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In this paper, a bipolar chaotic Toeplitz measurement matrix optimization algorithm for alternating optimization is presented. The
construction of measurement matrices is one of the key techniques for compressive sensing from theory to engineering
applications. Recent studies have shown that bipolar chaotic Toeplitz matrices, constructed by combining the intrinsic
determinism of bipolar chaotic sequences with the advantages of Toeplitz matrices, have significant advantages over other
measurement matrices in terms of memory overhead, computational complexity, and hard implementation. However, problems
such as strong correlation and large interdependence coefficients between measurement matrices and sparse dictionaries may
still exist in practical applications. To address this problem, we propose a new bipolar chaotic Toeplitz measurement matrix
alternating optimization algorithm. Firstly, by introducing the structure matrix, the optimization problem of the measurement
matrix is transformed into the optimization problem of the generating sequence, thus ensuring that the optimization process
does not destroy the structural properties of the matrix; then, constraints are added to the values of the generating sequence
during the optimization process, so that the optimized measurement matrix still maintains the bipolar properties. Finally, the
effectiveness of the optimization algorithm in this paper is verified by simulation experiments. The experimental results show
that the optimized bipolar chaotic Toeplitz measurement matrix can effectively reduce the reconstruction error and improve the

reconstruction probability.

1. Introduction

Compressed sensing (CS) [1, 2] is a new framework for signal
sampling. It enables to sample sparse signals at a sampling
rate much lower than Nyquist’s and to achieve accurate
recovery of the original signal with high probability. The sig-
nal processing method based on compressed sensing theory
does not depend on the bandwidth of the signal and can
break the limitation of the sampling process by Nyquist’s
sampling theory. CS has broad application prospects in the
fields of broadband signal acquisition [3], medical imaging
[4, 5], and data compression [6], etc.

The measurement matrix design is one of the cores of
compressed sensing theory [7]. On the one hand, the nature
of the measurement matrix directly determines whether the
compressive sampling process can fully retain the useful
information of the original signal, and on the other hand,

the design of the measurement matrix needs to take into
account the implementation capability of the compressed
sampling system [8, 9]. Although the widely used random
measurement matrices such as Gaussian and Bernoulli have
good applicability, there are too many free elements in the
matrices, and they are not conducive to hardware implemen-
tation. Based on the above two factors, the bipolar chaotic
sequence is used to construct Toeplitz matrix as a measure-
ment matrix for compressed sensing—called the bipolar cha-
otic Toeplitz measurement matrix—in the literature [10].
This measurement matrix is simple to generate and has few
free elements, which greatly reduces the difficulty of hard-
ware implementation and, at the same time, supports fast
algorithms that can solve numerous problems related to con-
volutional operations. Although the restricted isometry
property (RIP) of the bipolar Toeplitz measurement matrix
was proved [11, 12], the constructed bipolar chaotic Toeplitz
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measurement matrix may still have a large correlation with
the sparse dictionary during practical applications, which
affects the compressed sampling reconstruction of the signal.

Measurement matrix optimization is an effective way to
solve the above problem; the current optimization algorithms
on the measurement matrix mainly focus on the optimiza-
tion of random measurement matrix, such as the Elad algo-
rithm [13], the Duarte-Carvajalino algorithm [14], and the
Abolghasemi algorithm [15]. The strategy of alternating opti-
mization between the matrix to be optimized and the target
matrix in the Abolghasemi algorithm can effectively expand
the search space and improve the optimization effect. Based
on the idea of alternating optimization, a weighted measure-
ment matrix optimization objective function was proposed in
the literature [16] to improve the robustness of the compres-
sive sampling system under the condition of considering
both signal adaptation and the matrix’s own characteristics.
The literature [17] introduced the concept of parameter
update in K-SVD to improve the measurement matrix
update and improve the efficiency of matrix optimization.
The literature [18] proposed a new joint optimization algo-
rithm of the measurement matrix and sparse dictionary to
improve the signal compression-aware reconstruction effect
by constructing a new objective function. However, the above
alternating optimization algorithm does not consider the
possible structural constraints of the measurement matrix
itself, so the structural properties of the measurement matrix
itself will be destroyed after optimization. On the premise of
considering the structural properties of the matrix, the liter-
ature [19] proposed an alternating optimization algorithm
for sparse measurement matrices, and the literature [20] pro-
posed an alternating optimization algorithm for cyclic matri-
ces, but both algorithms are not applicable to the bipolar
Toeplitz measurement matrix.

