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Broilers produce abnormal sounds such as cough and snore when they suffer from respiratory diseases. The aim of this research
work was to develop a method for broiler abnormal sound detection. The sounds were recorded in a broiler house for one week
(24/7). There were 20 thousand white feather broilers reared on the floor in a building. Results showed that the developed
recognition algorithm, using wavelet transform Mel frequency cepstrum coefficients (WMFCCs), correlation distance Fisher
criterion (CDF), and hidden Markov model (HMM), provided an average accuracy, precision, recall, and F1 of 93.8%, 94.4%,
94.1%, and 94.2%, respectively, for broiler sound samples. The results indicate that sound analysis can be used in broiler

respiratory assessment in a commercial broiler farm.

1. Introduction

With the development of large-scale and intensive broiler
industry, problems related to stocking density and poor man-
agement have emerged, resulting in increased incidences of
respiratory diseases such as Newcastle disease, avian influ-
enza, and infectious bronchitis. Broilers will have abnormal
sounds such as cough and snore when they have respiratory
diseases. Presently, the mode of detection of respiratory dis-
eases in broilers is by manual sound distinction. However,
this technique is time-consuming, labor-intensive, subjective,
and has a low degree of real-time detection [1]. If respiratory
diseases in broilers are detected manually, it will cause failure
to detect and deal with the sick chicken in time. Therefore,
effective real-time monitoring of abnormal sounds of broiler
respiratory tracts has practical application value for early
detection of broiler disease conditions, monitoring of broiler
health status, and improving broiler productivity.
Vocalizations produced by animals contain a wide variety
of information about their health, emotion, and behavior [2].
Based on these findings, there were different methods of ani-
mal vocalization analysis reported in recent years [3]. For

instance, acoustic technology has been used to assess pig
sex, age, distress, heat stress [4-6], and piglet stressful con-
ditions [7, 8]; recognize bovine and pig respiratory disease
[9-12]; and monitor cattle, goat, and sheep behaviors and
feed intake [13-18]. Similar work has been conducted with
poultry. Vocalization-based avian influenza disease, respira-
tory disease, and abnormal night vocalization detection have
also been reported in chickens [19, 20]. The short-term feed-
ing behavior detection of broiler chickens based on a real-
time sound processing technology has also been achieved
[21, 22]. Goose behavior recognition based on vocalizations
has also been demonstrated [23]. An advantage to the tech-
nology is the prospect of having noninvasive, real-time,
quantitative, accurate devices to detect welfare issues at a rel-
atively low cost [10]. Although these studies have shown that
animal sound analysis was useful as an early warning tool to
detect stress, behaviors, and diseases in some animal species,
few studies have been reported on broiler abnormal sound
detection in commercial buildings.

Numerous audio features and classifiers have been pro-
posed for use in animal vocalization detection and classifica-
tion [3]. In particular, Mel frequency cepstrum coefficients
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FIGURE 1: System structure. (a) Interior of the broiler building; (b) system model.

108 mr >

A

=]
=

A A A A
¥y 20 m—>|<—22 m—>|<—22 m—>|<—22 m—>|<—22 m—

FI1GURE 2: Top view of the four microphones’ position in the broiler building. Blue triangles represent the network microphones.

(MECCs) with the classifier such as support vector machine
(SVM), hidden Markov model (HMM), or deep neural net-
work (DNN) were commonly used features in animal sound
recognition [24-27] because of its strong ability in sound dis-
tinction and robustness. However, MFCCs only reflected the
static characteristics of acoustic signals. The dynamic char-
acteristics of sound could be obtained by differentiating
operation of MFCCs. This would produce more dimensional
redundant characteristics. Sound feature selection and
improvement should be carried out. Therefore, the objectives
of this study were to develop an innovative method to detect
abnormal broiler sounds for its respiratory assessment.

2. Materials and Methods

2.1. Acquisition of Sounds. For sound acquisition, four net-
work microphones (HD-B-1001, Youanhong Technology
Limited Company, Shenzhen, China) were used to record
sounds of broiler. Sounds in the broiler building were
recorded in mono at a sampling frequency of 48 kHz. Broiler
sounds were sent to a computer over a local area network.
The audio files in the .mp3 format were saved in a computer.
The interior of the broiler building and system model was
shown in Figure 1.

