive, and the right deviation value is negative.

Figure 14 shows that under the straight road condition,
due to the regular road conditions and lack of other unfavor-
able factors, the automatic travel trajectory and midline
largely overlap, with a maximum deviation of 0.133m and
an average deviation of 0.031m. It indicates that the carrier
can drive automatically under the guidance of the extracted
navigation line with a small deviation near the midline of
the road in a straight path.

Figure 15 shows that under complex multicurvature road
conditions, the maximum deviation between the automatic

(a)
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Zv

Ov Yv

Yw

Zw
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𝛼

(b) (c)

Figure 11: Experimental autonomous carrier. (a) Prototype. (b) Mounting position of the binocular camera. (c) The binocular
camera module.
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Figure 12: Architecture of the autonomous carrier and its binocular vision system.

Figure 13: Three types of test roads considered.

12 Journal of Sensors



travel trajectory and the road midline is 0.195m, and the
average deviation is 0.069m. Compared to that on the
straight road, due to the influence of unfavorable factors such
as curves, shadows, and water stains, which disturb the
extraction of the navigation line, the deviation of the auto-
matic travel trajectory on the complicated multicurvature
road has increased. However, in the real test, the carrier can

keep running along the midline of the road and meet the
requirement of the carrier driving on the field road automat-
ically without going off the road.

The fluctuating road that was tested is composed of
multiple complex segments, including straight and multicur-
vature sections with shadows, water stains covering the sur-
face and weeds or crops covering the two edges. Figure 16
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Figure 14: Automatic driving result under the straight road condition. (a) Actual midline and automatic travel trajectory. (b) Deviation
between the actual midline and travel trajectory.
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Figure 15: Automatic driving result under the multicurvature complex road condition. (a) Actual midline and automatic travel trajectory. (b)
Deviation between the actual midline and travel trajectory.
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shows that under the fluctuating road, the maximum devia-
tion between the automatic travel trajectory and road midline
is 0.216m, and the average deviation is 0.105m. The carrier
can still automatically travel along the midline of the road
without straying off the road.

Through the test results on various roads, the main con-
tributors to the deviation between the automatic travel trajec-
tory and midline include the following: (i) weeds or crops on
the edges of the road that are classified as nonroad areas after
image processing, which results in an extracted navigation
line that differs from the actual midline of the road; (ii)
real-time changes in the carrier posture, which lead to fre-
quent changes in the extracted navigation line, resulting in
a tracking deviation; (iii) the intrinsic error of the RTK-GPS,
which is at least 2 cm; (iv) the measurement method of the
actual midline of the road, which is imprecise under manual
operation mode; (v) the measurement accuracy of the mid-
line coordination of the road and the real-time position coor-
dination of the carrier, which can be interrupted by the
jittering of the cameras and the carrier; and (vi) the error of
the automatic steering control based on the extracted naviga-
tion line.

In fact, the intrinsic errors of the RTK-GPS and real-time
position measurement accuracy cannot be eliminated, but
they have no effect on the autonomous driving of the carrier.
In addition, test results have shown that the utilized fuzzy
neural network control algorithm gives satisfactory results
for automatic steering control [36] and the improvement
obtained by changing the control parameters is small. The
influences of the carrier posture change and the jittering of
the cameras, which are related to the robustness of image cap-
ture, can be reduced by using image mosaics [37] and

adopting an optimal cohesion algorithm for two adjacent
images. Therefore, the extraction of the midline of field roads
under various situations is the most critical factor responsible
for deviations on the road during autonomous navigation
driving.

5. Conclusions

This paper proposed a 3D autonomous navigation line
extraction method for field roads in hilly regions based on a
low-cost binocular vision system. A modified image process-
ing method was presented to strengthen shadow identifica-
tion. The centroid points of the road area as its statistical
feature were extracted and smoothed and then used as the
geometric primitives of stereo matching. The epipolar con-
straint and homography matrix were applied for accurate
matching and 3D reconstruction to obtain the autonomous
navigation line for the field roads. Finally, an automatic driv-
ing test of a carrier in hilly regions was carried out to verify
the proposed method. The experimental results indicate the
following findings:

(a) On the straight road, the average deviation between
the actual midline of the road and the automatic
travel trajectory is 0.031m, with a maximum devia-
tion of 0.133m. On the complex multicurvature road,
the average deviation is 0.069m, with a maximum
deviation of 0.195m. On the undulating road, the
average deviation is 0.105m, with a maximum devia-
tion of 0.216m. The carrier can travel automatically
along the midline of the road without straying off
the road.
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Figure 16: Automatic driving result under the fluctuating road condition. (a) Actual midline and automatic travel trajectory. (b) Deviation
between the actual midline and travel trajectory.
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(b) The proposed 3D autonomous navigation line
extraction method for field roads can realize road
recognition and 3D coordination information acqui-
sition and can meet the requirements for a carrier to
drive automatically on a field road. To some extent,
this method can also be applied for the automatic
driving of other agricultural machines on field roads.
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