From the above analysis, it can be seen that the existing
measurement matrix optimization methods do not meet the
optimization needs of the bipolar Toeplitz measurement
matrix. The reasons for this are mainly the following two
aspects. On the one hand, the bipolar Toeplitz measure-
ment matrix has a special matrix structure, and the existing
measurement matrix optimization algorithms cannot guar-
antee that the matrix structure remains unchanged after
optimization. On the other hand, the matrix elements of
the bipolar Toeplitz measurement matrix have only two
values, and the existing measurement matrix optimization
algorithm will destroy the bipolar characteristics of the
matrix elements.

To address the above problems, a new bipolar chaotic
Toeplitz measurement matrix alternation optimization algo-
rithm is proposed in this paper. In this paper, starting from
the structural characteristics of Toeplitz matrix, the Toeplitz
matrix is decomposed into the form of weighted summation
of multiple structural matrices, thus converting the matrix
optimization problem into the optimization problem of
matrix generation sequence, which ensures that the original
structure of the matrix optimization process remains
unchanged. Second, a threshold function is introduced to
constrain the values of the generated sequence during the
iterative process, which ensures that the optimized matrix
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still maintains the bipolar property. The experimental results
show that the optimized bipolar chaotic Toeplitz measure-
ment matrix compression-aware reconstruction error is
reduced and the reconstruction probability is significantly
improved.

2. Description of the Problem

2.1. Bipolar Chaotic Sequence. Before constructing a bipolar
chaotic Toeplitz measurement matrix, a bipolar sequence
needs to be constructed first. The pseudorandom sequences
based on chaotic systems have deterministic generating func-
tions and good statistical independence, which are more con-
ducive to hardware implementation, and for this reason, a
bipolar sequence generation method based on chaotic sys-
tems is used in this paper.

A logistic chaotic system is a commonly used method to
generate chaotic sequences. Considering the problem of gen-
erating bipolar Toeplitz measurement matrix, the following
mapping function for the logistic chaotic system is used in
[21]:

xj+1=y(l—2x]2.>,j€]N, (1)

where x; € [-1,1] and p€0,1]; this function is more
suitable for the modulation of digital signals. When u >
0.8371, the logistic chaotic system has a positive Lyapunov
exponent and the system enters a chaotic state; when p =1,
the mapping is traversed on the interval [-1, 1]. As can be
seen from Figure 1, the time series goes through three differ-
ent evolutionary stages of unstable immobility—scycle—
chaos in turn. The closer u is to 1, the closer the range of
values of x distributed over the entire region of -1 to 1; this
means that the more obvious the chaos is. When the logistic
mapping is extremely sensitive to changes in the initial value
after the value of y is determined, the structure of the entire
chaotic system is very different when a small change in the
initial value occurs.

The invariant probability density function of the logistic
chaotic sequence is

, x€[-1,1],

1
V1 - x2 (2)

0, else.

p(x) =

Then, the mean value of the series is

By repeated iterations of Equation (1), a set of logistic

. o
real-valued chaotic sequences {xj}j:o can be generated.
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Then, the sequence A. constitutes a set of bipolar chaotic (i) i i (i)
] Apan-1 Afw)mfz A1<v1)+1 Ay

sequences. When A;,, obtains +1, the value interval of x; is
taken as follows, respectively:

1 1

. e (-5 ) -

() ().

Then, using Equation (2), we can get the equal probabil-
ity of A, obtaining +1, both being 0.5.

2.2. Bipolar Chaotic Toeplitz Measurement Matrix. To ensure
the applicability of the bipolar Toeplitz matrix alternating
optimization algorithm in this paper, two Toeplitz measure-
ment matrices are constructed using the bipolar chaotic
sequence described above [10].

Ay Ay, A, A

O c RMN — e Ana Ay Ay A,
1 \/M >

AM+N—1 AM+N—2 AM+1 AM

(6)

The scalar 1/v/M in Equation (6) is used to normalize the
columns of @ to ensure that the energy of the original signal
x is consistent with the energy of the measured sample signal
y during the dimensionality reductionRY — RM. @, is the
multiblock Toeplitz measurement matrix, and when b=1,
the multiblock Toeplitz measurement matrix degenerates to
the conventional single-block Toeplitz measurement matrix.
Since the generating sequences of both measurement matri-
ces are bipolar chaotic sequences, the two measurement
matrices are collectively referred to as bipolar chaotic Toe-
plitz measurement matrices in this paper.