The microphones were positioned approximately 80 cm
from the building floor. The four microphones’ position in
the broiler building was shown in Figure 2. The experiment
was conducted in a commercial broiler farm located in
Gaomi, Shandong Province, China. A group of 20 thousand
Ross 308 white feather broilers aged 30 days was used for
the experiment for one week starting from March 29, 2019.
The body weight of the broilers was about 1.6~2.2kg. The
broilers were reared on the floor in the building of 14m
(W) x108m (L) (Figure 1). The temperature in the building
was controlled at 20~22°C, and the humidity was 46% to
50%. Broilers were fed ad libitum with compound feed pro-
vided in hoppers with natural drinks. Feed was added daily

at 09:30 and 16:45. The building was illuminated with
energy-saving lamps from 00:00 am to 21:00 for about 21 h
of lighting daily during the whole experiment. The light
intensity was set at 50 lux. The broiler building was ventilated
using negative pressure fans during the experiment.

2.2. Sound Analysis and Recognition. In this paper, our task is
to detect broiler abnormal sound in a commercial broiler
building. The main steps of the proposed algorithm are illus-
trated in Figure 3. The detection system is composed of two
parts: the model training part and the testing part for broiler
abnormal sound detection. The algorithm was established in
MATLAB R2014a (The MathWorks, Inc., Natick, MA).

2.2.1. Sound Sample Preparation. The sound analysis started
with sound sample preparation. The abnormal respiratory
broilers were assessed by the veterinary medicine professor
and animal science & technology professor. The sound sam-
ples were detected and extracted manually from the recorded
audio files randomly using Audition CS6 (Adobe Systems
Inc., USA). The selected sound segments contained broiler
cough, snore, and interfering sounds. The interfering sounds
included background noises (e.g., room ventilation) and the
sound created by broiler activities (e.g., crowing, feeding).
Eight thousand one hundred and fifty sound samples,
including 2790 broiler cough samples, 2560 snore samples,
and 2800 interfering sound, were manually selected from the
sound segments. Four-fifths of the samples were used for
training model, and the remaining was used for model testing.

2.2.2. Sound Preprocessing. Sound signal preprocessing
included framing, filtering, and endpoint detection of the
sound samples. The sound samples, which were nonstation-
ary for longer timescales, were then framed by a moving
Hamming window to obtain a short-time stationary signal
(10~30ms). Filtering was done to remove the ambient noise
from the sound signals to improve the signal-to-noise ratios.
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FIGURE 3: Brief flowchart of the broiler sound signal processing and recognition procedure. The red and blue paths denote the model training

and sound detection processes.

This was performed using Spectral Subtraction method with
Minimum Mean Square Error (MMSE) [28]. After that,
broiler vocal signals from different sound samples were proc-
essed with endpoint detection. This was performed based on
cepstrum distance.

Endpoint detection test was performed using six sound
files. The sound segments were preprocessed by framing
and filtering. Detection rate (DER) was used to evaluate the
accuracy of endpoint detection algorithm with

N.
DER= —2|
N

(1)

where N represents the total number of the abovementioned
three types of sounds; Ny, is the number of sound endpoint
detected successfully.

2.2.3. Sound Feature Extraction. In this study, Wavelet
Transform (WT) replaced the fast Fourier Transform (FFT)
in traditional MFCC feature extraction. The 48-dimensional
WMEFCCs were extracted from a continuous sound signal
as follows:

(1) Framed the continuous sound signal by a moving
Hamming window into frames of 512 samples with
a frameshift of 128 samples

(2) Took the Wavelet Transform (WT) to convert each
frame of samples from the time domain to the wave-
let domain

(3) Converted the wavelet scale of each frame from linear
to Mel scale

(4) Took the logarithm of the powers at the Mel
frequencies

(5) Took the discrete cosine transform (DCT) for the log
Mel spectrum

(6) Kept the 1-16 coefficients as the original 16-
dimensional WMFCCs

(7) Calculated the first-order delta coeflicients
(AWMFCC) and the second-order delta coefficients
(A2WMEFCC)

(8) Combined the 16-dimensional original coefficients,
16-dimensional AWMFCCs, and 16-dimensional
A2WMFCCs to get the final 48-dimensional
WMEFCCs for each sound sample

2.2.4. Sound Feature Selection and Improvement. There
were some redundancy coeflicients in the 48-dimensional
WMECCs. Because the contribution of different characteris-
tic parameters in recognition is also different, dimensionality
reduction was applied by selecting the high-contributing
coeflicients and excluding the low-contributing coefficients.
In this study, principal component analysis (PCA) [29] and
correlation distance Fisher criterion (CDF) [30] were,
respectively, used and compared to calculate the contribu-
tion rate of each coefficient. The parameters were ranked in
descending order according to the contribution rate. The
top 24 dimensional coefficients were selected to use for the
following sound classification.