The RIP properties of the bipolar chaotic Toeplitz mea-
surement matrix have been effectively demonstrated in [9]
and are not repeated here. The focus of this paper is on the
optimization of the bipolar chaotic Toeplitz measurement
matrix. Although the bipolar chaotic Toeplitz measurement
matrix constructed using Equation (6) can satisfy the RIP
property with high probability, there may still be problems
such as strong correlation between the measurement matrix
and the sparse dictionary and large interdependence coeffi-
cients during practical applications, so it is necessary to opti-
mize the constructed bipolar chaotic Toeplitz measurement
matrix to further improve the performance of the measure-
ment matrix.

Currently, the core idea of measurement matrix optimi-
zation is to reduce the interdependence coefficients of the
measurement matrix by reducing the values of the



nondiagonal elements of the Gram matrix. And the main
methods to reduce the values of nondiagonal elements are
threshold shrinkage, gradient descent, and singular value
decomposition. However, the above methods all destroy the
structural properties of the measurement matrix and the
bipolar properties of the matrix elements, so they are not
suitable for the optimization of bipolar chaotic Toeplitz mea-
surement matrices. Based on this, this paper presents a new
bipolar chaotic Toeplitz measurement matrix alternation
optimization algorithm.

3. Bipolar Chaotic Toeplitz Matrix Alternating
Optimization Algorithm

3.1. Optimization of the Objective Function. For a one-
dimensional signal x € RY, the compressed perception pro-
cess can be expressed as

y=0x=DYs, (8)

where y € RM is the measurement data, @ is the measure-
ment matrix, W is the sparse dictionary, s is the sparse vector,
and when the signal x is sparse, ¥ is the identity matrix.

The first attempt to consider the optimal design of mea-
surement matrix was made in [12]. It states that by reducing
the correlation between the measurement matrix and the
sparse dictionary, the compression-aware reconstruction of
the signal can be effectively improved. We define the Gram
matrix:

G=Y'o oV (9)

The measurement matrix objective function can be
expressed as follows:

minG,G- G- Gideal”?«“' (10)

ideal

The bipolar chaotic Toeplitz matrix used in this paper has
obvious structural properties. In order to ensure that the
measurement matrix optimization process still maintains its
original structural properties, the measurement matrix is
decomposed as follows:

J
D= AP, (11)
j=1

where ] is the number of free elements in the measurement
matrix, and J in ® takes the value of M + N — 1, and @’ is
the structure matrix corresponding to element A;. The
matrix consists of 0 and 1/v/M elements and has the same
matrix dimension as ®. If the matrix element in a is 1/v/M,
it means that the matrix element in that position in @ is A;.
So @ can be expressed as
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Ay Ay, Ay A
AN+1 AN A3 Az
D, =
AM+N—1 AM+N—2 AM+1 AM (12)
0 - A 0 e 0
= +. +
0O - 0 Ayng - O
=A@ Ay, OV
that is,
0 1 0 e 0
o = VM o @MAN-T :
1
— 0
0 - 0 VM

Similarly, in ®,,

D, =A@+ Ay, @Y (14)
where
1
0 T o -~ 0
o = .
0 0 o - 0
—_——
IRA\/IXN/b ]RMXN/IJ
0 0 0 0
q)bM+N*b=
1
0 - 0 T 0
—_———
RM*N/b RM*N/b

(15)

Although @, and @, have different structures, they can
both be expressed in the form of Equation (11) and, given a
value of b, the measurement matrix is determined by the gen-
erating sequence A; only. To ensure that the structural prop-
erties of the measurement matrix are not destroyed by the
optimization process, the measurement matrix optimization
objective function is further expressed as
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{AIE’i(I;lldmlf({Aj}’ Gideal) =

(16)

This ensures that the structure matrix remains
unchanged during the optimization process and only the
sequence A; is optimized.

3.2. The Proposed Method. For the multiparameter optimiza-
tion problem in Equation (16), the following alternating opti-
mization strategy is used in this paper:

(i) Fixed the latest {A;}, updated Gigey
(ii) Fixed the latest Gy, updated {A;}

Gigear 18 updated using the following contraction opera-
tion for a fixed {A;}:

szelal (n,n') = sign (Gi) min (‘Gi (n, n’)

,71>, n#n',
(17)

where i is the number of iterations, G'=¥" (Y] Al
(¢j)T)(Z]]:1A;d)j)‘Y, and sign (-) is the sign function, =
V(M-N)/(N(M-1)).

The elements in the sequence {A;} are updated one by

one using the gradient descent algorithm under the condition
that the Gy, is fixed:

A;’H = A; - ﬂVfA; (A;’ ;daal) > (18)

where f3 is the gradient descent step and Vf A () is the gradi-
ent operator. In this paper, the expression for Vf A (A Gigea)
is derived as follows:
f({Aj} Gigea) =
J . Lo ’ (19)
v (Z A; ((D])T> (Z qu)]> ¥ - Gigea

>

j=1 F

let
a=(O'¥) DY,

b= (0'w)" Z 1A Y + Z iy (cl)f’\y) "o,
J

J

. . T . g
=) ’*f]Aj’(cbf ‘I’) Y A O - Gy
] J
(20)

Then Equation (19) can be simplified as

2

FU{A} Ge) = HAgmAijHF. (21)

\%i A (A;, Gly..1) can be calculated by the following equa-

tion:

VfA; (A;’ ;daal) =

(22)
(44vec(a) + 2vec” (b)) vec (€ - G,

where vec(+) is the matrix vectorization operator. The deriva-
tion process converts the F-parametrization of the matrix to
the 2-parametrization of the vector by the vec(-) operator,
which gives the result in Equation (22).

3.3. Constraints for Generating Sequences. The introduction
of the structure matrix ®’ ensures that the structural proper-
ties of the measurement matrix are not destroyed during the
alternating optimization process, but it is not guaranteed that
the elements of the optimized matrix maintain their original
bipolar properties. For this reason, this paper introduces a
bipolar threshold function in sequence construction to con-
strain the sequence {A;} during the iterative process from

the perspective of bipolar chaotic sequence construction:

. +1, A;” >0,
A.I;—l = 1 Ai+1 0 (23)
- . <0,
> ]

Then, by combining Equation (18) and Equation (23),
the bipolar properties of the matrix elements will be effec-
tively preserved during the optimization process. When the
iterations converge, the optimized measurement matrix can
be given by (11). At this point, the alternating optimization
algorithm for the bipolar chaotic Toeplitz matrix in this
paper is shown in Algorithm 1.

4. Experiments and Analysis

In order to verify the effectiveness of the bipolar chaotic Toe-
plitz measurement matrix alternating optimization algo-
rithm in this paper, numerical simulation experiments are
conducted to analyse the optimization effect of the measure-
ment matrix and the compression-aware reconstruction
effect of the optimized matrix.

4.1. Optimization Performance Analysis. The bipolar chaotic
sequence is constructed using the logistic mapping and the
bipolar threshold function, and then, the single block Toe-
plitz measurement matrix @, and the multiblock Toeplitz
measurement matrix @, are constructed according to Equa-
tions (6) and (7), respectively. The parameters of the mea-
surement matrix are set as follows: N =256, M =128, b =2.
Setting the sparse dictionary as an identity matrix and the
maximum number of iterations as 30, the optimization effect
of the two measurement matrices is shown in Figure 2.
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Input: Measurement matrix @, sparse dictionary ¥

Output: Optimized measurement matrix @,

Step 1: Using the input measurement matrix @, construct the sequence {A;} as well as the structure matrix {®/}.
Step 2: Complete the update of G,4,; by Equation (15)

Step 3: Using Equation (18), complete the update of sequence element A; one by one

Step 4: Constrain the updated element A; using Equation (23)

Step 5: Determine if the iteration termination condition is met, if so, go to Step 6, otherwise, go back to Step 2.
Step 6: Output optimized measurement matrix @, using Equation (11)

ArcoriTHM 1: The process of the proposed optimization method.
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FIGURE 2: Optimization performance: (a) single-block bipolar chaotic Toeplitz measurement matrix and (b) multiblock bipolar chaotic

Toeplitz measurement matrix.