For increasing the contribution of the high-contributing
coeflicients and reducing the influence of the low-contributing
coeficients in classification, the weighted WMFCCs were
calculated by multiplying each coeflicient by its contribution
rate after high-contributing WMFCC selection.

2.3. Sound Classification Algorithm. Hidden Markov model
(HMM) has a strong capability of pattern classification due
to its rich mathematical structure and proven accuracy on
critical applications. It was widely used in signal recognition
and classification [31, 32]. HMM was used to recognize
abnormal broiler sound in this study. A complete specifica-
tion of a HMM requires three sets of probability measures
which are represented by A = (A, B, ). According to prior
knowledge, the number of sound hidden states N was initial-
ized to five. The state-transition probability matrix A and the
initial state probability distribution 7 were initialized to non-
zero numbers randomly. The observation probability matrix
B was described by a Gaussian mixture distribution whose
number was three. B was initialized by global mean and var-
iance of training data. The output of HMM was the one with
the highest output probability of the input sound sample in
each model. There are three basic algorithms in HMM,
namely, the Forward-Backward algorithm, Viterbi algorithm,
and Baum-Welch algorithm. The details of these algorithms
have been described by Rabiner [33]. The overall block
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FIGURE 4: Block diagram of the HMM recognition algorithm.

diagram of the HMM recognition algorithm was shown in
Figure 4.

The performance of the classification was measured with
the accuracy, precision, recall, and F1 measure.

N
A;= =12 % 100%, 2)
N
N.
= —— TP % 100%, (3)
Npp + Npp
N
=— TP % 100%. (4)
Npp + Npy

In these formulas, the cough and snore classified as cough
and snore by the classifier were the true positives (TP), the
unclassified cough and snore were the false negatives (FN),
the correctly classified other sounds are the true negatives,
and the wrongly classified other sounds were the false posi-
tives (FP). N was the total number of the ith class samples.
Considering appraisal index P and R comprehensively, F1
measure was calculated according to

2PR
Fl1=
P+R

X 100%. (5)

3. Results and Discussion

3.1. Endpoint Detection Test. Endpoints of the three types of
sound in the six sound files were detected using the algorithm
based on cepstrum distance. The detection rate (DER) was
calculated based on equation (1). The achieved results are
shown in Table 1.

As seen from the table, the average detection rate was
98.7%. Test results show that the proposed endpoint detec-
tion algorithm performed well. It is also confirmed by other
literature the role of the endpoint detection algorithm for
MFCC distance in increasing accuracy [34]. The DER of
snore was slightly lower than that of others. The reason
was probably that the power of snore was lower than that
of others.

Journal of Sensors

TaBLE 1: Test results of endpoint detection.

Number of Number of .

Sound . Detection rate

o three types of  successful endpoint (DER)
typ sounds (N) detection (Np)
Cough 1265 1248 98.7%
Snore 1315 1283 97.6%
Interfering 6451 6386 99.0%
Total 9031 8917 98.7%

3.2. Sound Characteristic Analysis. The different contribution
rates calculated by PCA and CDF of 48 components were
shown in Figure 5 in sequence. The contribution rate of the
first principal component calculated by PCA and CDF was
13.3% and 11.7%, while the contribution rates of the rest were
all lower than 10%. According to the selection criteria, the
top half coefficients were selected for the following sound
classification. The top 24 components calculated by PCA
and CDF were named PWMFCCs and CWMEFCCs, respec-
tively. The cumulative contribution rate with 93.8% of
PWMEFCCs was higher than the cumulative rate with 86.4%
of CWMFCCs. The PWMFCCs should be selected as the
principal wavelet Mel frequency cepstrum coefficients. In this
study, PWMFCCs and CWMFCCs were both selected as fea-
tures for classification performance comparison.

The weighted PWMFCCs and CWMEFCCs of the three
sound samples were calculated by multiplying each coeffi-
cient by its contribution rate. The results of PWMFCCs are
shown in Figure 6.

As can be seen from Figure 6, the dimensionality of
coefficients after PCA and CDF selection is half of the ori-
gin. The surface chart of the CWMFCCs and the weighted
CWMECCs of cough is more rugged than that of the
PWMFCCs and the weighted PWMFCCs, respectively. This
shows that the discrimination of coefficients selected by
CDF is better than that selected by PCA. Other literatures
have also confirmed that CDF selection could select the com-
ponents that were relatively divisible, because it considered
not only the contribution of each dimension coefficient but
also the correlation between the coefficients of each dimen-
sion coefficient [30].