. o ) TaBLE 1: Correlation coefficients.
As can be seen from the Figure 2, the optimization objec-

tive function decreases with the increase in the number of Original Optimized
iterations and finally converges to stability. Compared with Prmax Py Prnax Py
other measurement matrices, the structural properties of @D, 0.4587 0.0965 03437 0.0662

the bipolar chaotic Toeplitz measurement matrix and the

bipolar nature of the matrix elements largely limit the 2 0-5781 0-1001 0-3594 0.0724
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FIGURE 3: Reconstruction performance: (a) single-block bipolar chaotic Toeplitz measurement matrix, (b) optimized single-block bipolar
chaotic Toeplitz measurement matrix, (c) multiblock bipolar chaotic Toeplitz measurement matrix, and (d) optimized multiblock bipolar

chaotic Toeplitz measurement matrix.
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FIGURE 5: Reconstruction performance with different SNRs: (a) reconstruction probability and (b) average relative error.

optimizable space of the measurement matrix, so the iterative
convergence of this matrix is faster. After optimization, the
correlation coefficients of the measurement matrix are shown
in Table 1, where

G (n, n ')

G(n,n')‘.

As can be seen in Table 1, the optimized measurement
matrix correlation coefficients y as well as p, have been
significantly reduced.

max
lgn,n,SN’”*”'

Prmax = , (24)
1

Pay = N(N-1) (25)

lgn’n,SNﬂ’l#n’

4.2. Analysis of the Effect of One-Dimensional Signal
Reconstruction. The optimized measurement matrix was
used to carry out simulation experiments on the
compressive-perceptual reconstruction of one-dimensional
signals and to analyse the effect of the optimized measure-
ment matrix on the compressive-perceptual reconstruction
effect of one-dimensional signals. During the simulation, a
time-domain sparse signal was used for the one-
dimensional signal, at which time the sparse dictionary was

an identity matrix. Setting the sparsity K = 30, the effect of
compressive-aware reconstruction for four different mea-
surement matrices (single bipolar chaotic Toeplitz measure-
ment matrix, optimized single bipolar chaotic Toeplitz
measurement matrix, multiblock bipolar chaotic Toeplitz
measurement matrix, and optimized multiblock bipolar cha-
otic Toeplitz measurement matrix) is shown in Figure 3. The
reconstruction algorithm uses an orthogonal matching track-
ing algorithm [22], and to further quantify the reconstruction
effect, the relative error is introduced as follows:

r 2
112

From the reconstruction results, it can be seen that all
four measurement matrices achieve an effective reconstruc-
tion of the original signal at M =128, but a comparison of
the reconstruction relative error shows that the optimized
single/multiblock bipolar chaotic Toeplitz measurement
matrix has significantly lower values of reconstruction rela-
tive error than the unoptimized single/multiblock bipolar
chaotic Toeplitz measurement matrix.
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FIGURE 7: Reconstructed “Barbara™: (a) single-block bipolar chaotic Toeplitz measurement matrix, e, = 2.3077 x 10%; (b) optimized single-
block bipolar chaotic Toeplitz measurement matrix, e, = 1.4181 x 10™%; (c) multiblock bipolar chaotic Toeplitz measurement matrix, e, =
2.0132 x 107%; and (d) optimized multiblock bipolar chaotic Toeplitz measurement matrix, e, = 1.8460 x 104,

A different sparsity K is set, and the reconstruction effect
of the measurement matrix on different sparse signals is ana-
lysed. In the experiment, the position and amplitude of the
sparse signals are generated randomly. 1000 Monte Carlo
experiments were conducted under the same experimental
conditions, and the reconstruction was successful when the
relative error of reconstruction was lower than 10°#; other-
wise, the reconstruction failed. The reconstruction probabil-
ities of the four measurement matrices under different
conditions of sparsity K and the average relative errors are
shown in Figure 4, where the average relative error is the
average of 1000 Monte Carlo experiments.

As can be seen in Figure 4, the increasing sparsity leads to
a decreasing reconstruction probability and an increasing
reconstruction error. The optimized measurement matrices
are more suitable for one-dimensional signals with different
sparse locations and amplitudes, as the correlation coeffi-
cients y . and p, are significantly reduced. At this point,
it can be seen from Figure 4 that the reconstruction probabil-
ities of the optimized @, and ®, are higher than those of the
unoptimized ®, and ®, for the same sparsity, while the aver-
age relative errors are significantly lower than those of the
unoptimized ®, and ®@,.