3.3. Abnormal Sound Classification and Recognition
Algorithm Evaluation. HMM were trained with different
input characteristics, which included MFCCs, WMFCCs,
PWMFCCs, CWMEFCCs, and weighted PWMFCCs. The
HMM were trained using 2232 cough, 2048 snore, and
2240 interfering sound samples. The performance of the
HMM was tested by 1630 sound samples, including 558
cough, 512 snore, and 560 interfering sound samples. The
classification accuracy of the different input characteristics
is shown in Table 2.

The accuracy of classification using WMFCCs as the
input characteristics was better than using MFCCs. Using
the top 24 dimensional coefficients selected by PCA and
CDF as the input characteristics, the average accuracy of clas-
sification was higher than using the 48-dimensional mixing
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TasBLE 2: Classification accuracy of different input characteristics.

Input Dimensions Accuracy (%)
characteristics Cough Snore Interfering Average
MEFCCs 48 829 798 81.2 81.3
WMEFCCs 48 87.1  86.5 81.3 85.0
PWMEFCCs 24 87.8 842 86.5 86.2
CWMEFCCs 24 91.3 879 90.3 89.8
weighted 24 97 933  9L5 938

TaBLE 3: Classification performance of the HMM input weighted
CWMEFCCs.

Performance P (%) R (%) F1 (%)
Cough 97.1 93.2 95.1
Snore 95.7 92.6 94.1
Interfering 90.3 96.5 93.3
Average 94.4 94.1 94.2

coefficients. The classification average accuracy of input
CWMEFCCs was 3.6% higher than input PWMEFCCs,
although the cumulative contribution rate of PWMFCCs
was higher than CWMFCCs. The reason probably was
that the CDF selection took into account the correlation
between coefficients. The overall classification accuracy of
input weighted CWMFCCs reached 93.8%. Therefore, the
HMM of input weighted CWMFCCs worked well for broiler
abnormal sound classification.

The classification performance of the HMM input
weighted CWMEFCCs is shown in Table 3.

For the HMM input weighted CWMFCCs, the precision,
recall, and F1 on average reached 94.4%, 94.1%, and 94.2%,
respectively. Other literatures have also used intelligence
methodology to diagnose animal disease. Banakar et al.
designed an intelligent device to diagnose avian diseases by
using data mining methods and Dempster-Shafer evidence
theory (D-S) with 91.15% accuracy [19]. Huang et al. devel-
oped an avian influenza detection method using MFCC and
SVM with an accuracy rate that ranged between 84% and
90% [35]. Wang et al. assessed air quality based on pigs’
cough sound analysis using MFCC and SVM with an accu-
racy of 95% [25]. The algorithm attained an accuracy of
94.4% which is lower than values reported for algorithms
used to detect pig coughs [25]. It indicated that the classifica-
tion algorithm could be used for broiler abnormal sound
classification effectively.

The results of the novel method of abnormal sound
detection were affected by many factors, such as ambient
noise interference, quality of sound samples, and feature
extraction algorithm. In this research, fan noise has some
effect on sound quality. In addition, the age, body weight,
and type of birds may affect the results of the abnormal
sound detection. Other literature has investigated that pig
vocalization was different according to age, sex, and distress
[4]. Future work can also focus on the specific disease detec-
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tion of different age, body weight, and types of chicken. The
present research gives us inspiration that a lot of useful infor-
mation can be discovered by analyzing the sound of animals.
It is of great significance to the poultry farms.

4. Conclusions

This paper proposed a novel method to automatically
detect broiler abnormal sounds based on a combination of
WMEFCC and HMM. Three types of sound of broilers were
selected for detection including cough, snore, and interfering
sounds. HMM were trained and compared with different
input characteristics, which included MFCCs, WMFCCs,
PWMFCCs, CWMEFCCs, and weighted PWMFCCs. The
results show that the algorithm could effectively identify
broiler abnormal sounds. The classification accuracy, preci-
sion, recall, and F1 on average of HMM input weighted
CWMECCs reached 93.8%, 94.4%, 94.1%, and 94.2%, respec-
tively. Therefore, the HMM of input weighted CWMFCCs
worked well for broiler abnormal sound classification. Fur-
ther studies will be the detection of specific disease of differ-
ent age, body weight, and types of chicken.
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