In practical applications, the signal measurement process
will inevitably be noisy, so the noise of different signal-to-
noise ratios (SNR) is added to the compressed sampling pro-
cess to analyse the reconstruction effect of the optimized
bipolar chaotic Toeplitz measurement matrix under noisy
conditions. In the experiments, the sparsity was set to 12,
and the reconstruction probability of the four measurement

matrices without noise was close to 1. Under the noisy condi-
tion, the reconstruction was successful when the reconstruc-
tion relative error was below 1072; otherwise, the
reconstruction failed. The reconstruction probabilities and
the average relative errors of the four measurement matrices
with different SNRs are shown in Figure 5.

4.3. Analysis of the Effect of Two-Dimensional Image
Reconstruction. The optimization of the bipolar chaotic Toe-
plitz measurement matrix was further validated using two-
dimensional images. The two natural images (“Barbara”
and “Boat”) shown in Figure 6 were chosen as the experimen-
tal objects, both with a dimension 0f256 x 256. The above
image was divided into 256 image blocks which were 16 x
16 for a compressed perceptual reconstruction experiment.
The sparse dictionary used in the experiments is an orthogo-
nal cosine dictionary. Setting the sampling rate to 0.5, the
reconstructed images after compressive sampling with differ-
ent measurement matrices are shown in Figures 7 and 8.

As the images are not ideally sparse signals under the
orthogonal cosine dictionary, there is local blurring in the
reconstructed images after compressive sampling compared
to the original images. Further comparison of the reconstruc-
tion errors shows that the optimized single/multiblock bipo-
lar chaotic Toeplitz measurement matrix has a lower relative
reconstruction error than the unoptimized single/multiblock
bipolar Toeplitz measurement matrix. Thus, after optimiza-
tion, the bipolar chaotic Toeplitz measurement matrix is
effectively improved for compression-aware reconstruction
in 2D images.
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F1GURE 8: Reconstructed “Boat™ (a) single-block bipolar chaotic Toeplitz measurement matrix, e, = 3.172 x 10%; (b) optimized single-block
bipolar chaotic Toeplitz measurement matrix, e, = 1.7814 x 10™%; (c) multiblock bipolar chaotic Toeplitz measurement matrix, e, = 2.8183
x 1074; and (d) optimized multiblock bipolar chaotic Toeplitz measurement matrix, e, = 2.4414 x 107%.
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FIGURE 9: Reconstruction error with different sampling rates: (a) “Barbara” and (b) “Boat.”

To further analyse the effect of sampling rate on the effect of
image compression-aware reconstruction, the sampling rate
was set to increase from 0.2 to 0.7, and the relative error after
compression-aware reconstruction of the four measurement
matrices was analysed at different sampling rates, and the
experimental results are shown in Figure 9. In the figure, as
the sampling rate increases, the number of sampling points
keeps increasing; therefore, the relative error of compressed
sensing reconstruction keeps decreasing. And comparing the

four measurement matrices, it can be seen that at the same sam-
pling rate, the optimized single/multiblock bipolar chaotic
Toeplitz measurement matrix has a lower relative reconstruc-
tion error than the unoptimized single/multiblock bipolar cha-
otic Toeplitz measurement matrix. This experimental result
shows that the alternating optimization algorithm of the bipolar
chaotic Toeplitz measurement matrix in this paper can effec-
tively improve the compression-aware reconstruction perfor-
mance of the measurement matrix at different sampling rates.
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5. Conclusions

In this paper, a bipolar chaotic Toeplitz measurement matrix
optimization algorithm with alternating optimization is pro-
posed to address the problem that existing measurement
matrix optimization algorithms are not applicable in bipolar
chaotic Toeplitz measurement matrices. The algorithm in
this paper ensures that the structural properties of the opti-
mized measurement matrix remain unchanged by introduc-
ing a structure matrix and then ensures that the bipolar
properties of the optimized matrix elements remain
unchanged by introducing constraints. The experimental
results show that the optimization process effectively reduces
the correlation coefficient of the measurement matrix, and
the reconstruction error is effectively reduced, and the recon-
struction probability is significantly improved when the opti-
mized measurement matrix is applied to compressed
perceptual reconstruction of 1D signals and 2D images.
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